a.Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
b.Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
chemhualu@pku.edu.cn
Scan for full text
Chong Zhang, Hua Lu. Helical Nonfouling Polypeptides for Biomedical Applications. [J]. Chinese Journal of Polymer Science 40(5):433-446(2022)
Chong Zhang, Hua Lu. Helical Nonfouling Polypeptides for Biomedical Applications. [J]. Chinese Journal of Polymer Science 40(5):433-446(2022) DOI: 10.1007/s10118-022-2688-2.
The state-of-the-art of ,α,-helical polypeptides for biomedical applications, with a special emphasis on the manipulation of helix-to-coil dynamic transition, conformation-associated anti-biofouling surfaces, cellular uptake regulation, and reducing immunogenicity of polypeptide-protein conjugates are reviewed.
Synthetic polypeptides, also known as poly(,α,-amino acid)s (P,α,AAs), are biomimetic and biodegradable polymers holding great potential for a variety of biomedical applications. Possessing the same peptide bonds as natural proteins, polypeptides can also adopt typical well-defined secondary structures including ,α,-helix, which have been shown to significantly impact the physicochemical properties and biological outcomes of materials. In this feature article, we review the state-of-the-art progresses of ,α,-helical polypeptides for biomedical applications, with a special emphasis on the manipulation of helix-to-coil dynamic transition, conformation-associated anti-biofouling coatings, cellular uptake regulation, and reducing immunogenicity of polypeptide-protein conjugates. Finally, perspectives on outstanding challenges remained in this field and some important future directions are discussed.
Poly(α-amino acid) PolypeptideHelixNonfoulingPEPylation
Deming, T. J . Polypeptide materials: new synthetic methods and applications . Adv. Mater. , 1997 . 9 299 -311 . DOI:10.1002/adma.19970090404http://doi.org/10.1002/adma.19970090404 .
Zhou, X.; Li, Z . Advances and biomedical applications of polypeptide hydrogels derived from α-amino acid N-carboxyanhydride (NCA) polymerizations . Adv. Healthc. Mater. , 2018 . 7 1800020 DOI:10.1002/adhm.201800020http://doi.org/10.1002/adhm.201800020 .
Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H. A.; Zhong, Z . Functional polypeptide and hybrid materials: precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications . Prog. Polym. Sci. , 2014 . 39 330 -364 . DOI:10.1016/j.progpolymsci.2013.10.008http://doi.org/10.1016/j.progpolymsci.2013.10.008 .
Song, Z.; Fu, H.; Wang, R.; Pacheco, L . A.; Wang, X.; Lin, Y.; Cheng, J. Secondary structures in synthetic polypeptides from N-carboxyanhydrides: design, modulation, association, and material applications . Chem. Soc. Rev. , 2018 . 47 7401 -7425 . DOI:10.1039/C8CS00095Fhttp://doi.org/10.1039/C8CS00095F .
Rasines Mazo, A.; Allison-Logan, S.; Karimi, F.; Chan, N. J.; Qiu, W.; Duan, W.; O’Brien-Simpson, N. M.; Qiao, G. G . Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids . Chem. Soc. Rev. , 2020 . 49 4737 -4834 . DOI:10.1039/C9CS00738Ehttp://doi.org/10.1039/C9CS00738E .
Shen, Y.; Fu, X.; Fu, W.; Li, Z . Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization . Chem. Soc. Rev. , 2015 . 44 612 -622 . DOI:10.1039/C4CS00271Ghttp://doi.org/10.1039/C4CS00271G .
Song, Z.; Han, Z.; Lv, S.; Chen, C.; Chen, L.; Yin, L.; Cheng, J . Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application . Chem. Soc. Rev. , 2017 . 46 6570 -6599 . DOI:10.1039/C7CS00460Ehttp://doi.org/10.1039/C7CS00460E .
Yang, J.; Zou, H.; Ding, J.; Chen, X. . Controlled synthesis and biomedical applications of cystine-based polypeptide nanomaterials . Acta Polymerica Sinica (in Chinese) , 2021 . 52 960 -977 . DOI:10.11777/j.issn1000-3304.2021.21115http://doi.org/10.11777/j.issn1000-3304.2021.21115 .
Deming, T. J . Synthetic polypeptides for biomedical applications . Prog. Polym. Sci. , 2007 . 32 858 -875 . DOI:10.1016/j.progpolymsci.2007.05.010http://doi.org/10.1016/j.progpolymsci.2007.05.010 .
Borase, T.; Heise, A . Hybrid nanomaterials by surface grafting of synthetic polypeptides using N-carboxyanhydride (NCA) polymerization . Adv. Mater. , 2016 . 28 5725 -5731 . DOI:10.1002/adma.201504474http://doi.org/10.1002/adma.201504474 .
Shen, Y.; Li, Z.; Klok, H. A . Polypeptide brushes grown via surface-initiated ring-opening polymerization of α-amino acid N-carboxyanhydrides . Chinese J. Polym. Sci. , 2015 . 33 931 -946 . DOI:10.1007/s10118-015-1654-7http://doi.org/10.1007/s10118-015-1654-7 .
Wibowo, S. H.; Sulistio, A.; Wong, E. H. H.; Blencowe, A.; Qiao, G. G . Polypeptide films via N-carboxyanhydride ring-opening polymerization (NCA-ROP): past, present and future . Chem. Commun. , 2014 . 50 4971 -4988 . DOI:10.1039/c4cc00293hhttp://doi.org/10.1039/c4cc00293h .
Si, X.; Ma, S.; Xu, Y.; Zhang, D.; Shen, N.; Yu, H.; Zhang, Y.; Song, W.; Tang, Z.; Chen, X . Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic . J. Control. Release , 2020 . 320 83 -95 . DOI:10.1016/j.jconrel.2020.01.021http://doi.org/10.1016/j.jconrel.2020.01.021 .
Hou, Y.; Wang, Y.; Wang, R.; Bao, W.; Xi, X.; Sun, Y.; Yang, S.; Wei, W.; Lu, H . Harnessing phosphato-platinum bonding induced supramolecular assembly for systemic cisplatin delivery . ACS Appl. Mater. Interfaces , 2017 . 9 17757 -17768 . DOI:10.1021/acsami.7b03686http://doi.org/10.1021/acsami.7b03686 .
Ding, Y.; Ma, Y.; Du, C.; Wang, C.; Chen, T.; Wang, Y.; Wang, J.; Yao, Y.; Dong, C. M . NO-releasing polypeptide nanocomposites reverse cancer multidrug resistance via triple therapies . Acta Biomater. , 2021 . 123 335 -345 . DOI:10.1016/j.actbio.2021.01.015http://doi.org/10.1016/j.actbio.2021.01.015 .
Wang, Y.; Shen, N.; Wang, Y.; Zhang, Y.; Tang, Z.; Chen, X . Self-amplifying nanotherapeutic drugs homing to tumors in a manner of chain reaction . Adv. Mater. , 2021 . 33 2002094 DOI:10.1002/adma.202002094http://doi.org/10.1002/adma.202002094 .
Wang, X.; Song, Z.; Wei, S.; Ji, G.; Zheng, X.; Fu, Z.; Cheng, J . Polypeptide-based drug delivery systems for programmed release . Biomaterials , 2021 . 275 120913 DOI:10.1016/j.biomaterials.2021.120913http://doi.org/10.1016/j.biomaterials.2021.120913 .
Zhang, P.; Jain, P.; Tsao, C.; Yuan, Z.; Li, W.; Li, B.; Wu, K.; Hung, H . C.; Lin, X.; Jiang, S. Polypeptides with high zwitterion density for safe and effective therapeutics . Angew. Chem. Int. Ed. , 2018 . 57 7743 -7747 . DOI:10.1002/anie.201802452http://doi.org/10.1002/anie.201802452 .
Talelli, M.; Vicent, M. J . Reduction sensitive poly(L-glutamic acid) (PGA)-protein conjugates designed for polymer masked-unmasked protein therapy . Biomacromolecules , 2014 . 15 4168 -4177 . DOI:10.1021/bm5011883http://doi.org/10.1021/bm5011883 .
Hou, Y.; Lu, H . Protein PEPylation: a new paradigm of protein-polymer conjugation . Bioconjug. Chem. , 2019 . 30 1604 -1616 . DOI:10.1021/acs.bioconjchem.9b00236http://doi.org/10.1021/acs.bioconjchem.9b00236 .
Shen, W.; He, P.; Xiao, C.; Chen, X . From antimicrobial peptides to antimicrobial poly(α-amino acid)s . Adv. Healthc. Mater. , 2018 . 7 1800354 DOI:10.1002/adhm.201800354http://doi.org/10.1002/adhm.201800354 .
Zhou, C.; Qi, X.; Li, P.; Chen, W. N.; Mouad, L.; Chang, M. W.; Leong, S. S. J.; Chan-Park, M. B . High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-carboxyanhydrides . Biomacromolecules , 2010 . 11 60 -67 . DOI:10.1021/bm900896hhttp://doi.org/10.1021/bm900896h .
Lam, S. J.; O'Brien-Simpson, N. M.; Pantarat, N.; Sulistio, A.; Wong, E. H. H.; Chen, Y. Y.; Lenzo, J. C.; Holden, J. A.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G . Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers . Nat. Microbiol. , 2016 . 1 16162 DOI:10.1038/nmicrobiol.2016.162http://doi.org/10.1038/nmicrobiol.2016.162 .
Jiang, Y.; Chen, Y.; Song, Z.; Tan, Z.; Cheng, J . Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation . Adv. Drug Deliv. Rev. , 2021 . 170 261 -280 . DOI:10.1016/j.addr.2020.12.016http://doi.org/10.1016/j.addr.2020.12.016 .
Salas-Ambrosio, P.; Tronnet, A.; Verhaeghe, P.; Bonduelle, C . Synthetic polypeptide polymers as simplified analogues of antimicrobial peptides . Biomacromolecules , 2021 . 22 57 -75 . DOI:10.1021/acs.biomac.0c00797http://doi.org/10.1021/acs.biomac.0c00797 .
Liu, Y.; Yin, L . α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery . Adv. Drug Deliv. Rev. , 2021 . 171 139 -163 . DOI:10.1016/j.addr.2020.12.007http://doi.org/10.1016/j.addr.2020.12.007 .
Gabrielson, N . P.; Lu, H.; Yin, L.; Li, D.; Wang, F.; Cheng, J. Reactive and bioactive cationic α-helical polypeptide template for nonviral gene delivery . Angew. Chem. Int. Ed. , 2012 . 51 1143 -1147 . DOI:10.1002/anie.201104262http://doi.org/10.1002/anie.201104262 .
Fang, H.; Guo, Z.; Lin, L.; Chen, J.; Sun, P.; Wu, J.; Xu, C.; Tian, H.; Chen, X . Molecular strings significantly improved the gene transfection efficiency of polycations . J. Am. Chem. Soc. , 2018 . 140 11992 -12000 . DOI:10.1021/jacs.8b05341http://doi.org/10.1021/jacs.8b05341 .
Li, C.; Faulkner-Jones, A.; Dun, A. R.; Jin, J.; Chen, P.; Xing, Y.; Yang, Z.; Li, Z.; Shu, W.; Liu, D.; Duncan, R. R . Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting . Angew. Chem. Int. Ed. , 2015 . 54 3957 -3961 . DOI:10.1002/anie.201411383http://doi.org/10.1002/anie.201411383 .
Ren, K.; He, C.; Xiao, C.; Li, G.; Chen, X . Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering . Biomaterials , 2015 . 51 238 -249 . DOI:10.1016/j.biomaterials.2015.02.026http://doi.org/10.1016/j.biomaterials.2015.02.026 .
Yin, L.; Cheng, J.; Deming, T. J.; Vicent, M. J . Synthetic polypeptides for drug and gene delivery, and tissue engineering . Adv. Drug Deliv. Rev. , 2021 . 178 113995 DOI:10.1016/j.addr.2021.113995http://doi.org/10.1016/j.addr.2021.113995 .
Song, Z.; Tan, Z.; Cheng, J . Recent advances and future perspectives of synthetic polypeptides from N-carboxyanhydrides . Macromolecules , 2019 . 52 8521 -8539 . DOI:10.1021/acs.macromol.9b01450http://doi.org/10.1021/acs.macromol.9b01450 .
Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J . Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications . Chem. Commun. , 2014 . 50 139 -155 . DOI:10.1039/C3CC46317Fhttp://doi.org/10.1039/C3CC46317F .
Wu, Y.; Zhang, D.; Ma, P.; Zhou, R.; Hua, L.; Liu, R . Lithium hexamethyldisilazide initiated superfast ring opening polymerization of alpha-amino acid N-carboxyanhydrides . Nat. Commun. , 2018 . 9 5297 DOI:10.1038/s41467-018-07711-yhttp://doi.org/10.1038/s41467-018-07711-y .
Tian, Z.; Zhang, Z.; Wang, S.; Lu, H . A moisture-tolerant route to unprotected α/β-amino acid N-carboxyanhydrides and facile synthesis of hyperbranched polypeptides . Nat. Commun. , 2021 . 12 5810 DOI:10.1038/s41467-021-25689-yhttp://doi.org/10.1038/s41467-021-25689-y .
Liu, Y.; Li, D.; Ding, J.; Chen, X . Controlled synthesis of polypeptides . Chin. Chem. Lett. , 2020 . 31 3001 -3014 . DOI:10.1016/j.cclet.2020.04.029http://doi.org/10.1016/j.cclet.2020.04.029 .
Deming, T. J . Synthesis of side-chain modified polypeptides . Chem. Rev. , 2016 . 116 786 -808 . DOI:10.1021/acs.chemrev.5b00292http://doi.org/10.1021/acs.chemrev.5b00292 .
Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G . Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides . Chem. Rev. , 2009 . 109 5528 -5578 . DOI:10.1021/cr900049thttp://doi.org/10.1021/cr900049t .
Chou, P. Y.; Fasman, G. D . Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins . Biochemistry , 1974 . 13 211 -222 . DOI:10.1021/bi00699a001http://doi.org/10.1021/bi00699a001 .
Bonduelle, C . Secondary structures of synthetic polypeptide polymers . Polym. Chem. , 2018 . 9 1517 -1529 . DOI:10.1039/C7PY01725Ahttp://doi.org/10.1039/C7PY01725A .
Ge, C.; Ye, H.; Wu, F.; Zhu, J.; Song, Z.; Liu, Y.; Yin, L . Biological applications of water-soluble polypeptides with ordered secondary structures . J. Mater. Chem. B , 2020 . 8 6530 -6547 . DOI:10.1039/D0TB00902Dhttp://doi.org/10.1039/D0TB00902D .
Carlsen, A.; Lecommandoux, S . Self-assembly of polypeptide-based block copolymer amphiphiles . Curr. Opin. Colloid Interface Sci. , 2009 . 14 329 -339 . DOI:10.1016/j.cocis.2009.04.007http://doi.org/10.1016/j.cocis.2009.04.007 .
Bellomo, E. G.; Wyrsta, M. D.; Pakstis, L.; Pochan, D. J.; Deming, T. J . Stimuli-responsive polypeptide vesicles by conformation-specific assembly . Nat. Mater. , 2004 . 3 244 -248 . DOI:10.1038/nmat1093http://doi.org/10.1038/nmat1093 .
Rodríguez-Hernández, J.; Lecommandoux, S . Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers . J. Am. Chem. Soc. , 2005 . 127 2026 -2027 . DOI:10.1021/ja043920ghttp://doi.org/10.1021/ja043920g .
Lu, H.; Wang, J.; Bai, Y.; Lang, J . W.; Liu, S.; Lin, Y.; Cheng, J. Ionic polypeptides with unusual helical stability . Nat. Commun. , 2011 . 2 206 DOI:10.1038/ncomms1209http://doi.org/10.1038/ncomms1209 .
Leigh, T.; Fernandez-Trillo, P . Helical polymers for biological and medical applications . Nat. Rev. Chem. , 2020 . 4 291 -310 . DOI:10.1038/s41570-020-0180-5http://doi.org/10.1038/s41570-020-0180-5 .
Xiong, M.; Han, Z.; Song, Z.; Yu, J.; Ying, H.; Yin, L.; Cheng, J . Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition . Angew. Chem. Int. Ed. , 2017 . 56 10826 -10829 . DOI:10.1002/anie.201706071http://doi.org/10.1002/anie.201706071 .
Xiong, M.; Bao, Y.; Xu, X.; Wang, H.; Han, Z.; Wang, Z.; Liu, Y.; Huang, S.; Song, Z.; Chen, J.; Peek, R . M.; Yin, L.; Chen, L.; Cheng, J. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides . Proc. Natl. Acad. Sci. U. S. A. , 2017 . 114 12675 -12680 . DOI:10.1073/pnas.1710408114http://doi.org/10.1073/pnas.1710408114 .
Zheng, N.; Song, Z.; Yang, J.; Liu, Y.; Li, F.; Cheng, J.; Yin, L . Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery . Acta Biomater. , 2017 . 58 146 -157 . DOI:10.1016/j.actbio.2017.05.001http://doi.org/10.1016/j.actbio.2017.05.001 .
Tang, H.; Yin, L.; Kim, K. H.; Cheng, J . Helical poly(arginine) mimics with superior cell-penetrating and molecular transporting properties . Chem. Sci. , 2013 . 4 3839 -3844 . DOI:10.1039/c3sc51328ahttp://doi.org/10.1039/c3sc51328a .
Mochida, Y.; Cabral, H.; Miura, Y.; Albertini, F.; Fukushima, S.; Osada, K.; Nishiyama, N.; Kataoka, K . Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor . ACS Nano , 2014 . 8 6724 -6738 . DOI:10.1021/nn500498thttp://doi.org/10.1021/nn500498t .
Osada, K.; Cabral, H.; Mochida, Y.; Lee, S.; Nagata, K.; Matsuura, T.; Yamamoto, M.; Anraku, Y.; Kishimura, A.; Nishiyama, N.; Kataoka, K . Bioactive polymeric metallosomes self-assembled through block copolymer-metal complexation . J. Am. Chem. Soc. , 2012 . 134 13172 -13175 . DOI:10.1021/ja304615yhttp://doi.org/10.1021/ja304615y .
Grazon, C.; Salas-Ambrosio, P.; Ibarboure, E.; Buol, A.; Garanger, E.; Grinstaff, M . W.; Lecommandoux, S.; Bonduelle, C. Aqueous ring-opening polymerization-induced self-assembly (ROPISA) of N-carboxyanhydrides . Angew. Chem. Int. Ed. , 2020 . 59 622 -626 . DOI:10.1002/anie.201912028http://doi.org/10.1002/anie.201912028 .
Klinker, K.; Schäfer, O.; Huesmann, D.; Bauer, T.; Capelôa, L.; Braun, L.; Stergiou, N.; Schinnerer, M.; Dirisala, A.; Miyata, K.; Osada, K.; Cabral, H.; Kataoka, K.; Barz, M . Secondary-structure-driven self-assembly of reactive polypept(o)ides: controlling size, shape, and function of core cross-linked nanostructures . Angew. Chem. Int. Ed. , 2017 . 56 9608 -9613 . DOI:10.1002/anie.201702624http://doi.org/10.1002/anie.201702624 .
Liu, H.; Wang, R.; Wei, J.; Cheng, C.; Zheng, Y.; Pan, Y.; He, X.; Ding, M.; Tan, H.; Fu, Q . Conformation-directed micelle-to-vesicle transition of cholesterol-decorated polypeptide triggered by oxidation . J. Am. Chem. Soc. , 2018 . 140 6604 -6610 . DOI:10.1021/jacs.8b01873http://doi.org/10.1021/jacs.8b01873 .
Zheng, Y.; Wang, Z.; Li, Z.; Liu, H.; Wei, J.; Peng, C.; Zhou, Y.; Li, J.; Fu, Q.; Tan, H.; Ding, M . Ordered conformation-regulated vesicular membrane permeability . Angew. Chem. Int. Ed. , 2021 . 60 22529 -22536 . DOI:10.1002/anie.202109637http://doi.org/10.1002/anie.202109637 .
Li, Z.; Yang, Y.; Peng, C.; Liu, H.; Yang, R.; Zheng, Y.; Cai, L.; Tan, H.; Fu, Q.; Ding, M . Drug-induced hierarchical self-assembly of poly(amino acid) for efficient intracellular drug delivery . Chin. Chem. Lett. , 2021 . 32 1563 -1566 . DOI:10.1016/j.cclet.2020.10.016http://doi.org/10.1016/j.cclet.2020.10.016 .
Vacogne, C . D.; Wei, C.; Tauer, K.; Schlaad, H. Self-assembly of α-helical polypeptides into microscopic and enantiomorphic spirals . J. Am. Chem. Soc. , 2018 . 140 11387 -11394 . DOI:10.1021/jacs.8b06503http://doi.org/10.1021/jacs.8b06503 .
Xu, P.; Gao, L.; Cai, C.; Lin, J.; Wang, L.; Tian, X . Helical toroids self-assembled from a binary system of polypeptide homopolymer and its block copolymer . Angew. Chem. Int. Ed. , 2020 . 59 14281 -14285 . DOI:10.1002/anie.202004102http://doi.org/10.1002/anie.202004102 .
Yang, C.; Gao, L.; Lin, J.; Wang, L.; Cai, C.; Wei, Y.; Li, Z . Toroid formation through a supramolecular “cyclization reaction” of rodlike micelles . Angew. Chem. Int. Ed. , 2017 . 56 5546 -5550 . DOI:10.1002/anie.201701978http://doi.org/10.1002/anie.201701978 .
Xia, H.; Fu, H.; Zhang, Y.; Shih, K. C.; Ren, Y.; Anuganti, M.; Nieh, M . P.; Cheng, J.; Lin, Y. Supramolecular assembly of comb-like macromolecules induced by chemical reactions that modulate the macromolecular interactions in situ . J. Am. Chem. Soc. , 2017 . 139 11106 -11116 . DOI:10.1021/jacs.7b04986http://doi.org/10.1021/jacs.7b04986 .
Li, D.; Zhao, D.; He, C.; Chen, X . Crucial impact of residue chirality on the gelation process and biodegradability of thermoresponsive polypeptide hydrogels . Biomacromolecules , 2021 . 22 3992 -4003 . DOI:10.1021/acs.biomac.1c00785http://doi.org/10.1021/acs.biomac.1c00785 .
Oelker, A. M.; Morey, S. M.; Griffith, L. G.; Hammond, P. T . Helix versus coil polypeptide macromers: gel networks with decoupled stiffness and permeability . Soft Matter , 2012 . 8 10887 -10895 . DOI:10.1039/c2sm26487khttp://doi.org/10.1039/c2sm26487k .
He, H.; Sofman, M.; Wang, A. J. S.; Ahrens, C. C.; Wang, W.; Griffith, L. G.; Hammond, P. T . Engineering helical modular polypeptide-based hydrogels as synthetic extracellular matrices for cell culture . Biomacromolecules , 2020 . 21 566 -580 . DOI:10.1021/acs.biomac.9b01297http://doi.org/10.1021/acs.biomac.9b01297 .
Chen, C.; Lan, J.; Li, Y.; Liang, D.; Ni, X.; Liu, Q . Secondary structure-governed polypeptide cross-linked polymeric hydrogels . Chem. Mater. , 2020 . 32 1153 -1161 . DOI:10.1021/acs.chemmater.9b04160http://doi.org/10.1021/acs.chemmater.9b04160 .
Liu, R.; Wang, H.; Lu, W.; Cui, L.; Wang, S.; Wang, Y.; Chen, Q.; Guan, Y.; Zhang, Y . Highly tough, stretchable and resilient hydrogels strengthened with molecular springs and their application as a wearable, flexible sensor . Chem. Eng. J. , 2021 . 415 128839 DOI:10.1016/j.cej.2021.128839http://doi.org/10.1016/j.cej.2021.128839 .
Baumgartner, R.; Fu, H.; Song, Z.; Lin, Y.; Cheng, J . Cooperative polymerization of α-helices induced by macromolecular architecture . Nat. Chem. , 2017 . 9 614 -622 . DOI:10.1038/nchem.2712http://doi.org/10.1038/nchem.2712 .
Chen, C.; Fu, H.; Baumgartner, R.; Song, Z.; Lin, Y.; Cheng, J . Proximity-induced cooperative polymerization in “hinged” helical polypeptides . J. Am. Chem. Soc. , 2019 . 141 8680 -8683 . DOI:10.1021/jacs.9b02298http://doi.org/10.1021/jacs.9b02298 .
Lv, S.; Kim, H.; Song, Z.; Feng, L.; Yang, Y.; Baumgartner, R.; Tseng, K. Y.; Dillon, S . J.; Leal, C.; Yin, L.; Cheng, J. Unimolecular polypeptide micelles via ultrafast polymerization of N-carboxyanhydrides . J. Am. Chem. Soc. , 2020 . 142 8570 -8574 . DOI:10.1021/jacs.0c01173http://doi.org/10.1021/jacs.0c01173 .
Zhang, P.; Li, M.; Xiao, C.; Chen, X . Stimuli-responsive polypeptides for controlled drug delivery . Chem. Commun. , 2021 . 57 9489 -9503 . DOI:10.1039/D1CC04053Ghttp://doi.org/10.1039/D1CC04053G .
Zhang, S.; Li, Z . Stimuli-responsive polypeptide materials prepared by ring-opening polymerization of α-amino acid N-carboxyanhydrides . J. Polym. Sci., Part B: Polym. Phys. , 2013 . 51 546 -555 . DOI:10.1002/polb.23263http://doi.org/10.1002/polb.23263 .
Wang, S.; He, W.; Xiao, C.; Tao, Y.; Wang, X . Synthesis of Y-shaped OEGylated poly(amino acid)s: the impact of OEG architecture . Biomacromolecules , 2019 . 20 1655 -1666 . DOI:10.1021/acs.biomac.9b00026http://doi.org/10.1021/acs.biomac.9b00026 .
He, C.; Zhuang, X.; Tang, Z.; Tian, H.; Chen, X . Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery . Adv. Healthc. Mater. , 2012 . 1 48 -78 . DOI:10.1002/adhm.201100008http://doi.org/10.1002/adhm.201100008 .
Teramoto, A.; Fujita, H. Conformation-dependent properties of synthetic polypeptides in the helix-coil transition region. Springer Berlin Heidelberg, Berlin, Heidelberg, 1975, p. 65–149.
Teramoto, A.; Fujita, H . Statistical thermodynamic analysis of helix-coil transitions in polypeptides . J. Macromol. Sci., Rev. Macromol. Chem. , 1976 . C15 165 -278 . DOI:10.1080/15321797608065779http://doi.org/10.1080/15321797608065779 .
Doty, P.; Yang, J. T. Polypeptides. VII . Poly-γ-benzyl-L-glutamate: the helix-coil transition in solution . J. Am. Chem. Soc. , 1956 . 78 498 -500 . DOI:10.1021/ja01583a070http://doi.org/10.1021/ja01583a070 .
Scheraga, H. A.; Vila, J. A.; Ripoll, D. R. . Helix-coil transitions re-visited . Biophys. Chem. , 2002 . 101–102 255 -265 . DOI:10.1016/S0301-4622(02)00175-8http://doi.org/10.1016/S0301-4622(02)00175-8 .
Huang, J.; Heise, A . Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation . Chem. Soc. Rev. , 2013 . 42 7373 -7390 . DOI:10.1039/c3cs60063ghttp://doi.org/10.1039/c3cs60063g .
Bauri, K.; Nandi, M.; De, P . Amino acid-derived stimuli-responsive polymers and their applications . Polym. Chem. , 2018 . 9 1257 -1287 . DOI:10.1039/C7PY02014Ghttp://doi.org/10.1039/C7PY02014G .
Appel, P.; Yang, J. T . Helix-coil transition of poly-L-glutamic acid and poly-L-lysine in D2O* . Biochemistry , 1965 . 4 1244 -1249 . DOI:10.1021/bi00883a005http://doi.org/10.1021/bi00883a005 .
Tian, C.; Ling, J.; Shen, Y . Self-assembly and pH-responsive properties of poly(L-glutamic acid-r-L-leucine) and poly(L-glutamic acid-r-L-leucine)-b-polysarcosine . Chinese J. Polym. Sci. , 2015 . 33 1186 -1195 . DOI:10.1007/s10118-015-1669-0http://doi.org/10.1007/s10118-015-1669-0 .
Myer, Y. P . The pH-induced helix-coil transition of poly-L-lysine and poly-L-glutamic acid and the 238-mμ dichroic band . Macromolecules , 1969 . 2 624 -628 . DOI:10.1021/ma60012a012http://doi.org/10.1021/ma60012a012 .
Piedra-Arroni, E.; Makni, F.; Severac, L.; Stigliani, J . L.; Pratviel, G.; Bonduelle, C. Smart Poly(imidazoyl-L-lysine): synthesis and reversible helix-to-coil transition at neutral pH . Polymers , 2017 . 9 276 DOI:10.3390/polym9070276http://doi.org/10.3390/polym9070276 .
Mavrogiorgis, D.; Bilalis, P.; Karatzas, A.; Skoulas, D.; Fotinogiannopoulou, G.; Iatrou, H. Controlled polymerization of histidine and synthesis of well-defined stimuli responsive polymers . Elucidation of the structure-aggregation relationship of this highly multifunctional material . Polym. Chem. , 2014 . 5 6256 -6278 . DOI:10.1039/C4PY00687Ahttp://doi.org/10.1039/C4PY00687A .
Song, Z.; Mansbach, R. A.; He, H.; Shih, K. C.; Baumgartner, R.; Zheng, N.; Ba, X.; Huang, Y.; Mani, D.; Liu, Y.; Lin, Y.; Nieh, M. P.; Ferguson, A . L.; Yin, L.; Cheng, J. Modulation of polypeptide conformation through donor-acceptor transformation of side-chain hydrogen bonding ligands . Nat. Commun. , 2017 . 8 92 DOI:10.1038/s41467-017-00079-5http://doi.org/10.1038/s41467-017-00079-5 .
Yuan, J.; Zhang, Y.; Sun, Y.; Cai, Z.; Yang, L.; Lu, H . Salt- and pH-triggered helix-coil transition of ionic polypeptides under physiology conditions . Biomacromolecules , 2018 . 19 2089 -2097 . DOI:10.1021/acs.biomac.8b00204http://doi.org/10.1021/acs.biomac.8b00204 .
Chécot, F.; Lecommandoux, S.; Gnanou, Y.; Klok, H. A . Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers . Angew. Chem. Int. Ed. , 2002 . 41 1339 -1343 . DOI:10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-Nhttp://doi.org/10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-N .
Li, J.; Wang, T.; Wu, D.; Zhang, X.; Yan, J.; Du, S.; Guo, Y.; Wang, J.; Zhang, A . Stimuli-responsive zwitterionic block copolypeptides: poly(N-isopropylacrylamide)-block-poly(lysine-co-glutamic acid) . Biomacromolecules , 2008 . 9 2670 -2676 . DOI:10.1021/bm800394phttp://doi.org/10.1021/bm800394p .
Chen, P.; Qiu, M.; Deng, C.; Meng, F.; Zhang, J.; Cheng, R.; Zhong, Z . pH-responsive chimaeric pepsomes based on asymmetric poly(ethylene glycol)-b-poly(L-leucine)-b-poly(L-glutamic acid) triblock copolymer for efficient loading and active intracellular delivery of doxorubicin hydrochloride . Biomacromolecules , 2015 . 16 1322 -1330 . DOI:10.1021/acs.biomac.5b00113http://doi.org/10.1021/acs.biomac.5b00113 .
Krannig, K.; Schlaad, H . pH-responsive bioactive glycopolypeptides with enhanced helicity and solubility in aqueous solution . J. Am. Chem. Soc. , 2012 . 134 18542 -18545 . DOI:10.1021/ja308772dhttp://doi.org/10.1021/ja308772d .
Meng, F.; Ni, Y.; Ji, S.; Fu, X.; Wei, Y.; Sun, J.; Li, Z . Dual thermal- and pH-responsive polypeptide-based hydrogels . Chinese J. Polym. Sci. , 2017 . 35 1243 -1252 . DOI:10.1007/s10118-017-1959-9http://doi.org/10.1007/s10118-017-1959-9 .
Krannig, K.; Sun, J.; Schlaad, H . Stimuli-responsivity of secondary structures of glycopolypeptides derived from poly(L-glutamate-co-allylglycine) . Biomacromolecules , 2014 . 15 978 -984 . DOI:10.1021/bm401883phttp://doi.org/10.1021/bm401883p .
Bonduelle, C.; Makni, F.; Severac, L.; Piedra-Arroni, E.; Serpentini, C . L.; Lecommandoux, S.; Pratviel, G. Smart metallopoly(L-glutamic acid) polymers: reversible helix-to-coil transition at neutral pH . RSC Adv. , 2016 . 6 84694 -84697 . DOI:10.1039/C6RA19753Ahttp://doi.org/10.1039/C6RA19753A .
Zhang, C.; Lu, J.; Hou, Y.; Xiong, W.; Sheng, K.; Lu, H . Investigation on the linker length of synthetic zwitterionic polypeptides for improved nonfouling surfaces . ACS Appl. Mater. Interfaces , 2018 . 10 17463 -17470 . DOI:10.1021/acsami.8b02854http://doi.org/10.1021/acsami.8b02854 .
Rodriguez, A. R.; Kramer, J. R.; Deming, T. J . Enzyme-triggered cargo release from methionine sulfoxide containing copolypeptide vesicles . Biomacromolecules , 2013 . 14 3610 -3614 . DOI:10.1021/bm400971phttp://doi.org/10.1021/bm400971p .
Kramer, J. R.; Deming, T. J . Glycopolypeptides with a redox-triggered helix-to-coil transition . J. Am. Chem. Soc. , 2012 . 134 4112 -4115 . DOI:10.1021/ja3007484http://doi.org/10.1021/ja3007484 .
Kramer, J. R.; Deming, T. J . Multimodal switching of conformation and solubility in homocysteine derived polypeptides . J. Am. Chem. Soc. , 2014 . 136 5547 -5550 . DOI:10.1021/ja500372uhttp://doi.org/10.1021/ja500372u .
Fu, X.; Ma, Y.; Shen, Y.; Fu, W.; Li, Z . Oxidation-responsive OEGylated poly-L-cysteine and solution properties studies . Biomacromolecules , 2014 . 15 1055 -1061 . DOI:10.1021/bm5000554http://doi.org/10.1021/bm5000554 .
Zhu, S.; Xue, R.; Yu, Z.; Zhang, X.; Luan, S.; Tang, H . Transition of conformation and solubility in β-sheet-structured poly(L-cysteine)s with methylthio or sulfonium pendants . Biomacromolecules , 2021 . 22 1211 -1219 . DOI:10.1021/acs.biomac.0c01715http://doi.org/10.1021/acs.biomac.0c01715 .
Wu, G.; Ge, C.; Liu, X.; Wang, S.; Wang, L.; Yin, L.; Lu, H . Synthesis of water soluble and multi-responsive selenopolypeptides via ring-opening polymerization of N-carboxyanhydrides . Chem. Commun. , 2019 . 55 7860 -7863 . DOI:10.1039/C9CC03767Ehttp://doi.org/10.1039/C9CC03767E .
Dong, C.; Wu, G.; Chen, C.; Li, X.; Yuan, R.; Xu, L.; Guo, H.; Zhang, J.; Lu, H.; Wang, F . Site-specific conjugation of a selenopolypeptide to alpha-1-antitrypsin enhances oxidation resistance and pharmacological properties . Angew. Chem. Int. Ed. , 2021 . 61 e202115241 DOI:10.1002/anie.202115241http://doi.org/10.1002/anie.202115241 .
Yao, Q.; Wu, G.; Hao, H.; Lu, H.; Gao, Y . Redox-mediated reversible supramolecular assemblies driven by switch and interplay of peptide secondary structures . Biomacromolecules , 2021 . 22 2563 -2572 . DOI:10.1021/acs.biomac.1c00300http://doi.org/10.1021/acs.biomac.1c00300 .
Banerjee, I.; Pangule, R. C.; Kane, R. S . Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms . Adv. Mater. , 2011 . 23 690 -718 . DOI:10.1002/adma.201001215http://doi.org/10.1002/adma.201001215 .
Krishnan, S.; Weinman, C. J.; Ober, C. K . Advances in polymers for anti-biofouling surfaces . J. Mater. Chem. , 2008 . 18 3405 -3413 . DOI:10.1039/b801491dhttp://doi.org/10.1039/b801491d .
Gao, C.; Li, G.; Xue, H.; Yang, W.; Zhang, F.; Jiang, S . Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages . Biomaterials , 2010 . 31 1486 -1492 . DOI:10.1016/j.biomaterials.2009.11.025http://doi.org/10.1016/j.biomaterials.2009.11.025 .
Fleischer, C. C.; Payne, C. K . Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes . Acc. Chem. Res. , 2014 . 47 2651 -2659 . DOI:10.1021/ar500190qhttp://doi.org/10.1021/ar500190q .
Ke, P. C.; Lin, S.; Parak, W. J.; Davis, T. P.; Caruso, F . A decade of the protein corona . ACS Nano , 2017 . 11 11773 -11776 . DOI:10.1021/acsnano.7b08008http://doi.org/10.1021/acsnano.7b08008 .
Ritz, S.; Schöttler, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Kuharev, J.; Landfester, K.; Schild, H.; Jahn, O.; Tenzer, S.; Mailänder, V . Protein corona of nanoparticles: distinct proteins regulate the cellular uptake . Biomacromolecules , 2015 . 16 1311 -1321 . DOI:10.1021/acs.biomac.5b00108http://doi.org/10.1021/acs.biomac.5b00108 .
Cai, R.; Chen, C . The crown and the scepter: roles of the protein corona in nanomedicine . Adv. Mater. , 2019 . 31 1805740 DOI:10.1002/adma.201805740http://doi.org/10.1002/adma.201805740 .
Liu, X.; Yuan, L.; Li, D.; Tang, Z.; Wang, Y.; Chen, G.; Chen, H.; Brash, J. L . Blood compatible materials: state of the art . J. Mater. Chem. B , 2014 . 2 5718 -5738 . DOI:10.1039/C4TB00881Bhttp://doi.org/10.1039/C4TB00881B .
Dalsin, J. L.; Messersmith, P. B . Bioinspired antifouling polymers . Mater. Today , 2005 . 8 38 -46 . DOI:10.1016/S1369-7021(05)71079-8http://doi.org/10.1016/S1369-7021(05)71079-8 .
Zhang, C.; Liu, S.; Tan, L.; Zhu, H.; Wang, Y . Star-shaped poly(2-methyl-2-oxazoline)-based films: rapid preparation and effects of polymer architecture on antifouling properties . J. Mater. Chem. B , 2015 . 3 5615 -5628 . DOI:10.1039/C5TB00732Ahttp://doi.org/10.1039/C5TB00732A .
Del Grosso, C. A.; Leng, C.; Zhang, K.; Hung, H. C.; Jiang, S.; Chen, Z.; Wilker, J. J . Surface hydration for antifouling and bio-adhesion . Chem. Sci. , 2020 . 11 10367 -10377 . DOI:10.1039/D0SC03690Khttp://doi.org/10.1039/D0SC03690K .
Statz, A. R.; Meagher, R. J.; Barron, A. E.; Messersmith, P. B . New peptidomimetic polymers for antifouling surfaces . J. Am. Chem. Soc. , 2005 . 127 7972 -7973 . DOI:10.1021/ja0522534http://doi.org/10.1021/ja0522534 .
Lowe, S.; O'Brien-Simpson, N. M.; Connal, L. A . Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates . Polym. Chem. , 2015 . 6 198 -212 . DOI:10.1039/C4PY01356Ehttp://doi.org/10.1039/C4PY01356E .
Lee, J. H.; Lee, H. B.; Andrade, J. D . Blood compatibility of polyethylene oxide surfaces . Prog. Polym. Sci. , 1995 . 20 1043 -1079 . DOI:10.1016/0079-6700(95)00011-4http://doi.org/10.1016/0079-6700(95)00011-4 .
Szleifer, I . Protein adsorption on surfaces with grafted polymers: a theoretical approach . Biophys. J. , 1997 . 72 595 -612 . DOI:10.1016/S0006-3495(97)78698-3http://doi.org/10.1016/S0006-3495(97)78698-3 .
Chen, S.; Cao, Z.; Jiang, S . Ultra-low fouling peptide surfaces derived from natural amino acids . Biomaterials , 2009 . 30 5892 -5896 . DOI:10.1016/j.biomaterials.2009.07.001http://doi.org/10.1016/j.biomaterials.2009.07.001 .
Lau, K. H. A.; Ren, C.; Sileika, T. S.; Park, S. H.; Szleifer, I.; Messersmith, P. B . Surface-grafted polysarcosine as a peptoid antifouling polymer brush . Langmuir , 2012 . 28 16099 -16107 . DOI:10.1021/la302131nhttp://doi.org/10.1021/la302131n .
Gillich, T.; Benetti, E. M.; Rakhmatullina, E.; Konradi, R.; Li, W.; Zhang, A.; Schlüter, A. D.; Textor, M . Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: adsorption kinetics, surface characterization, and nonfouling properties . J. Am. Chem. Soc. , 2011 . 133 10940 -10950 . DOI:10.1021/ja202760xhttp://doi.org/10.1021/ja202760x .
Kang, T.; Banquy, X.; Heo, J.; Lim, C.; Lynd, N. A.; Lundberg, P.; Oh, D. X.; Lee, H. K.; Hong, Y. K.; Hwang, D. S.; Waite, J. H.; Israelachvili, J. N.; Hawker, C. J . Mussel-inspired anchoring of polymer loops that provide superior surface lubrication and antifouling properties . ACS Nano , 2016 . 10 930 -937 . DOI:10.1021/acsnano.5b06066http://doi.org/10.1021/acsnano.5b06066 .
Li, L.; Yan, B.; Zhang, L.; Tian, Y.; Zeng, H . Mussel-inspired antifouling coatings bearing polymer loops . Chem. Commun. , 2015 . 51 15780 -15783 . DOI:10.1039/C5CC06852Ehttp://doi.org/10.1039/C5CC06852E .
Shin, E.; Lim, C.; Kang, U. J.; Kim, M.; Park, J.; Kim, D.; Choi, W.; Hong, J.; Baig, C.; Lee, D. W.; Kim, B. S . Mussel-inspired copolyether loop with superior antifouling behavior . Macromolecules , 2020 . 53 3551 -3562 . DOI:10.1021/acs.macromol.0c00481http://doi.org/10.1021/acs.macromol.0c00481 .
Divandari, M.; Morgese, G.; Trachsel, L.; Romio, M.; Dehghani, E. S.; Rosenboom, J. G.; Paradisi, C.; Zenobi-Wong, M.; Ramakrishna, S. N.; Benetti, E. M . Topology effects on the structural and physicochemical properties of polymer brushes . Macromolecules , 2017 . 50 7760 -7769 . DOI:10.1021/acs.macromol.7b01720http://doi.org/10.1021/acs.macromol.7b01720 .
Morgese, G.; Trachsel, L.; Romio, M.; Divandari, M.; Ramakrishna, S. N.; Benetti, E. M . Topological polymer chemistry enters surface science: linear versus cyclic polymer brushes . Angew. Chem. Int. Ed. , 2016 . 55 15583 -15588 . DOI:10.1002/anie.201607309http://doi.org/10.1002/anie.201607309 .
Wang, J.; Gibson, M. I.; Barbey, R.; Xiao, S. J.; Klok, H. A . Nonfouling polypeptide brushes via surface-initiated polymerization of Nε-oligo(ethylene glycol)succinate-L-lysine N-carboxyanhydride . Macromol. Rapid Commun. , 2009 . 30 845 -850 . DOI:10.1002/marc.200800744http://doi.org/10.1002/marc.200800744 .
Zhang, C.; Yuan, J.; Lu, J.; Hou, Y.; Xiong, W.; Lu, H . From neutral to zwitterionic poly(α-amino acid) nonfouling surfaces: effects of helical conformation and anchoring orientation . Biomaterials , 2018 . 178 728 -737 . DOI:10.1016/j.biomaterials.2018.01.052http://doi.org/10.1016/j.biomaterials.2018.01.052 .
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M . Cellular uptake of nanoparticles: journey inside the cell . Chem. Soc. Rev. , 2017 . 46 4218 -4244 . DOI:10.1039/C6CS00636Ahttp://doi.org/10.1039/C6CS00636A .
Amani, H.; Arzaghi, H.; Bayandori, M.; Dezfuli, A . S.; Pazoki-Toroudi, H.; Shafiee, A.; Moradi, L. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques . Adv. Mater. Interfaces , 2019 . 6 1900572 DOI:10.1002/admi.201900572http://doi.org/10.1002/admi.201900572 .
Björnmalm, M.; Thurecht, K. J.; Michael, M.; Scott, A. M.; Caruso, F . Bridging bio-nano science and cancer nanomedicine . ACS Nano , 2017 . 11 9594 -9613 . DOI:10.1021/acsnano.7b04855http://doi.org/10.1021/acsnano.7b04855 .
Verma, A.; Stellacci, F . Effect of surface properties on nanoparticle-cell interactions . Small , 2010 . 6 12 -21 . DOI:10.1002/smll.200901158http://doi.org/10.1002/smll.200901158 .
Verma, A.; Uzun, O.; Hu, Y.; Hu, Y.; Han, H. S.; Watson, N.; Chen, S.; Irvine, D. J.; Stellacci, F . Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles . Nat. Mater. , 2008 . 7 588 -595 . DOI:10.1038/nmat2202http://doi.org/10.1038/nmat2202 .
Li, Y.; Kröger, M.; Liu, W. K . Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk . Nanoscale , 2015 . 7 16631 -16646 . DOI:10.1039/C5NR02970Hhttp://doi.org/10.1039/C5NR02970H .
Zhu, M.; Nie, G.; Meng, H.; Xia, T.; Nel, A.; Zhao, Y . Physicochemical properties determine nanomaterial cellular uptake, transport, and fate . Acc. Chem. Res. , 2013 . 46 622 -631 . DOI:10.1021/ar300031yhttp://doi.org/10.1021/ar300031y .
Wang, X.; Gan, H.; Sun, T.; Su, B.; Fuchs, H.; Vestweber, D.; Butz, S . Stereochemistry triggered differential cell behaviours on chiral polymer surfaces . Soft Matter , 2010 . 6 3851 -3855 . DOI:10.1039/c0sm00151ahttp://doi.org/10.1039/c0sm00151a .
Zhang, M.; Qing, G.; Sun, T . Chiral biointerface materials . Chem. Soc. Rev. , 2012 . 41 1972 -1984 . DOI:10.1039/C1CS15209Bhttp://doi.org/10.1039/C1CS15209B .
Hazen, R. M.; Sholl, D. S . Chiral selection on inorganic crystalline surfaces . Nat. Mater. , 2003 . 2 367 -374 . DOI:10.1038/nmat879http://doi.org/10.1038/nmat879 .
Ma, Y.; Shen, Y.; Li, Z . Different cell behaviors induced by stereochemistry on polypeptide brush grafted surfaces . Mater. Chem. Front. , 2017 . 1 846 -851 . DOI:10.1039/C6QM00200Ehttp://doi.org/10.1039/C6QM00200E .
Fonseca, S. B.; Pereira, M. P.; Kelley, S. O . Recent advances in the use of cell-penetrating peptides for medical and biological applications . Adv. Drug Deliv. Rev. , 2009 . 61 953 -964 . DOI:10.1016/j.addr.2009.06.001http://doi.org/10.1016/j.addr.2009.06.001 .
Milletti, F . Cell-penetrating peptides: classes, origin, and current landscape . Drug Discov. Today , 2012 . 17 850 -860 . DOI:10.1016/j.drudis.2012.03.002http://doi.org/10.1016/j.drudis.2012.03.002 .
Eiríksdóttir, E.; Konate, K.; Langel, Ü.; Divita, G.; Deshayes, S . Secondary structure of cell-penetrating peptides controls membrane interaction and insertion . Biochim. Biophys. Acta Biomembr. , 2010 . 1798 1119 -1128 . DOI:10.1016/j.bbamem.2010.03.005http://doi.org/10.1016/j.bbamem.2010.03.005 .
Koren, E.; Torchilin, V. P . Cell-penetrating peptides: breaking through to the other side . Trends Mol. Med. , 2012 . 18 385 -393 . DOI:10.1016/j.molmed.2012.04.012http://doi.org/10.1016/j.molmed.2012.04.012 .
Yin, L.; Tang, H.; Kim, K. H.; Zheng, N.; Song, Z.; Gabrielson, N . P.; Lu, H.; Cheng, J. Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: toward nonviral gene delivery . Angew. Chem. Int. Ed. , 2013 . 52 9182 -9186 . DOI:10.1002/anie.201302820http://doi.org/10.1002/anie.201302820 .
Song, Z.; Zheng, N.; Ba, X.; Yin, L.; Zhang, R.; Ma, L.; Cheng, J . Polypeptides with quaternary phosphonium side chains: synthesis, characterization, and cell-penetrating properties . Biomacromolecules , 2014 . 15 1491 -1497 . DOI:10.1021/bm5001026http://doi.org/10.1021/bm5001026 .
Lee, M. W.; Han, M.; Bossa, G. V.; Snell, C.; Song, Z.; Tang, H.; Yin, L.; Cheng, J.; May, S.; Luijten, E.; Wong, G. C. L . Interactions between membranes and “metaphilic” polypeptide architectures with diverse side-chain populations . ACS Nano , 2017 . 11 2858 -2871 . DOI:10.1021/acsnano.6b07981http://doi.org/10.1021/acsnano.6b07981 .
Wang, R.; Sheng, K.; Hou, Y.; Sun, J.; Lu, H . Tailoring cationic helical polypeptides for efficient cytosolic protein delivery . Chem. Res. Chin. Univ. , 2020 . 36 134 -138 . DOI:10.1007/s40242-019-0060-zhttp://doi.org/10.1007/s40242-019-0060-z .
Sippel, K. H.; Quiocho, F. A . Ion-dipole interactions and their functions in proteins . Protein Sci. , 2015 . 24 1040 -1046 . DOI:10.1002/pro.2685http://doi.org/10.1002/pro.2685 .
Wada, A.; Nakamura, H . Nature of the charge distribution in proteins . Nature , 1981 . 293 757 -758 . DOI:10.1038/293757a0http://doi.org/10.1038/293757a0 .
Hol, W. G. J . Effects of the α-helix dipole upon the functioning and structure of proteins and peptides . Adv. Biophys. , 1985 . 19 133 -165 . DOI:10.1016/0065-227X(85)90053-Xhttp://doi.org/10.1016/0065-227X(85)90053-X .
Niwa, M.; Kuwagaki, Y.; Yamaguchi, S.; Higashi, N . Effect of the helix macrodipole on surface-initiated N-carboxyanhydride polymerization on gold . Angew. Chem. Int. Ed. , 2003 . 42 1839 -1841 . DOI:10.1002/anie.200250478http://doi.org/10.1002/anie.200250478 .
Niwa, M.; Morikawa, M.; Higashi, N . Controllable orientation of helical poly(L-glutamic acid) rods through macrodipole interaction on gold surfaces and vectorial electron transfer . Angew. Chem. Int. Ed. , 2000 . 39 960 -963 . DOI:10.1002/(SICI)1521-3773(20000303)39:5<960::AID-ANIE960>3.0.CO;2-Qhttp://doi.org/10.1002/(SICI)1521-3773(20000303)39:5<960::AID-ANIE960>3.0.CO;2-Q .
Wu, J. C.; Chen, C. C.; Chen, K. H.; Chang, Y. C . Controlled growth of aligned α-helical-polypeptide brushes for tunable electrical conductivity . Appl. Phys. Lett. , 2011 . 98 133304 DOI:10.1063/1.3560452http://doi.org/10.1063/1.3560452 .
Jaworek, T.; Neher, D.; Wegner, G.; Wieringa, R. H.; Schouten, A. J . Electromechanical properties of an ultrathin layer of directionally aligned helical polypeptides . Science , 1998 . 279 57 -60 . DOI:10.1126/science.279.5347.57http://doi.org/10.1126/science.279.5347.57 .
Whitesell, J. K.; Chang, H. K . Surface oriented polymers for nonlinear optics . Mol. Cryst. Liq. Cryst. , 1994 . 240 251 -258 . DOI:10.1080/10587259408029736http://doi.org/10.1080/10587259408029736 .
Zhang, C.; Lu, J.; Tian, F.; Li, L.; Hou, Y.; Wang, Y.; Sun, L.; Shi, X.; Lu, H . Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides . Nano Res. , 2019 . 12 889 -896 . DOI:10.1007/s12274-019-2319-6http://doi.org/10.1007/s12274-019-2319-6 .
Pelegri-O’Day, E. M.; Lin, E. W.; Maynard, H. D . Therapeutic protein-polymer conjugates: advancing beyond PEGylation . J. Am. Chem. Soc. , 2014 . 136 14323 -14332 . DOI:10.1021/ja504390xhttp://doi.org/10.1021/ja504390x .
Liu, X.; Gao, W . Precision conjugation: an emerging tool for generating protein-polymer conjugates . Angew. Chem. Int. Ed. , 2021 . 60 11024 -11035 . DOI:10.1002/anie.202003708http://doi.org/10.1002/anie.202003708 .
Grover, G. N.; Maynard, H. D . Protein-polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications . Curr. Opin. Chem. Biol. , 2010 . 14 818 -827 . DOI:10.1016/j.cbpa.2010.10.008http://doi.org/10.1016/j.cbpa.2010.10.008 .
Zelikin, A. N.; Ehrhardt, C.; Healy, A. M . Materials and methods for delivery of biological drugs . Nat. Chem. , 2016 . 8 997 -1007 . DOI:10.1038/nchem.2629http://doi.org/10.1038/nchem.2629 .
Hu, Y.; Hou, Y.; Wang, H.; Lu, H . Polysarcosine as an alternative to PEG for therapeutic protein conjugation . Bioconjug. Chem. , 2018 . 29 2232 -2238 . DOI:10.1021/acs.bioconjchem.8b00237http://doi.org/10.1021/acs.bioconjchem.8b00237 .
Alconcel, S. N. S.; Baas, A. S.; Maynard, H. D . FDA-approved poly(ethylene glycol)-protein conjugate drugs . Polym. Chem. , 2011 . 2 1442 -1448 . DOI:10.1039/c1py00034ahttp://doi.org/10.1039/c1py00034a .
Ekladious, I.; Colson, Y. L.; Grinstaff, M. W . Polymer-drug conjugate therapeutics: advances, insights and prospects . Nat. Rev. Drug Discovery , 2019 . 18 273 -294 . DOI:10.1038/s41573-018-0005-0http://doi.org/10.1038/s41573-018-0005-0 .
Abu Lila, A . S.; Kiwada, H.; Ishida, T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage . J. Control. Release , 2013 . 172 38 -47 . DOI:10.1016/j.jconrel.2013.07.026http://doi.org/10.1016/j.jconrel.2013.07.026 .
Swierczewska, M.; Lee, K. C.; Lee, S . What is the future of PEGylated therapies . Expert Opin. Emerg. Drugs , 2015 . 20 531 -536 . DOI:10.1517/14728214.2015.1113254http://doi.org/10.1517/14728214.2015.1113254 .
Zhang, P.; Sun, F.; Liu, S.; Jiang, S . Anti-PEG antibodies in the clinic: current issues and beyond PEGylation . J. Control. Release , 2016 . 244 184 -193 . DOI:10.1016/j.jconrel.2016.06.040http://doi.org/10.1016/j.jconrel.2016.06.040 .
Hou, Y.; Yuan, J.; Zhou, Y.; Yu, J.; Lu, H . A concise approach to site-specific topological protein-poly(amino acid) conjugates enabled by in situ-generated functionalities . J. Am. Chem. Soc. , 2016 . 138 10995 -11000 . DOI:10.1021/jacs.6b05413http://doi.org/10.1021/jacs.6b05413 .
Hou, Y.; Zhou, Y.; Wang, H.; Sun, J.; Wang, R.; Sheng, K.; Yuan, J.; Hu, Y.; Chao, Y.; Liu, Z.; Lu, H . Therapeutic Protein PEPylation: The helix of nonfouling synthetic polypeptides minimizes antidrug antibody generation . ACS Cent. Sci. , 2019 . 5 229 -236 . DOI:10.1021/acscentsci.8b00548http://doi.org/10.1021/acscentsci.8b00548 .
Hu, Y.; Wang, D.; Wang, H.; Zhao, R.; Wang, Y.; Shi, Y.; Zhu, J.; Xie, Y.; Song, Y. Q.; Lu, H . An urchin-like helical polypeptide-asparaginase conjugate with mitigated immunogenicity . Biomaterials , 2021 . 268 120606 DOI:10.1016/j.biomaterials.2020.120606http://doi.org/10.1016/j.biomaterials.2020.120606 .
Hou, Y.; Zhou, Y.; Wang, H.; Wang, R.; Yuan, J.; Hu, Y.; Sheng, K.; Feng, J.; Yang, S.; Lu, H . Macrocyclization of interferon-poly(α-amino acid) conjugates significantly improves the tumor retention, penetration, and antitumor efficacy . J. Am. Chem. Soc. , 2018 . 140 1170 -1178 . DOI:10.1021/jacs.7b13017http://doi.org/10.1021/jacs.7b13017 .
Wang, H.; Hou, Y.; Hu, Y.; Dou, J.; Shen, Y.; Wang, Y.; Lu, H . Enzyme-activatable interferon-poly(α-amino acid) conjugates for tumor microenvironment potentiation . Biomacromolecules , 2019 . 20 3000 -3008 . DOI:10.1021/acs.biomac.9b00560http://doi.org/10.1021/acs.biomac.9b00560 .
Zhang, C.; Lu, H . Efficient synthesis and application of protein-poly(α-amino acid) conjugates . Acta Polymerica Sinica (in Chinese) , 2018 . 21 -31 . DOI:10.11777/j.issn1000-3304.2018.17204http://doi.org/10.11777/j.issn1000-3304.2018.17204 .
Yuan, J.; Sun, Y.; Wang, J.; Lu, H . Phenyl trimethylsilyl sulfide-mediated controlled ring-opening polymerization of α-amino acid N-carboxyanhydrides . Biomacromolecules , 2016 . 17 891 -896 . DOI:10.1021/acs.biomac.5b01588http://doi.org/10.1021/acs.biomac.5b01588 .
Yuan, J.; Zhang, Y.; Li, Z.; Wang, Y.; Lu, H . A S-Sn lewis pair-mediated ring-opening polymerization of α-amino acid N-carboxyanhydrides: fast kinetics, high molecular weight, and facile bioconjugation . ACS Macro Lett. , 2018 . 7 892 -897 . DOI:10.1021/acsmacrolett.8b00465http://doi.org/10.1021/acsmacrolett.8b00465 .
Pauling, L.; Corey, R. B.; Branson, H. R . The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain . Proc. Natl. Acad. Sci. U. S. A. , 1951 . 37 205 -211 . DOI:10.1073/pnas.37.4.205http://doi.org/10.1073/pnas.37.4.205 .
Perutz, M. F . New X-ray evidence on the configuration of polypeptide chains: polypeptide chains in poly-γ-benzyl-L-glutamate, keratin and hæmoglobin . Nature , 1951 . 167 1053 -1054 . DOI:10.1038/1671053a0http://doi.org/10.1038/1671053a0 .
Bamford, C. H.; Brown, L.; Elliott, A.; Hanby, W. E.; Trotter, I. F . Structure of synthetic polypeptides . Nature , 1952 . 169 357 -358 . DOI:10.1038/169357a0http://doi.org/10.1038/169357a0 .
Tao, X.; Li, M. H.; Ling, J . α-Amino acid N-thiocarboxyanhydrides: a novel synthetic approach toward poly(α-amino acid)s . Eur. Polym. J. , 2018 . 109 26 -42 . DOI:10.1016/j.eurpolymj.2018.08.039http://doi.org/10.1016/j.eurpolymj.2018.08.039 .
Siefker, D.; Williams, A. Z.; Stanley, G. G.; Zhang, D . Organic acid promoted controlled ring-opening polymerization of α-amino acid-derived N-thiocarboxyanhydrides (NTAs) toward well-defined polypeptides . ACS Macro Lett. , 2018 . 7 1272 -1277 . DOI:10.1021/acsmacrolett.8b00743http://doi.org/10.1021/acsmacrolett.8b00743 .
Kamei, Y.; Nagai, A.; Sudo, A.; Nishida, H.; Kikukawa, K.; Endo, T . Convenient synthesis of poly(γ-benzyl-L-glutamate) from activated urethane derivatives of γ-benzyl-L-glutamate . J. Polym. Sci., Part A: Polym. Chem. , 2008 . 46 2649 -2657 . DOI:10.1002/pola.22595http://doi.org/10.1002/pola.22595 .
Yamada, S.; Sudo, A.; Goto, M.; Endo, T . Phosgene-free synthesis of polypeptides using activated urethane derivatives of α-amino acids: an efficient synthetic approach to hydrophilic polypeptides . RSC Adv. , 2014 . 4 29890 -29896 . DOI:10.1039/C4RA03315Ahttp://doi.org/10.1039/C4RA03315A .
Li, L.; Cen, J.; Pan, W.; Zhang, Y.; Leng, X.; Tan, Z.; Yin, H.; Liu, S . Synthesis of polypeptides with high-fidelity terminal functionalities under NCA monomer-starved conditions . Research , 2021 . 2021 9826046 DOI:10.34133/2021/9826046http://doi.org/10.34133/2021/9826046 .
Smeets, N. M. B.; van der Weide, P. L. J.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A . A scalable synthesis of L-leucine-N-carboxyanhydride . Org. Proc. Res. Dev. , 2005 . 9 757 -763 . DOI:10.1021/op058009ehttp://doi.org/10.1021/op058009e .
Jacobs, J.; Pavlović, D.; Prydderch, H.; Moradi, M.; Ibarboure, E.; Heuts, J. P . A.; Lecommandoux, S.; Heise, A. Polypeptide nanoparticles obtained from emulsion polymerization of amino acid N-carboxyanhydrides . J. Am. Chem. Soc. , 2019 . 141 12522 -12526 . DOI:10.1021/jacs.9b06750http://doi.org/10.1021/jacs.9b06750 .
Song, Z.; Fu, H.; Wang, J.; Hui, J.; Xue, T.; Pacheco, L. A.; Yan, H.; Baumgartner, R.; Wang, Z.; Xia, Y.; Wang, X.; Yin, L.; Chen, C.; Rodríguez-López, J.; Ferguson, A . L.; Lin, Y.; Cheng, J. Synthesis of polypeptides via bioinspired polymerization of in situ purified N-carboxyanhydrides . Proc. Natl. Acad. Sci. U. S. A. , 2019 . 116 10658 -10663 . DOI:10.1073/pnas.1901442116http://doi.org/10.1073/pnas.1901442116 .
Wu, Y.; Chen, K.; Wu, X.; Liu, L.; Zhang, W.; Ding, Y.; Liu, S.; Zhou, M.; Shao, N.; Ji, Z.; Chen, J.; Zhu, M.; Liu, R . Superfast and water-insensitive polymerization on α-amino acid N-carboxyanhydrides to prepare polypeptides using tetraalkylammonium carboxylate as the initiator . Angew. Chem. Int. Ed. , 2021 . 60 26063 -26071 . DOI:10.1002/anie.202103540http://doi.org/10.1002/anie.202103540 .
Hu, Y.; Tian, Z.; Xiong, W.; Lu, H. Water-assisted and protein-initiated ring-opening polymerization of proline N-carboxyanhydride. ChemRxiv 2021, DOI: 10.26434/chemrxiv.14663883.v1.
0
Views
7
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution