1.Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
liuruliang0402@163.com (R.L.L.)
liushh27@mail.sysu.edu.cn (S.H.L.)
wudc@mail.sysu.edu.cn (D.C.W.)
Scan for full text
Yu-heng Lu, You-chen Tang, Ru-liang Liu, et al. Multifunctional Templating Strategy for Fabrication of Fe,N-Codoped Hierarchical Porous Carbon Nanosheets. [J]. Chinese Journal of Polymer Science 40(1):2-6(2022)
Yu-heng Lu, You-chen Tang, Ru-liang Liu, et al. Multifunctional Templating Strategy for Fabrication of Fe,N-Codoped Hierarchical Porous Carbon Nanosheets. [J]. Chinese Journal of Polymer Science 40(1):2-6(2022) DOI: 10.1007/s10118-022-2656-x.
Due to the unique physical and chemical merits including excellent electrical conductivity, superior chemical stability, and tunable carbon framework, two-dimensional (2D) porous carbon nanosheets have drawn increasing research interest and demonstrated promising potentials in various applications. However, regulating the nanostructure of 2D porous carbon nanosheets by facile and efficient strategies remains a great challenge. Herein, we develop a new strategy to construct Fe,N-codoped hierarchical porous carbon nanosheets (Fe-N-HPCNS) by using 2D Fe-Zn layered double hydroxides (Fe-Zn-LDH) as multifunctional templates. Fe-Zn-LDH could functionalize not only as 2D structure directing agents but also as ternary hierarchical porogens for micro-, meso- and macropores and ,in situ, Fe dopants. This multifunctional templating strategy toward 2D porous carbon nanosheets can improve the utilization of templates and shows great advantages against conventional procedures that additional porogens and/or dopants are often needed.
Carbon nanosheetsMultifunctional templatesHierarchical poresHeteroatom doping
Li, C.; Liu, S.; Shi, C.; Liang, G.; Lu, Z.; Fu, R.; Wu, D . Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes . Nat. Commun. , 2019 . 10 1363 DOI:10.1038/s41467-019-09211-zhttp://doi.org/10.1038/s41467-019-09211-z .
Mendoza-Sanchez, B.; Gogotsi, Y . Synthesis of two-dimensional materials for capacitive energy storage . Adv. Mater. , 2016 . 28 6104 -6135 . DOI:10.1002/adma.201506133http://doi.org/10.1002/adma.201506133 .
Cai, W.; Wang, B.; Wang, X.; Zhu, Y.; Li, Z.; Xu, Z.; Song, L.; Hu, W . Recent progress in two-dimensional nanomaterials following graphene for improving dire safety of polymer (nano)composites . Chinese J. Polym. Sci. , 2021 . 39 935 -956 . DOI:10.1007/s10118-021-2575-2http://doi.org/10.1007/s10118-021-2575-2 .
Liu, S.; Li, J.; Yan, X.; Su, Q.; Lu, Y.; Qiu, J.; Wang, Z.; Lin, X.; Huang, J.; Liu, R.; Zheng, B.; Chen, L.; Fu, R.; Wu, D . Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries . Adv. Mater. , 2018 . 30 1706895 DOI:10.1002/adma.201706895http://doi.org/10.1002/adma.201706895 .
Ding, L.; Wei, Y.; Wang, Y.; Chen, H.; Caro, J.; Wang, H . A two-dimensional lamellar membrane: MXene nanosheet stacks . Angew. Chem. Int. Ed. , 2017 . 56 1825 -1829 . DOI:10.1002/anie.201609306http://doi.org/10.1002/anie.201609306 .
Geng, X.; Sun, W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H.; Watanabe, F.; Cui, J.; Chen, T. P . Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction . Nat. Commun. , 2016 . 7 10672 DOI:10.1038/ncomms10672http://doi.org/10.1038/ncomms10672 .
Hu, J.; Tang, X.; Dai, Q.; Liu, Z.; Zhang, H.; Zheng, A.; Yuan, Z.; Li, X . Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device . Nat. Commun. , 2021 . 12 3409 DOI:10.1038/s41467-021-23721-9http://doi.org/10.1038/s41467-021-23721-9 .
Hao, C.; Yang, B.; Wen, F.; Xiang, J.; Li, L.; Wang, W.; Zeng, Z.; Xu, B.; Zhao, Z.; Liu, Z.; Tian, Y . Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes . Adv. Mater. , 2016 . 28 3194 -3201 . DOI:10.1002/adma.201505730http://doi.org/10.1002/adma.201505730 .
Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M . Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction . J. Mater. Chem. A , 2017 . 5 3230 -3238 . DOI:10.1039/C6TA08310Bhttp://doi.org/10.1039/C6TA08310B .
Zhang, Z.; Bai, Y.; Li, Y . Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells . Chinese J. Polym. Sci. , 2021 . 39 1 -13 . DOI:10.1007/s10118-020-2496-5http://doi.org/10.1007/s10118-020-2496-5 .
Yang, Z.; Liu, J.; Li, Y.; Zhang, G.: Xing, G.; Chen, L . Arylamine-linked 2D covalent organic frameworks for efficient psuedocapacitive energy storage . Angew. Chem. Int. Ed. , 2021 . 60 20754 -20759 . DOI:10.1002/anie.202108684http://doi.org/10.1002/anie.202108684 .
Fan, X.; Yu, C.; Yang, J.; Ling, Z.; Hu, C.; Zhang, M.; Qiu, J . A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors . Adv. Energy Mater. , 2015 . 5 1401761 DOI:10.1002/aenm.201401761http://doi.org/10.1002/aenm.201401761 .
Wang, P.; Ren, Y.; Wang, R.; Zhang, P.; Ding, M.; Li, C.; Zhao, D.; Qian, Z.; Zhang, Z.; Zhang, L.; Yin, L . Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries . Nat. Commun. , 2020 . 11 1576 DOI:10.1038/s41467-020-15416-4http://doi.org/10.1038/s41467-020-15416-4 .
Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S.; Jiang, H . From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media . Angew. Chem. Int. Ed. , 2018 . 57 8525 -8529 . DOI:10.1002/anie.201803262http://doi.org/10.1002/anie.201803262 .
Zhang, H.; Yang, L.; Zhang, P.; Lu, C.; Sha, D.; Yan, B.; He, W.; Zhou, M.; Zhang, W.; Pan, L.; Sun, Z . MXene-derived Tin O2n-1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: enhanced polysulfide mediation via defect engineering . Adv. Mater. , 2021 . 33 2008447 DOI:10.1002/adma.202008447http://doi.org/10.1002/adma.202008447 .
Wang, N.; Tian, H.; Zhu, S; Yan, D.; Mai, Y . Two-dimensional nitrogen-doped mesoporous carbon/graphene nanocomposites from the self-assembly of block copolymer micelles in solution . Chinese J. Polym. Sci. , 2018 . 36 266 -272 . DOI:10.1007/s10118-018-2091-1http://doi.org/10.1007/s10118-018-2091-1 .
Wu, X.; Wang, Z.; Yu, M.; Xiu, L.; Qiu, J . Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability . Adv. Mater. , 2017 . 29 1607017 DOI:10.1002/adma.201607017http://doi.org/10.1002/adma.201607017 .
Li, S.; Cheng, C.; Zhao, X.; Schmidt, J.; Thomas, A . Active salt silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries . Angew. Chem. Int. Ed. , 2018 . 57 1856 -1862 . DOI:10.1002/anie.201710852http://doi.org/10.1002/anie.201710852 .
Li, B.; Xi, B.; Feng, Z.; Lin, Y.; Liu, J.; Feng, J.; Qian, Y.; Xiong, S . Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage . Adv. Mater. , 2018 . 30 1705788 DOI:10.1002/adma.201705788http://doi.org/10.1002/adma.201705788 .
Xing, Z.; Xiao, M.; Guo, Z.; Yang, W . Colloidal silica assisted fabrication of N,O,S-tridoped porous carbon nanosheets with excellent oxygen reduction performance . Chem. Commun. , 2018 . 54 4017 -4020 . DOI:10.1039/C8CC00846Ahttp://doi.org/10.1039/C8CC00846A .
Feng, T.; Zhang, M . A mixed-ion strategy to construct CNT-decorated Co/N-doped hollow carbon for enhanced oxygen reduction . Chem. Commun. , 2018 . 54 11570 -11573 . DOI:10.1039/C8CC05959Dhttp://doi.org/10.1039/C8CC05959D .
Kohara, K.; Yamamoto, S.; Seinberg, L.; Murakami, T.; Tsujimoto, M.; Ogawa, T.; Kurata, H.; Kageyama, H.; Takano, M . Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications . Chem. Commun. , 2013 . 49 2563 -2565 . DOI:10.1039/c3cc39055ahttp://doi.org/10.1039/c3cc39055a .
Ye, X.; Hu, L.; Liu, M.; Wang, G.; Yu, F . Improved oxygen reduction performance of a N, S co-doped graphene-like carbon prepared by a simple carbon bath method . New Carbon Mater. , 2020 . 35 531 -539 . DOI:10.1016/S1872-5805(20)60506-6http://doi.org/10.1016/S1872-5805(20)60506-6 .
Chen, Y.; Li, Z.; Zhu, Y.; Sun, D.; Liu, X.; Xu, L.; Tang, Y . Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction . Adv. Mater. , 2019 . 31 1806312 DOI:10.1002/adma.201806312http://doi.org/10.1002/adma.201806312 .
Meng, L.; Wang, Z.; Zhong, H.; Wang, J.; Yan, J.; Zhang, X . Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction . Adv. Mater. , 2016 . 28 7948 -7955 . DOI:10.1002/adma.201602490http://doi.org/10.1002/adma.201602490 .
Liu, S.; Lin, Y.; Guo, W.; Li, S.; Mai, W.; Wang, H.; Fu, R.; Wu, D . Fabrication of silver yolk@porous Janus polymer shell nanospheres for synergistic catalysis . Chinese J. Polym. Sci. , 2020 . 38 847 -852 . DOI:10.1007/s10118-020-2419-5http://doi.org/10.1007/s10118-020-2419-5 .
Xu, F.; Lu, Y.; Ma, J.; Huang, Z.; Su, Q.; Fu, R.; Wu, D . Facile, general and template-free construction of monodisperse yolk-shell metal@carbon nanospheres . Chem. Commun. , 2017 . 53 12136 -12139 . DOI:10.1039/C7CC06502Ghttp://doi.org/10.1039/C7CC06502G .
Xu, F.; Tang, Z.; Huang, S.; Chen, L.; Liang, Y.; Mai, W.; Zhong, H.; Fu, R.; Wu, D . Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage . Nat. Commun. , 2015 . 6 7221 DOI:10.1038/ncomms8221http://doi.org/10.1038/ncomms8221 .
0
Views
4
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution