a.College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
b.The Second Research Institute of Civil Aviation Administration of China (CAAC), Chengdu 610041, China
zhhans77@163.com (H.Z.)
lijuan_zhao@sicnu.edu.cn (L.J.Z.)
Scan for full text
Guang-Bing Luo, Bo Pang, Xing-Qi Luo, et al. Brominated Butyl Rubber Anticorrosive Coating and Its Self-healing Behaviors. [J]. Chinese Journal of Polymer Science 41(2):297-305(2023)
Guang-Bing Luo, Bo Pang, Xing-Qi Luo, et al. Brominated Butyl Rubber Anticorrosive Coating and Its Self-healing Behaviors. [J]. Chinese Journal of Polymer Science 41(2):297-305(2023) DOI: 10.1007/s10118-022-2844-8.
The TBP-BIIR coating exhibits a protection efficiency of up to 94% respectively in a strong acid (HNO,3, pH=2), strong base (NaOH, pH=12), and salt solution (3.5 wt% NaCl), and it could maintain its self-healing and corrosion resistance performance in the strong corrosion environment.
Self-healing anticorrosive coatings in extreme environment have attracted considerable interest from researchers. In this work, 4-,tert,-butylpyridine (TBP) was incorporated into brominated butyl rubber (BIIR) polymer networks to form a reversible ionic bond with the highly reactive bromine anion. Based on the low glass transition temperature of the BIIR polymer and the electrostatic effects, a robust self-healing anticorrosive coating of TBP-BIIR was prepared. TBP-BIIR coating showed a maximum protection efficiency (PE) of more than 94% (TBP-BIIR-acid, 94.37%; TBP-BIIR-alkali, 94.95%; TBP-BIIR-salt, 95.49%) when treated with a strong acid (HNO,3, pH=2), strong base (NaOH, pH=12) and high salt solution (3.5 wt% NaCl). In addition, the PE of coating repaired exceed 89%, and the maximum PE value was approximately 95% in different solutions, which demonstrated its extinguished self-healing abilities. These results indicated that the TBP-BIIR anticorrosive coating could provide excellent safety and durability in special environment, which would be extremely beneficial to improve the working life of metal parts used in aviation and shipping, oil and gas and related industries.
Brominated butyl rubberSelf-healingAnticorrosiveCoating
Wei, J.; Li, B.; Jing, L.; Tian, N.; Zhao, X.; Zhang, J . Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating . Chem. Eng. J. , 2020 . 390 124562 DOI:10.1016/j.cej.2020.124562http://doi.org/10.1016/j.cej.2020.124562 .
Lazorenko, G.; Kasprzhitskii, A.; Nazdracheva, T . Anti-corrosion coatings for protection of steel railway structures exposed to atmospheric environments: a review . Constr. Build. Mater. , 2021 . 288 123115 DOI:10.1016/j.conbuildmat.2021.123115http://doi.org/10.1016/j.conbuildmat.2021.123115 .
Chen, Y.; Lou, X.; Yang, L.; Wang, C.; Zhou, K.; Chen, M.; Wang, Q.; Zhu, S.; Wang, F . Oxidation and corrosion protection of ZG12Cr9Mo1Co1NiVNbNB (CB2) ferritic stainless steel by inorganic composite coatings at 650 °C . Corros. Sci. , 2020 . 177 109000 DOI:10.1016/j.corsci.2020.109000http://doi.org/10.1016/j.corsci.2020.109000 .
Lu, Y.; Chen, Z.; Wang, C.; Zhao, Q.; Zhang, K.; Du, Y.; Xin, L.; Zhu, S.; Wang, F . Protection of 304 stainless steel by nano-modified silicone coating in cyclically alternate corrosion environment . Corros. Sci. , 2021 . 190 109712 DOI:10.1016/j.corsci.2021.109712http://doi.org/10.1016/j.corsci.2021.109712 .
Zhu, G.; Zhao, Y.; Liu, L.; Wang, L.; Wang, J.; Yu, S . Facile fabrication and evaluation of self-healing Zn-Al layered double hydroxide superhydrophobic coating on aluminum alloy . J. Mater. Sci. , 2021 . 56 14803 -14820 . DOI:10.1007/s10853-021-06247-9http://doi.org/10.1007/s10853-021-06247-9 .
Wang, S.; Liu, W.; Shi, H.; Zhang, F.; Liu, C.; Liang, L.; Pi, K . Co-modification of nano-silica and lysine on graphene oxide nanosheets to enhance the corrosion resistance of waterborne epoxy coatings in 3.5% NaCl solution . Polymer , 2021 . 222 123665 DOI:10.1016/j.polymer.2021.123665http://doi.org/10.1016/j.polymer.2021.123665 .
Kim, H.; Yarin, A. L.; Lee, M. W . Self-healing corrosion protection film for marine environment . Compos. Part B-Eng. , 2020 . 182 107598 DOI:10.1016/j.compositesb.2019.107598http://doi.org/10.1016/j.compositesb.2019.107598 .
Cui, Y.; Song, S.; Tang, Y.; Chen, Y.; Yang, H.; Yang, B.; Huang, J . Decoupling the roles of the catechol content from those of glass transition temperature and dynamic mechanical modulus in determining self-healing and anti-corrosion of mussel-inspired polymers . Polymer , 2019 . 185 121928 .
Yao, J.; Li, N.; Grothe, H.; Qi, Z.; Dong, C . Determination of the hydrogen effects on the passive film and the micro-structure at the surface of 2205 duplex stainless steel . Appl. Surf. Sci. , 2021 . 554 149597 DOI:10.1016/j.apsusc.2021.149597http://doi.org/10.1016/j.apsusc.2021.149597 .
Chen, H.; Kim, S. H.; Kim, C.; Chen, J.; Jang, C . Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650 °C . Corros. Sci. , 2019 . 156 16 -31 . DOI:10.1016/j.corsci.2019.04.043http://doi.org/10.1016/j.corsci.2019.04.043 .
Sun, P.; Wang, Z.; Lu, Y.; Shen, S.; Yang, R.; Xue, A.; Parker, T.; Wang, J.; Wang, Q . Analysis of the corrosion failure of a semiconductor polycrystalline distillation column . Process. Saf. Environ. , 2020 . 135 244 -256 . DOI:10.1016/j.psep.2020.01.007http://doi.org/10.1016/j.psep.2020.01.007 .
Song, Z.; Zhang, C.; Fu, X.; Zhang, H.; Xian, J.; Lin, J . Graphene nanosheet as a new particle dispersant for the jet-electrodeposition of high-performance Ni-P-WC composite coatings . Surf. Coat. Technol. , 2021 . 425 127740 DOI:10.1016/j.surfcoat.2021.127740http://doi.org/10.1016/j.surfcoat.2021.127740 .
Ma, A.; Liu, D.; Zhang, X.; Liu, D.; He, G.; Yin, X . Solid particle erosion behavior and failure mechanism of TiZrN coatings for Ti-6Al-4V alloy . Surf. Coat. Technol. , 2021 . 426 127701 .
Wu, Y.; Zhao, W.; Ou, J . Stable, superfast and self-healing fluid coating with active corrosion resistance . Adv. Colloid Interfaces , 2021 . 295 102494 DOI:10.1016/j.cis.2021.102494http://doi.org/10.1016/j.cis.2021.102494 .
Ming, H. L.; Zhang, Z. M.; Wang, S. Y.; Wang, J. Q.; Han, E. H.; Ke, W . Short time oxidation behavior of 308L weld metal and 316L stainless steel with different surface state in simulated primary water with 0.1 mg/L dissolved oxygen . Mater. Corros. , 2015 . 66 869 -881 . DOI:10.1002/maco.201408013http://doi.org/10.1002/maco.201408013 .
Zhang, H.; Liang, T.; Liu, Y.; Misra, R. D. K.; Zhao, Y . Low-surface-free-energy GO/FSiAC coating with self-healing function for anticorrosion and antifouling applications . Surf. Coat. Technol. , 2021 . 425 127690 DOI:10.1016/j.surfcoat.2021.127690http://doi.org/10.1016/j.surfcoat.2021.127690 .
Zhang, D.; Peng, F.; Qiu, J.; Tan, J.; Zhang, X.; Chen, S.; Qian, S.; Liu, X . Regulating corrosion reactions to enhance the anti-corrosion and self-healing abilities of PEO coating on magnesium . Corros Sci , 2021 . 192 109840 DOI:10.1016/j.corsci.2021.109840http://doi.org/10.1016/j.corsci.2021.109840 .
Zhuo, S.; Liu, Y.; Zhou, L.; Feng, X . Enhanced dual-responsive shape memory nanocomposites with rapid and efficient self-healing capability . J. Mater. Sci. , 2018 . 53 13936 -13948 . DOI:10.1007/s10853-018-2591-yhttp://doi.org/10.1007/s10853-018-2591-y .
Yue, D. W.; Wang, H. Q.; Tao, H. Q.; Zheng, P.; Li, C. H.; Zuo, J. L . A fast and room-temperature self-healing thermal conductive polymer composite . Chinese J. Polym. Sci. , 2021 . 39 1328 -1336. .
Yang, Y.; Davydovich, D.; Hornat, C. C.; Liu, X.; Urban, M. W . Leaf-inspired self-healing polymers . Chem , 2018 . 4 1928 -1936 . DOI:10.1016/j.chempr.2018.06.001http://doi.org/10.1016/j.chempr.2018.06.001 .
Zhai, L.; Narkar, A.; Ahn, K . Self-healing polymers with nanomaterials and nanostructures . Nano Today , 2020 . 30 100826 .
Wang, S.; Urban, M. W . Self-healing polymers . Nat. Rev. Mater. , 2020 . 5 562 -583. .
Yin, Q. Y.; Dai, C. H.; Chen, H.; Gou, K.; Guan, H. Z.; Wang, P. H.; Jiang, J. T.; Weng, G. S . Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing andluminescence properties . Chinese J. Polym. Sci. , 2021 . 39 554 -565. .
Le, H. H.; Hoang, T. X.; Schoene, E.; Reuter, U.; Stöckelhuber, K. W.; Mandal, S.; Dhakal, K . N.; Adhikari, R.; Wiessner, S. Effect of phase selective wetting of hybrid filler on the self-healing properties of rubber blends . Polymer , 2021 . 231 124146 .
Das, A.; Le, H. H.; Vuorinen, J.; Heinrich, G . Comment on "monitoring network and interfacial healing processes by broadband dielectric spectroscopy: a case study on natural rubber" . ACS Appl. Mater. Interfaces , 2017 . 9 14547 -14551 . DOI:10.1021/acsami.6b16045http://doi.org/10.1021/acsami.6b16045 .
Parent, J. S.; Thom, D. J.; White, G.; Whitney, R. A.; Hopkins, W . Thermal stability of brominated poly(isobutylene-co-isoprene) . J. Polym. Sci., Part A: Polym. Chem. , 2010 . 39 2019 -2026 . DOI:10.1002/pola.1177http://doi.org/10.1002/pola.1177 .
Zhang, L.; Wang, H.; Zhu, Y.; Xiong, H.; Wu, J . Electron-donating effect enabled simultaneous improvement on the mechanical and self-healing properties of bromobutyl rubber ionomers . ACS Appl. Mater. Interfaces , 2020 . 12 53239 -53246 . DOI:10.1021/acsami.0c14901http://doi.org/10.1021/acsami.0c14901 .
Li, C.; He, R.; Liang, Q.; Cao, J.; Yin, J.; Tang, Y . 4-Tert-butylpyridine-assisted low-cost and soluble copper phthalocyanine as dopant-free hole transport layer for efficient Pb- and Sn-based perovskite solar cells . Sci. China Chem. , 2020 . 63 1053 -1058 . DOI:10.1007/s11426-020-9725-3http://doi.org/10.1007/s11426-020-9725-3 .
Phan, T. A. P.; Nguyen, N. P.; Nguyen, L. T.; Nguyen, P. H.; Le, T. K.; Huynh, T. V.; Lund, T.; Tsai, D. H.; Wei, T.C.; Nguyen, P. T . Direct experimental evidence for the adsorption of 4-tert-butylpyridine and 2,2′-bipyridine on TiO2 surface and their influence on dye-sensitized solar cells’ performance . Appl. Surf. Sci. , 2020 . 509 144878 .
Malmberg, S. M.; Parent, J. S.; Pratt, D. A.; Whitney, R. A . Isomerization and elimination reactions of brominated poly(isobutylene-co-isoprene) . Macromolecules , 2010 . 43 8456 .
Zhang, F.; Liu, W.; Wang, S.; Shi, H.; Liu, C.; Liang, L.; Pi, K . Engineering MXenes (Ti3C2Tx) surface with TiO2 for enhancing anti-corrosion performance of coatings . Polymer , 2021 . 230 124086 .
Vinodhini, S. P.; Xavier, J. R . Evaluation of corrosion protection performance and mechanical properties of epoxy-triazole/graphene oxide nanocomposite coatings on mild steel . J. Mater. Sci. , 2021 . 56 7094 -7110 . DOI:10.1007/s10853-020-05636-whttp://doi.org/10.1007/s10853-020-05636-w .
Cui, G.; Zhang, C.; Wang, A.; Zhou, X.; Xing, X.; Liu, J.; Li, Z.; Chen, Q.; Lu, Q . Research progress on self-healing polymer/graphene anticorrosion coatings . Prog. Org. Coat. , 2021 . 155 106231 .
Zaffora, A.; Di Franco, F.; Santamaria, M . Corrosion of stainless steel in food and pharmaceutical industry . Curr. Opin. Electrochem. , 2021 . 29 100760 DOI:10.1016/j.coelec.2021.100760http://doi.org/10.1016/j.coelec.2021.100760 .
Sah, S. P . Corrosion of 304 stainless steel in carbonates melt—a state of enhanced dissolution of corrosion products . Corros. Sci. , 2020 . 169 108535 DOI:10.1016/j.corsci.2020.108535http://doi.org/10.1016/j.corsci.2020.108535 .
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution