a.School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
b.Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 610054, China
tonglifen0214@uestc.edu.cn (L.F.T.)
liuxb@uestc.edu.cn (X.B.L.)
Scan for full text
Li-Fen Tong, Liang He, Chen-Hao Zhan, et al. Poly(arylene ether nitrile) Dielectric Film Modified by Bi2S3/rGO-CN Fillers for High Temperature Resistant Electronics Fields. [J]. Chinese Journal of Polymer Science 40(11):1441-1450(2022)
Li-Fen Tong, Liang He, Chen-Hao Zhan, et al. Poly(arylene ether nitrile) Dielectric Film Modified by Bi2S3/rGO-CN Fillers for High Temperature Resistant Electronics Fields. [J]. Chinese Journal of Polymer Science 40(11):1441-1450(2022) DOI: 10.1007/s10118-022-2810-5.
The rod-shaped Bi,2,S,3, was grown ,in situ, on the surface of rGO by hydrothermal method, and then cyanated. The above obtained fillers compounded with crosslinkable polyarylene ether nitrile to prepare a high temperature resistant dielectric film material with a ,T,g, of 250 °C and dielectric constant of 6.8.
High-quality film capacitors are widely used in many fields such as new energy vehicles, electronic communications,etc,., due to their advantages in wide frequency response and low dielectric loss. The dielectric film is a crucial part of the film capacitor, and its properties have an important impact on the performance and use conditions of the film capacitor. In this work, a novel high-temperature-resistant dielectric film was prepared. Firstly, the Bi,2,S,3,/rGO-CN fillers were prepared by hydrothermal method combined with cyanation treatment, and then added to the poly(arylene ether nitrile) (PEN) matrix to prepare the dielectric film materials (PEN/Bi,2,S,3,/rGO-CN). After high temperature treatment, the fillers Bi,2,S,3,/rGO-CN reacted with the PEN matrix, and the composites materials transformed into a thermosetting hybrid film (PEN-Bi,2,S,3,/rGO) with gel content of 97.88%. The prepared hybrid dielectric films did not decompose significantly before 400 °C, and showed a glass transition temperature (,T,g,) of up to 252.4 °C, which could increase the effective use temperature of the materials. Compared with the composite films without heat treatment, they exhibit better mechanical properties, with further improvement in tensile strength and elastic modulus, and a decrease in elongation at break. The dielectric constant of the hybrid films can be up to 6.8 while the dielectric loss is only about 0.02 at 1 kHz. Moreover, the hybrid films showed excellent dielectric stability during temperature changes, and remain relatively stable before 250 °C, which is suitable as a high-temperature-resistant high-dielectric material and is more advantageous for practical applications.
Poly(arylene ether nitrile)Bismuth sulfideGraphene oxideHigh-temperature-resistantDielectric properties
Gong, X.; Han, P.; Wen, H.; Sun, Y.; Zhang, X.; Yang, H.; Lin, B . Synthesis and properties of triphenodioxazine-based conjugated polymers for polymer solar cells . Eur. J. Org. Chem. , 2017 . 2017 3689 -3698 . DOI:10.1002/ejoc.201700393http://doi.org/10.1002/ejoc.201700393 .
Lai, C.; Sun, Y.; Zhang, X.; Yang, H.; Kang, W.; Lin, B . Advanced flower-like Co3O4 with ultrathin nanosheets and 3D rGO aerogels as double ion-buffering reservoirs for asymmetric supercapacitors . Electrochim. Acta , 2018 . 271 379 -387 . DOI:10.1016/j.electacta.2018.03.166http://doi.org/10.1016/j.electacta.2018.03.166 .
Gao, L.; He, J.; Hu, J.; Li, Y . Large enhancement in polarization response and energy storage properties of poly(vinylidene fluoride) by improving the interface effect in nanocomposites . J. Phys. Chem. C , 2014 . 118 831 -838 . DOI:10.1021/jp409474khttp://doi.org/10.1021/jp409474k .
Yao, L.; Pan, Z.; Zhai, J.; Chen, H. H. D . Novel design of highly 110-oriented barium titanate nanorod array and its application in nanocomposite capacitors . Nanoscale , 2017 . 9 4255 -4264 . DOI:10.1039/C6NR09250Khttp://doi.org/10.1039/C6NR09250K .
Samant, S. P.; Grabowski, C. A.; Kisslinger, K.; Yager, K. G.; Yuan, G.; Satija, S. K.; Durstock, M . F.; Raghavan, D.; Karim, A. Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors . ACS Appl. Mater. Interfaces , 2016 . 8 7966 -7976 . DOI:10.1021/acsami.5b11851http://doi.org/10.1021/acsami.5b11851 .
Bi, M.; Hao, Y.; Zhang, J.; Lei, M.; Bi, K . Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites . Nanoscale , 2017 . 9 16386 -16395 . DOI:10.1039/C7NR05212Jhttp://doi.org/10.1039/C7NR05212J .
Wu, W.; Liu, T.; Zhang, D.; Sun, Q.; Cao, K.; Zha, J.; Lu, Y.; Wang, B.; Cao, X.; Feng, Y.; Roy, V. A. L.; Li, R. K. Y . Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes . Compos. Part A-Appl. Sci. Manuf. , 2019 . 127 105650 DOI:10.1016/j.compositesa.2019.105650http://doi.org/10.1016/j.compositesa.2019.105650 .
Chen, G.; Zhang, X. H.; Qiao, J. L . Effect of nano-fillers on conductivity of polyethylene/low melting point metal alloy composites . Chinese J. Polym. Sci. , 2015 . 33 371 -375 . DOI:10.1007/s10118-015-1589-zhttp://doi.org/10.1007/s10118-015-1589-z .
Cui, C. H.; Yan, D. X.; Pang, H.; Jia, L. C.; Bao, Y.; Jiang, X.; Li, Z. M . Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks . Chinese J. Polym. Sci. , 2016 . 34 1490 -1499 . DOI:10.1007/s10118-016-1849-6http://doi.org/10.1007/s10118-016-1849-6 .
Wei, Z . B.; Zhao, Y.; Wang, C.; Kuga, S.; Huang, Y.; Wu, M. Antistatic PVC-graphene composite through plasticizer-mediated exfoliation of graphite . Chinese J. Polym. Sci. , 2018 . 36 1361 -1367 . DOI:10.1007/s10118-018-2160-5http://doi.org/10.1007/s10118-018-2160-5 .
Zhang, Q. Y.; Li, H. S.; Guo, B. H.; Guo, Z. X.; Yu, J . Facile preparation of electromagnetic interference shielding materials enabled by constructing interconnected network of multi-walled carbon nanotubes in a miscible polymeric blend . Chinese J. Polym. Sci. , 2020 . 38 593 -598 . DOI:10.1007/s10118-020-2370-5http://doi.org/10.1007/s10118-020-2370-5 .
Guo, Q.; Xue, Q.; Sun, J.; Dong, M.; Xia, F.; Zhang, Z . Gigantic enhancement in the dielectric properties of polymer-based composites using core/shell MWCNT/amorphous carbon nanohybrids . Nanoscale , 2015 . 7 3660 -3667 . DOI:10.1039/C4NR05264Ahttp://doi.org/10.1039/C4NR05264A .
Lei, X. T.; Tong, L. F.; Xu, M. Z.; You, Y.; Liu, X. B . PEN/BADCy interlayer dielectric films with tunable microstructures via an assist of temperature for enhanced frequency stability . Chinese J. Polym. Sci. , 2020 . 38 1258 -1266 . DOI:10.1007/s10118-020-2417-7http://doi.org/10.1007/s10118-020-2417-7 .
Wei, R. B.; Zhan, C. H.; Yang, Y.; He, P. L.; Liu, X. B . Polyarylene ether nitrile and titanium dioxide hybrids as thermal resistant dielectrics . Chinese J. Polym. Sci. , 2021 . 39 211 -218 . DOI:10.1007/s10118-020-2481-zhttp://doi.org/10.1007/s10118-020-2481-z .
Lei, Y.; Zhao, R.; Yang, X.; Liu, X . Mechanical and thermal properties of graphite nanoplatelets reinforced polyarylene ether nitriles/bisphthalonitrile IPN system . J. Appl. Polym. Sci. , 2013 . 127 3595 -3600 . DOI:10.1002/app.37754http://doi.org/10.1002/app.37754 .
Liu, M.; Xu, M.; Tong, L.; Huang, X.; Yang, X.; Liu, X . Nitrile functionalized Al2O3 reinforced polyarylene ether nitriles terminated with phthalonitrile composites . J. Polym. Res. , 2014 . 21 414 DOI:10.1007/s10965-014-0414-7http://doi.org/10.1007/s10965-014-0414-7 .
Liu, S.; Tu, L.; Liu, C.; Tong, L.; Bai, Z.; Lin, G.; Jia, K.; Liu, X . Interfacial crosslinking enabled super-engineering polymer-based composites with ultra-stable dielectric properties beyond 350 °C . J. Alloys Compd. , 2022 . 891 161952 DOI:10.1016/j.jallcom.2021.161952http://doi.org/10.1016/j.jallcom.2021.161952 .
Meng, F.; Zhong, J.; Chen, Y.; Liu, X . The influence of cross-linking reaction on the mechanical and thermal properties of polyarylene ether nitrile . J. Appl. Polym. Sci. , 2011 . 120 1822 -1828 . DOI:10.1002/app.33399http://doi.org/10.1002/app.33399 .
Tong, L.; Jia, K.; Liu, X . Novel phthalonitrile-terminated polyarylene ether nitrile with high glass transition temperature and enhanced thermal stability . Mater. Lett. , 2014 . 128 267 -270 . DOI:10.1016/j.matlet.2014.04.132http://doi.org/10.1016/j.matlet.2014.04.132 .
Tong, L.; Pu, Z.; Huang, X.; Chen, Z.; Yang, X.; Liu, X . Crosslinking behavior of polyarylene ether nitrile terminated with phthalonitrile (PEN-t-Ph)/1,3,5-tri-(3,4-dicyanophenoxy) benzene (TPh) system and its enhanced thermal stability . J. Appl. Polym. Sci. , 2013 . 130 1363 -1368 . DOI:10.1002/app.39312http://doi.org/10.1002/app.39312 .
You, Y.; Liu, S.; Tu, L.; Wang, Y.; Zhan, C.; Du, X.; Wei, R.; Liu, X . Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors . Macromolecules , 2019 . 52 5850 -5859 . DOI:10.1021/acs.macromol.9b00799http://doi.org/10.1021/acs.macromol.9b00799 .
Lu, J.; Han, Q.; Yang, X.; Lu, L.; Wang, X . Preparation of Bi2S3 nanorods via a hydrothennal approach . Mater. Lett. , 2007 . 61 3425 -3428 . DOI:10.1016/j.matlet.2006.11.097http://doi.org/10.1016/j.matlet.2006.11.097 .
Chen, K.; Lu, G.; Chang, J.; Mao, S.; Yu, K.; Cui, S.; Chen, J . Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles . Anal. Chem. , 2012 . 84 4057 -4062 . DOI:10.1021/ac3000336http://doi.org/10.1021/ac3000336 .
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S . Graphene and graphene oxide: synthesis, properties, and applications . Adv. Mater. , 2010 . 22 3906 -3924 . DOI:10.1002/adma.201001068http://doi.org/10.1002/adma.201001068 .
Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C . Graphene photonics and optoelectronics . Nat. Photon. , 2010 . 4 611 -622 . DOI:10.1038/nphoton.2010.186http://doi.org/10.1038/nphoton.2010.186 .
Wang, Y.; Kai, Y.; Tong, L.; You, Y.; Huang, Y.; Liu, X . The frequency independent functionalized MoS2 nanosheet/poly(arylene ether nitrile) composites with improved dielectric and thermal properties via mussel inspired surface chemistry . Appl. Surf. Sci. , 2019 . 481 1239 -1248 . DOI:10.1016/j.apsusc.2019.03.235http://doi.org/10.1016/j.apsusc.2019.03.235 .
Tang, Z.; Xia, J.; Yin, H.; Fu, G.; Ai, X.; Tang, H.; Yang, C.; Qu, L.; Li, Y . High-temperature-resistant barium strontium titanate@Ag/poly(arylene ether nitrile) composites with enhanced dielectric performance and high mechanical strength . Adv. Compos. Hybrid Mater. , 2021 . 5 822 -833 . DOI:10.1007/s42114-021-00366-2http://doi.org/10.1007/s42114-021-00366-2 .
Prateek; Thakur, V. K.; Gupta, R. K . Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects . Chem. Rev. , 2016 . 116 4260 -4317 . DOI:10.1021/acs.chemrev.5b00495http://doi.org/10.1021/acs.chemrev.5b00495 .
Zhan, Y.; Yang, X.; Guo, H.; Yang, J.; Meng, F.; Liu, X . Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability . J. Mater. Chem. , 2012 . 22 5602 -5608 . DOI:10.1039/c2jm15780bhttp://doi.org/10.1039/c2jm15780b .
Wei, R.; Xiao, Q.; Zhan, C.; You, Y.; Zhou, X.; Liu, X . Polyarylene ether nitrile and boron nitride composites: coating with sulfonated polyarylene ether nitrile . e-Polymers , 2019 . 19 70 -78 . DOI:10.1515/epoly-2019-0009http://doi.org/10.1515/epoly-2019-0009 .
Tang, H.; Lin, Y.; Sodano, H. A . Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly . Adv. Energy Mater. , 2012 . 2 469 -476 . DOI:10.1002/aenm.201100543http://doi.org/10.1002/aenm.201100543 .
Jiang, A. Q.; Wang, C.; Jin, K. J.; Liu, X. B.; Scott, J. F.; Hwang, C. S.; Tang, T. A.; Bin Lu, H.; Yang, G. Z . A Resistive memory in semiconducting BiFeO3 thin-film capacitors . Adv. Mater. , 2011 . 23 1277 -1278 . DOI:10.1002/adma.201004317http://doi.org/10.1002/adma.201004317 .
Chon, U.; Kim, K. B.; Jang, H. M.; Yi, G. C . Fatigue-free samarium-modified bismuth titanate (Bi4-xSmxTi3O12) film capacitors having large spontaneous polarizations . Appl. Phys. Lett. , 2001 . 79 3137 -3139 . DOI:10.1063/1.1415353http://doi.org/10.1063/1.1415353 .
Kim, S. K.; Choi, G.-J.; Lee, S. Y.; Seo, M.; Lee, S. W.; Han, J. H.; Ahn, H. S.; Han, S.; Hwang, C. S . Al-doped TiO2 films with ultralow leakage currents for next generation DRAM capacitors . Adv. Mater. , 2008 . 20 1429 -1430 . DOI:10.1002/adma.200701085http://doi.org/10.1002/adma.200701085 .
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution