1.Ministry of Education, Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
xuzk@zju.edu.cn
Scan for full text
Bian-Bian Guo, Cheng-Ye Zhu, Zhi-Kang Xu. Surface and Interface Engineering for Advanced Nanofiltration Membranes. [J]. Chinese Journal of Polymer Science 40(2):124-137(2022)
Bian-Bian Guo, Cheng-Ye Zhu, Zhi-Kang Xu. Surface and Interface Engineering for Advanced Nanofiltration Membranes. [J]. Chinese Journal of Polymer Science 40(2):124-137(2022) DOI: 10.1007/s10118-022-2654-z.
Nanofiltration has been attracting great attention in alleviating the global water crisis because of its high efficiency, mild operation, and strong adaptability. Over decades, it remains a challenge to break the upper limit of performance and establish the formation-structure-property relationship for nanofiltration membranes. This feature article summarizes our recent progress in the preparation of high-performance thin-film composite (TFC) nanofiltration membranes, focusing on the mussel-inspired deposition method and the optimized interfacial polymerization (IP). By accelerating the oxidation of polydopamine and equilibrating the rate of aggregation and deposition processes, the mussel-inspired deposition method realizes the rapid and uniform formation of selective coatings or nanofilms. Diverse deposition systems endow the selective layer with rich chemical structures and easy post-functionalization, highlighting its potential in water treatment. As for optimizing the conventional IP, the rapid polycondensation of amine and acid chloride groups is slowed down to enable the controllability of IP at the water-organic interface. The homogeneity and integrity of the TFC membranes are improved by constructing a uniform reaction platform and introducing a viscous medium to control the amine diffusion, which facilitates the water permeability and promotes the separation efficiency. We have proposed a series of practical strategies for improving TFC membranes and might provide more inspiration for other nanofiltration techniques.
NanofiltrationThin-film composite membranesMussel-inspired depositionInterfacial polymerization
Lim, Y . J.; Goh, K.; Kurihara, M.; Wang, R. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication—a review . J. Membr. Sci. , 2021 . 629 119292 DOI:10.1016/j.memsci.2021.119292http://doi.org/10.1016/j.memsci.2021.119292 .
Liang, H. Q.; Hung, W. S.; Yu, H. H.; Hu, C. C.; Lee, K. R.; Lai, J. Y.; Xu, Z.-K . Forward osmosis membranes with unprecedented water flux . J. Membr. Sci. , 2017 . 529 47 -54 . DOI:10.1016/j.memsci.2017.01.056http://doi.org/10.1016/j.memsci.2017.01.056 .
Chowdhury, M. R.; Steffes, J.; Huey, B. D.; McCutcheon, J. R . 3D printed polyamide membranes for desalination . Science , 2018 . 361 682 -686 . DOI:10.1126/science.aar2122http://doi.org/10.1126/science.aar2122 .
Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M . Science and technology for water purification in the coming decades . Nature , 2008 . 452 301 -310 . DOI:10.1038/nature06599http://doi.org/10.1038/nature06599 .
Qiu, Z. L.; Fang, L. F.; Shen, Y. J.; Yu, W. H.; Zhu, B . K.; Hélix-Nielsen, C.; Zhang, W. Ionic dendrimer based polyamide membranes for ion separation . ACS Nano , 2021 . 15 7522 -7535 . DOI:10.1021/acsnano.1c00936http://doi.org/10.1021/acsnano.1c00936 .
Marchetti, P.; Jimenez Solomon, M. F.; Szekely, G.; Livingston, A. G . Molecular separation with organic solvent nanofiltration: a critical review . Chem. Rev. , 2014 . 114 10735 -10806 . DOI:10.1021/cr500006jhttp://doi.org/10.1021/cr500006j .
Ding, Y.; Weng, L. T.; Yang, M.; Yang, Z.; Lu, X.; Huang, N.; Leng, Y . Insights into the aggregation/deposition and structure of a polydopamine film . Langmuir , 2014 . 30 12258 -12269 . DOI:10.1021/la5026608http://doi.org/10.1021/la5026608 .
Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y. T.; Oatley-Radcliffe, D. L.; Hilal, N . Nanofiltration membranes review: recent advances and future prospects . Desalination , 2015 . 356 226 -254 . DOI:10.1016/j.desal.2014.10.043http://doi.org/10.1016/j.desal.2014.10.043 .
Warsinger, D. M.; Chakraborty, S.; Tow, E. W.; Plumlee, M. H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A. M.; Achilli, A.; Ghassemi, A.; Padhye, L. P.; Snyder, S. A.; Curcio, S.; Vecitis, C. D.; Arafat, H. A.; Lienhard, J. H . A review of polymeric membranes and processes for potable water reuse . Prog. Polym. Sci. , 2018 . 81 209 -237 . DOI:10.1016/j.progpolymsci.2018.01.004http://doi.org/10.1016/j.progpolymsci.2018.01.004 .
Ji, C.; Zhai, Z.; Jiang, C.; Hu, P.; Zhao, S.; Xue, S.; Yang, Z.; He, T.; Niu, Q. J . Recent advances in high-performance TFC membranes: a review of the functional interlayers . Desalination , 2021 . 500 114869 DOI:10.1016/j.desal.2020.114869http://doi.org/10.1016/j.desal.2020.114869 .
Ramon, G. Z.; Wong, M. C. Y.; Hoek, E. M. V. . Transport through composite membrane, part 1: Is there an optimal support membrane? . J. Membr. Sci. , 2012 . 415 298 -305 . DOI:10.1016/j.memsci.2012.05.013http://doi.org/10.1016/j.memsci.2012.05.013 .
Gorgojo, P.; Karan, S.; Wong, H. C.; Jimenez-Solomon, M. F.; Cabral, J. T.; Livingston, A. G . Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes . Adv. Funct. Mater. , 2014 . 24 4729 -4737 . DOI:10.1002/adfm.201400400http://doi.org/10.1002/adfm.201400400 .
You, X.; Wu, H.; Su, Y.; Yuan, J.; Zhang, R.; Yu, Q.; Wu, M.; Jiang, Z.; Cao, X . Precise nanopore tuning for a high-throughput desalination membrane via co-deposition of dopamine and multifunctional POSS . J. Mater. Chem. A , 2018 . 6 13191 -13202 . DOI:10.1039/c8ta03673jhttp://doi.org/10.1039/c8ta03673j .
Yang, Z.; Guo, H.; Tang, C. Y . The upper bound of thin-film composite (TFC) polyamide membranes for desalination . J. Membr. Sci. , 2019 . 590 117297 DOI:10.1016/j.memsci.2019.117297http://doi.org/10.1016/j.memsci.2019.117297 .
Ilyas, S.; Joseph, N.; Szymczyk, A.; Volodin, A.; Nijmeijer, K.; de Vos, W. M.; Vankelecom, I. F. J . Weak polyelectrolyte multilayers as tunable membranes for solvent resistant nanofiltration . J. Membr. Sci. , 2016 . 514 322 -331 . DOI:10.1016/j.memsci.2016.04.073http://doi.org/10.1016/j.memsci.2016.04.073 .
Lau, W. J.; Ismail, A. F.; Misdan, N.; Kassim, M. A . A recent progress in thin film composite membrane: a review . Desalination , 2012 . 287 190 -199 . DOI:10.1016/j.desal.2011.04.004http://doi.org/10.1016/j.desal.2011.04.004 .
Tanardi, C. R.; Pinheiro, A. F . M.; Nijmeijer, A.; Winnubst, L. PDMS grafting of mesoporous γ-alumina membranes for nanofiltration of organic solvents . J. Membr. Sci. , 2014 . 469 471 -477 . DOI:10.1016/j.memsci.2014.07.010http://doi.org/10.1016/j.memsci.2014.07.010 .
Raaijmakers, M. J. T.; Benes, N. E . Current trends in interfacial polymerization chemistry . Prog. Polym. Sci. , 2016 . 63 86 -142 . DOI:10.1016/j.progpolymsci.2016.06.004http://doi.org/10.1016/j.progpolymsci.2016.06.004 .
Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D . Maximizing the right stuff: the trade-off between membrane permeability and selectivity . Science , 2017 . 356 1138 -1148 . DOI:10.1126/science.aab0530http://doi.org/10.1126/science.aab0530 .
Yang, H. C.; Waldman, R. Z.; Wu, M. B.; Hou, J.; Chen, L.; Darling, S. B.; Xu, Z.-K . Dopamine: just the right medicine for membranes . Adv. Funct. Mater. , 2018 . 28 1705327 DOI:10.1002/adfm.201705327http://doi.org/10.1002/adfm.201705327 .
Seah, M. Q.; Lau, W. J.; Goh, P. S.; Tseng, H. H.; Wahab, R. A.; Ismail, A. F . Progress of interfacial polymerization techniques for polyamide thin film (nano)composite membrane fabrication: a comprehensive review . Polymers , 2020 . 12 2817 DOI:10.3390/polym12122817http://doi.org/10.3390/polym12122817 .
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B . Mussel-inspired surface chemistry for multifunctional coatings . Science , 2007 . 318 426 -430 . DOI:10.1126/science.1147241http://doi.org/10.1126/science.1147241 .
Fang, M.; Zhang, H.; Chen, J.; Wang, T.; Liu, J.; Li, X.; Li, J.; Cao, X . A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation . J. Membr. Sci. , 2016 . 499 290 -300 . DOI:10.1016/j.memsci.2015.10.046http://doi.org/10.1016/j.memsci.2015.10.046 .
Zhang, C.; Yang, H. C.; Wan, L. S.; Liang, H. Q.; Li, H.; Xu, Z.-K . Polydopamine-coated porous substrates as a platform for mineralized β-FeOOH nanorods with photocatalysis under sunlight . ACS Appl. Mater. Interfaces , 2015 . 7 11567 -11574 . DOI:10.1021/acsami.5b02530http://doi.org/10.1021/acsami.5b02530 .
Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W . Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries . Adv. Mater. , 2011 . 23 3066 -3070 . DOI:10.1002/adma.201100303http://doi.org/10.1002/adma.201100303 .
Liu, Y.; Ai, K.; Lu, L . Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields . Chem. Rev. , 2014 . 114 5057 -5115 . DOI:10.1021/cr400407ahttp://doi.org/10.1021/cr400407a .
Ku, S. H.; Ryu, J.; Hong, S. K.; Lee, H.; Park, C. B . General functionalization route for cell adhesion on non-wetting surfaces . Biomaterials , 2010 . 31 2535 -2541 . DOI:10.1016/j.biomaterials.2009.12.020http://doi.org/10.1016/j.biomaterials.2009.12.020 .
Li, X. L.; Zhu, L. P.; Jiang, J. H.; Yi, Z.; Zhu, B. K.; Xu, Y. Y . Hydrophilic nanofiltration membranes with self-polymerized and strongly-adhered polydopamine as separating layer . Chinese J. Polym. Sci. , 2012 . 30 152 -163 . DOI:10.1007/s10118-012-1107-5http://doi.org/10.1007/s10118-012-1107-5 .
Wang, Z.; Guo, J.; Ma, J.; Shao, L . Highly regenerable alkali-resistant magnetic nanoparticles inspired by mussels for rapid selective dye removal offer high-efficiency environmental remediation . J. Mater. Chem. A , 2015 . 3 19960 -19968 . DOI:10.1039/C5TA04840Khttp://doi.org/10.1039/C5TA04840K .
Yang, H. C.; Liao, K. J.; Huang, H.; Wu, Q. Y.; Wan, L. S.; Xu, Z.-K . Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation . J. Mater. Chem. A , 2014 . 2 10225 -10230 . DOI:10.1039/C4TA00143Ehttp://doi.org/10.1039/C4TA00143E .
Bozzi, Y.; Borrelli, E . Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it . Trends Neurosci. , 2006 . 29 167 -174 . DOI:10.1016/j.tins.2006.01.002http://doi.org/10.1016/j.tins.2006.01.002 .
Xi, Z. Y.; Xu, Y. Y.; Zhu, L. P.; Wang, Y.; Zhu, B. K . A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine) . J. Membr. Sci. , 2009 . 327 244 -253 . DOI:10.1016/j.memsci.2008.11.037http://doi.org/10.1016/j.memsci.2008.11.037 .
Zhang, R.; Su, Y.; Zhao, X.; Li, Y.; Zhao, J.; Jiang, Z . A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine) . J. Membr. Sci. , 2014 . 470 9 -17 . DOI:10.1016/j.memsci.2014.07.006http://doi.org/10.1016/j.memsci.2014.07.006 .
Lv, Y.; Yang, H. C.; Liang, H. Q.; Wan, L. S.; Xu, Z.-K . Novel nanofiltration membrane with ultrathin zirconia film as selective layer . J. Membr. Sci. , 2016 . 500 265 -271 . DOI:10.1016/j.memsci.2015.11.046http://doi.org/10.1016/j.memsci.2015.11.046 .
Zhang, R.; Liu, Y.; He, M.; Su, Y.; Zhao, X.; Elimelech, M.; Jiang, Z . Antifouling membranes for sustainable water purification: Strategies and mechanisms . Chem. Soc. Rev. , 2016 . 45 5888 -5924 . DOI:10.1039/C5CS00579Ehttp://doi.org/10.1039/C5CS00579E .
Zhang, C.; Ou, Y.; Lei, W. X.; Wan, L. S.; Ji, J.; Xu, Z.-K . CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability . Angew. Chem. Int. Ed. , 2016 . 55 3054 -3057 . DOI:10.1002/anie.201510724http://doi.org/10.1002/anie.201510724 .
Zhang, C.; Lv, Y.; Qiu, W. Z.; He, A.; Xu, Z.-K . Polydopamine coatings with nanopores for versatile molecular separation . ACS Appl. Mater. Interfaces , 2017 . 9 14437 -14444 . DOI:10.1021/acsami.7b03115http://doi.org/10.1021/acsami.7b03115 .
Wang, Z.; Jiang, X.; Cheng, X.; Lau, C. H.; Shao, L . Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation . ACS Appl. Mater. Interfaces , 2015 . 7 9534 -9545 . DOI:10.1021/acsami.5b00894http://doi.org/10.1021/acsami.5b00894 .
Wang, Z. X.; Lau, C. H.; Zhang, N. Q.; Bai, Y. P.; Shao, L . Mussel-inspired tailoring of membrane wettability for harsh water treatment . J. Mater. Chem. A , 2015 . 3 2650 -2657 . DOI:10.1039/C4TA05970Khttp://doi.org/10.1039/C4TA05970K .
Ren, P. F.; Yang, H. C.; Jin, Y. N.; Liang, H. Q.; Wan, L. S.; Xu, Z.-K . Underwater superoleophobic meshes fabricated by poly(sulfobetaine)/polydopamine co-deposition . RSC Adv. , 2015 . 5 47592 -47598 . DOI:10.1039/C5RA05937Bhttp://doi.org/10.1039/C5RA05937B .
Zhou, R.; Ren, P. F.; Yang, H. C.; Xu, Z.-K . Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition . J. Membr. Sci. , 2014 . 466 18 -25 . DOI:10.1016/j.memsci.2014.04.032http://doi.org/10.1016/j.memsci.2014.04.032 .
Lv, Y.; Yang, H. C.; Liang, H. Q.; Wan, L. S.; Xu, Z.-K . Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking . J. Membr. Sci. , 2015 . 476 50 -58 . DOI:10.1016/j.memsci.2014.11.024http://doi.org/10.1016/j.memsci.2014.11.024 .
Gin, D. L.; Noble, R. D . Designing the next generation of chemical separation membranes . Science , 2011 . 332 674 -676 . DOI:10.1126/science.1203771http://doi.org/10.1126/science.1203771 .
Bowen, W. R.; Welfoot, J. S . Modelling the performance of membrane nanofiltration-critical assessment and model development . Chem. Eng. Sci. , 2002 . 57 1121 -1137 . DOI:10.1016/S0009-2509(01)00413-4http://doi.org/10.1016/S0009-2509(01)00413-4 .
da Silva Burgal, J.; Peeva, L . G.; Kumbharkar, S.; Livingston, A. Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes . J. Membr. Sci. , 2015 . 479 105 -116 . DOI:10.1016/j.memsci.2014.12.035http://doi.org/10.1016/j.memsci.2014.12.035 .
Liu, C.; Shi, L.; Wang, R . Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42– in feed water . J. Membr. Sci. , 2015 . 486 169 -176 . DOI:10.1016/j.memsci.2015.03.050http://doi.org/10.1016/j.memsci.2015.03.050 .
Guo, S.; Wan, Y.; Chen, X.; Luo, J . Loose nanofiltration membrane custom-tailored for resource recovery . Chem. Eng. J. , 2021 . 409 127376 DOI:10.1016/j.cej.2020.127376http://doi.org/10.1016/j.cej.2020.127376 .
Lau, W. J.; Gray, S.; Matsuura, T.; Emadzadeh, D.; Paul Chen, J.; Ismail, A. F . A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches . Water Res. , 2015 . 80 306 -324 . DOI:10.1016/j.watres.2015.04.037http://doi.org/10.1016/j.watres.2015.04.037 .
Du, Y.; Lv, Y.; Qiu, W. Z.; Wu, J.; Xu, Z.-K . Nanofiltration membranes with narrowed pore size distribution via pore wall modification . Chem. Commun. , 2016 . 52 8589 -8592 . DOI:10.1039/C6CC03842Ehttp://doi.org/10.1039/C6CC03842E .
Du, Y.; Yang, H. C.; Xu, X. L.; Wu, J.; Xu, Z.-K . Polydopamine as a catalyst for thiol coupling . ChemCatChem , 2015 . 7 3822 -3825 . DOI:10.1002/cctc.201500643http://doi.org/10.1002/cctc.201500643 .
Du, Y.; Qiu, W. Z.; Lv, Y.; Wu, J.; Xu, Z.-K . Nanofiltration membranes with narrow pore size distribution via contra-diffusion-induced mussel-inspired chemistry . ACS Appl. Mater. Interfaces , 2016 . 8 29696 -29704 . DOI:10.1021/acsami.6b10367http://doi.org/10.1021/acsami.6b10367 .
Wei, Q.; Zhang, F.; Li, J.; Li, B.; Zhao, C . Oxidant-induced dopamine polymerization for multifunctional coatings . Polym. Chem. , 2010 . 1 1430 DOI:10.1039/c0py00215ahttp://doi.org/10.1039/c0py00215a .
Yang, H. C.; Xu, W.; Du, Y.; Wu, J.; Xu, Z.-K . Composite free-standing films of polydopamine/polyethyleneimine grown at the air/water interface . RSC Adv. , 2014 . 4 45415 -45418 . DOI:10.1039/C4RA04549Ahttp://doi.org/10.1039/C4RA04549A .
Yang, H. C.; Wu, M. B.; Hou, J.; Darling, S. B.; Xu, Z.-K . Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving . J. Mater. Chem. A , 2018 . 6 2908 -2913 . DOI:10.1039/c7ta10438chttp://doi.org/10.1039/c7ta10438c .
Wu, M. B.; Fan, X. L.; Yang, H. C.; Yang, J.; Zhu, M. M.; Ren, K. F.; Ji, J.; Xu, Z.-K. . Ultrafast formation of pyrogallol/polyethyleneimine nanofilms for aqueous and organic nanofiltration . J. Membr. Sci. , 2019 . 570 270 -277 . DOI:10.1016/j.memsci.2018.10.052http://doi.org/10.1016/j.memsci.2018.10.052 .
Sileika, T. S.; Barrett, D. G.; Zhang, R.; Lau, K. H. A.; Messersmith, P. B . Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine . Angew. Chem. Int. Ed. , 2013 . 125 10966 -10970 . DOI:10.1002/ange.201304922http://doi.org/10.1002/ange.201304922 .
Wang, H.; Wu, J.; Cai, C.; Guo, J.; Fan, H.; Zhu, C.; Dong, H.; Zhao, N.; Xu, J . Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-Ion batteries . ACS Appl. Mater. Interfaces , 2014 . 6 5602 -5608 . DOI:10.1021/am406052uhttp://doi.org/10.1021/am406052u .
Qiu, W. Z.; Yang, H. C.; Wan, L. S.; Xu, Z.-K . Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water . J. Mater. Chem. A , 2015 . 3 14438 -14444 . DOI:10.1039/C5TA02590Ghttp://doi.org/10.1039/C5TA02590G .
Qiu, W. Z.; Wu, G. P.; Xu, Z.-K . Robust coatings via catechol–amine codeposition: mechanism, kinetics, and application . ACS Appl. Mater. Interfaces , 2018 . 10 5902 -5908 . DOI:10.1021/acsami.7b18934http://doi.org/10.1021/acsami.7b18934 .
Qiu, W. Z.; Lv, Y.; Du, Y.; Yang, H. C.; Xu, Z.-K . Composite nanofiltration membranes via the co-deposition and cross-linking of catechol/polyethylenimine . RSC Adv. , 2016 . 6 34096 -34102 . DOI:10.1039/C6RA04074Hhttp://doi.org/10.1039/C6RA04074H .
Qiu, W. Z.; Du, Y.; Lv, Y.; Yang, H. C.; Xu, Z.-K . Codeposition of catechol-polyethyleneimine followed by interfacial polymerization for nanofiltration membranes with enhanced stability . J. Appl. Polym. Sci. , 2017 . 134 45422 DOI:10.1002/app.45422http://doi.org/10.1002/app.45422 .
Qiu, W. Z.; Zhong, Q. Z.; Du, Y.; Lv, Y.; Xu, Z.-K . Enzyme-triggered coatings of tea catechins/chitosan for nanofiltration membranes with high performance . Green Chem. , 2016 . 18 6205 -6208 . DOI:10.1039/c6gc02039ahttp://doi.org/10.1039/c6gc02039a .
Li, Y.; He, G.; Wang, S.; Yu, S.; Pan, F.; Wu, H.; Jiang, Z . Recent advances in the fabrication of advanced composite membranes . J. Mater. Chem. A , 2013 . 1 10058 DOI:10.1039/c3ta01652hhttp://doi.org/10.1039/c3ta01652h .
Van der Bruggen, B.; Mänttäri, M.; Nyström, M . Drawbacks of applying nanofiltration and how to avoid them: a review . Sep. Purif. Technol. , 2008 . 63 251 -263 . DOI:10.1016/j.seppur.2008.05.010http://doi.org/10.1016/j.seppur.2008.05.010 .
Lai, G. S.; Lau, W. J.; Gray, S. R.; Matsuura, T.; Gohari, R. J.; Subramanian, M. N.; Lai, S. O.; Ong, C. S.; Ismail, A . F.; Emazadah, D.; Ghanbari, M. A practical approach to synthesize polyamide thin film nanocomposite (TFN) membranes with improved separation properties for water/wastewater treatment . J. Mater. Chem. A , 2016 . 4 4134 -4144 . DOI:10.1039/C5TA09252Chttp://doi.org/10.1039/C5TA09252C .
Yin, J.; Deng, B . Polymer-matrix nanocomposite membranes for water treatment . J. Membr. Sci. , 2015 . 479 256 -275 . DOI:10.1016/j.memsci.2014.11.019http://doi.org/10.1016/j.memsci.2014.11.019 .
Lv, Y.; Du, Y.; Qiu, W. Z.; Xu, Z.-K . Nanocomposite membranes via the codeposition of polydopamine/polyethylenimine with silica nanoparticles for enhanced mechanical strength and high water permeability . ACS Appl. Mater. Interfaces , 2017 . 9 2966 -2972 . DOI:10.1021/acsami.6b13761http://doi.org/10.1021/acsami.6b13761 .
Lv, Y.; Du, Y.; Chen, Z. X.; Qiu, W. Z.; Xu, Z.-K . Nanocomposite membranes of polydopamine/electropositive nanoparticles/polyethyleneimine for nanofiltration . J. Membr. Sci. , 2018 . 545 99 -106 . DOI:10.1016/j.memsci.2017.09.066http://doi.org/10.1016/j.memsci.2017.09.066 .
You, F.; Xu, Y.; Yang, X.; Zhang, Y.; Shao, L . Bio-inspired Ni2+-polyphenol hydrophilic network to achieve unconventional high-flux nanofiltration membranes for environmental remediation . Chem. Commun. , 2017 . 53 6128 -6131 . DOI:10.1039/c7cc02411hhttp://doi.org/10.1039/c7cc02411h .
Lv, Y.; Zhang, C.; He, A.; Yang, S. J.; Wu, G. P.; Darling, S. B.; Xu, Z.-K . Photocatalytic nanofiltration membranes with self-cleaning property for wastewater treatment . Adv. Funct. Mater. , 2017 . 27 1700251 DOI:10.1002/adfm.201700251http://doi.org/10.1002/adfm.201700251 .
Cadotte, J. E.; King, R. S.; Majerle, R. J.; Petersen, R. J . Interfacial synthesis in the preparation of reverse osmosis membranes . J. Macromol. Sci. Part A - Chem. , 1981 . 15 727 -755 . DOI:10.1080/00222338108056764http://doi.org/10.1080/00222338108056764 .
Zhang, F.; Fan, J.; Wang, S . Interfacial polymerization: from chemistry to functional materials . Angew. Chem. Int. Ed. , 2020 . 59 21840 -21856 . DOI:10.1002/anie.201916473http://doi.org/10.1002/anie.201916473 .
Freger, V . Kinetics of film formation by interfacial polycondensation . Langmuir , 2005 . 21 1884 -1894 . DOI:10.1021/la048085vhttp://doi.org/10.1021/la048085v .
Nowbahar, A.; Mansard, V.; Mecca, J. M.; Paul, M.; Arrowood, T.; Squires, T. M . Measuring interfacial polymerization kinetics using microfluidic interferometry . J. Am. Chem. Soc. , 2018 . 140 3173 -3176 . DOI:10.1021/jacs.7b12121http://doi.org/10.1021/jacs.7b12121 .
McGilvery, C. M.; Abellan, P.; Kłosowski, M. M.; Livingston, A. G.; Cabral, J. T.; Ramasse, Q. M.; Porter, A. E . Nanoscale chemical heterogeneity in aromatic polyamide membranes for reverse osmosis applications . ACS Appl. Mater. Interfaces , 2020 . 12 19890 -19902 . DOI:10.1021/acsami.0c01473http://doi.org/10.1021/acsami.0c01473 .
Park, S. J.; Lee, J. H . Fabrication of high-performance reverse osmosis membranes via dual-layer slot coating with tailoring interfacial adhesion . J. Membr. Sci. , 2020 . 614 118449 DOI:10.1016/j.memsci.2020.118449http://doi.org/10.1016/j.memsci.2020.118449 .
Zhao, Q.; Zhao, D. L.; Chung, T. S . Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination . J. Membr. Sci. , 2021 . 625 119158 DOI:10.1016/j.memsci.2021.119158http://doi.org/10.1016/j.memsci.2021.119158 .
Li, Y.; You, X.; Li, Y.; Yuan, J.; Shen, J.; Zhang, R.; Wu, H.; Su, Y.; Jiang, Z . Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration . J. Mater. Chem. A , 2020 . 8 23930 -23938 . DOI:10.1039/D0TA09319Jhttp://doi.org/10.1039/D0TA09319J .
Zhang, X.; Lv, Y.; Yang, H. C.; Du, Y.; Xu, Z.-K . Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance . ACS Appl. Mater. Interfaces , 2016 . 8 32512 -32519 . DOI:10.1021/acsami.6b10693http://doi.org/10.1021/acsami.6b10693 .
Yang, X.; Du, Y.; Zhang, X.; He, A.; Xu, Z.-K . Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance . Langmuir , 2017 . 33 2318 -2324 . DOI:10.1021/acs.langmuir.6b04465http://doi.org/10.1021/acs.langmuir.6b04465 .
Pan, K.; Fang, P.; Cao, B . Novel composite membranes prepared by interfacial polymerization on polypropylene fiber supports pretreated by ozone-induced polymerization . Desalination , 2012 . 294 36 -43 . DOI:10.1016/j.desal.2012.03.007http://doi.org/10.1016/j.desal.2012.03.007 .
Kwon, S. J.; Park, K.; Kim, D. Y.; Zhan, M.; Hong, S.; Lee, J. H . High-performance and durable pressure retarded osmosis membranes fabricated using hydrophilized polyethylene separators . J. Membr. Sci. , 2021 . 619 118796 DOI:10.1016/j.memsci.2020.118796http://doi.org/10.1016/j.memsci.2020.118796 .
Huang, L.; Arena, J. T.; McCutcheon, J. R . Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis . J. Membr. Sci. , 2016 . 499 352 -360 . DOI:10.1016/j.memsci.2015.10.030http://doi.org/10.1016/j.memsci.2015.10.030 .
Zhang, X.; Liu, C.; Yang, J.; Zhu, C. Y.; Zhang, L.; Xu, Z.-K . Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeation flux . J. Membr. Sci. , 2020 . 593 117444 DOI:10.1016/j.memsci.2019.117444http://doi.org/10.1016/j.memsci.2019.117444 .
Wang, Y.; Fang, Z.; Xie, C.; Zhao, S.; Ng, D.; Xie, Z . Dopamine incorporated forward osmosis membranes with high structural stability and chlorine resistance . Processes , 2018 . 6 151 DOI:10.3390/pr6090151http://doi.org/10.3390/pr6090151 .
Heidari, A . A.; Mahdavi, H.; Khodaei kahriz, P. Thin film composite solvent resistant nanofiltration membrane via interfacial polymerization on an engineered polyethylene membrane support coated with polydopamine . J. Membr. Sci. , 2021 . 634 119406 DOI:10.1016/j.memsci.2021.119406http://doi.org/10.1016/j.memsci.2021.119406 .
Cao, Y.; Zhang, H.; Guo, S.; Luo, J.; Wan, Y . A robust dually charged membrane prepared via catechol-amine chemistry for highly efficient dye/salt separation . J. Membr. Sci. , 2021 . 629 119287 DOI:10.1016/j.memsci.2021.119287http://doi.org/10.1016/j.memsci.2021.119287 .
Dai, R.; Li, J.; Wang, Z. . Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review . Adv. Colloid Interface Sci. , 2020 . 282 102204 DOI:10.1016/j.cis.2020.102204http://doi.org/10.1016/j.cis.2020.102204 .
Wu, M. B.; Lv, Y.; Yang, H. C.; Liu, L. F.; Zhang, X.; Xu, Z.-K . Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances . J. Membr. Sci. , 2016 . 515 238 -244 . DOI:10.1016/j.memsci.2016.05.056http://doi.org/10.1016/j.memsci.2016.05.056 .
Wang, J. J.; Yang, H. C.; Wu, M. B.; Zhang, X.; Xu, Z.-K . Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance . J. Mater. Chem. A , 2017 . 5 16289 -16295 . DOI:10.1039/C7TA00501Fhttp://doi.org/10.1039/C7TA00501F .
Zhu, C. Y.; Zhang, X.; Xu, Z.-K . Polyamide-based membranes consisting of nanocomposite interlayers for high performance nanofiltration . J. Appl. Polym. Sci. , 2021 . 138 49940 DOI:10.1002/app.49940http://doi.org/10.1002/app.49940 .
Xu, D.; Zhu, X.; Luo, X.; Guo, Y.; Liu, Y.; Yang, L.; Tang, X.; Li, G.; Liang, H . MXene nanosheet templated nanofiltration membranes toward ultrahigh water transport . Environ. Sci. Technol. , 2021 . 55 1270 -1278 . DOI:10.1021/acs.est.0c06835http://doi.org/10.1021/acs.est.0c06835 .
Kim, J. H.; Park, G. S.; Kim, Y. J.; Choi, E.; Kang, J.; Kwon, O.; Kim, S. J.; Cho, J. H.; Kim, D. W . Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation . ACS Nano , 2021 . 15 8860 -8869 . DOI:10.1021/acsnano.1c01448http://doi.org/10.1021/acsnano.1c01448 .
Kang, X.; Liu, X.; Liu, J.; Wen, Y.; Qi, J.; Li, X . Spin-assisted interfacial polymerization strategy for graphene oxide-polyamide composite nanofiltration membrane with high performance . Appl. Surf. Sci. , 2020 . 508 145198 DOI:10.1016/j.apsusc.2019.145198http://doi.org/10.1016/j.apsusc.2019.145198 .
Kong, B. S.; Geng, J.; Jung, H. T . Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions . Chem. Commun. , 2009 . 16 2174 DOI:10.1039/b821920fhttp://doi.org/10.1039/b821920f .
Zhu, C. Y.; Li, H. N.; Yang, J.; Li, J. J.; Ye, J. R.; Xu, Z.-K . Vacuum-assisted diamine monomer distribution for synthesizing polyamide composite membranes by interfacial polymerization . J. Membr. Sci. , 2020 . 616 118557 DOI:10.1016/j.memsci.2020.118557http://doi.org/10.1016/j.memsci.2020.118557 .
Zhang, H.; He, Q.; Luo, J.; Wan, Y.; Darling, S. B . Sharpening nanofiltration: strategies for enhanced membrane selectivity . ACS Appl. Mater. Interfaces , 2020 . 12 39948 -39966 . DOI:10.1021/acsami.0c11136http://doi.org/10.1021/acsami.0c11136 .
Nadler, R.; Srebnik, S . Molecular simulation of polyamide synthesis by interfacial polymerization . J. Membr. Sci. , 2008 . 315 100 -105 . DOI:10.1016/j.memsci.2008.02.023http://doi.org/10.1016/j.memsci.2008.02.023 .
Zhu, C. Y.; Liu, C.; Yang, J.; Guo, B. B.; Li, H. N.; Xu, Z.-K . Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration . J. Membr. Sci. , 2021 . 627 119142 DOI:10.1016/j.memsci.2021.119142http://doi.org/10.1016/j.memsci.2021.119142 .
Wu, M.; Peng, Q. Y.; Han, L. B.; Zeng, H. B. . Self-healing hydrogels and underlying reversible intermolecular interactions . Chinese J. Polym. Sci. , 2021 . 39 1246 -1261 . DOI:10.1007/s10118-021-2631-yhttp://doi.org/10.1007/s10118-021-2631-y .
Ma, Z. Y.; Zhang, X.; Liu, C.; Dong, S. N.; Yang, J.; Wu, G. P.; Xu, Z.-K . Polyamide nanofilms synthesized: via controlled interfacial polymerization on a “jelly” surface . Chem. Commun. , 2020 . 56 7249 -7252 . DOI:10.1039/d0cc02555khttp://doi.org/10.1039/d0cc02555k .
Ma, Z. Y.; Xue, Y. R.; Xu, Z.-K . Alginate hydrogel assisted controllable interfacial polymerization for high-performance nanofiltration membranes . Membranes , 2021 . 11 435 DOI:10.3390/membranes11060435http://doi.org/10.3390/membranes11060435 .
Hartanto, Y.; Corvilain, M.; Mariën, H.; Janssen, J.; Vankelecom, I. F. J . Interfacial polymerization of thin-film composite forward osmosis membranes using ionic liquids as organic reagent phase . J. Membr. Sci. , 2020 . 601 117869 DOI:10.1016/j.memsci.2020.117869http://doi.org/10.1016/j.memsci.2020.117869 .
Ong, C.; Falca, G.; Huang, T.; Liu, J.; Manchanda, P.; Chisca, S.; Nunes, S. P . Green synthesis of thin-film composite membranes for organic solvent nanofiltration . ACS Sustain. Chem. Eng. , 2020 . 8 11541 -11548 . DOI:10.1021/acssuschemeng.0c02320http://doi.org/10.1021/acssuschemeng.0c02320 .
Liu, C.; Yang, J.; Guo, B. B.; Agarwal, S.; Greiner, A.; Xu, Z.-K . Interfacial polymerization at the alkane/ionic liquid interface . Angew. Chem. Int. Ed. , 2021 . 60 14636 -14643 . DOI:10.1002/anie.202103555http://doi.org/10.1002/anie.202103555 .
Liu, C.; An, Y. P.; Yang, J.; Guo, B. B.; Yu, H. H.; Xu, Z.-K . Osmotic pressure as driving force for recovering ionic liquids from aqueous solutions . J. Membr. Sci. , 2020 . 599 117835 DOI:10.1016/j.memsci.2020.117835http://doi.org/10.1016/j.memsci.2020.117835 .
Guo, B. B.; Liu, C.; Xin, J. H.; Zhu, C. Y.; Xu, Z.-K . Visualizing and monitoring interfacial polymerization by aggregation-induced emission . Polym. Chem. , 2021 . 12 4332 -4336 . DOI:10.1039/D1PY00594Dhttp://doi.org/10.1039/D1PY00594D .
Liao, Z.; Zhu, J.; Li, X.; Van der Bruggen, B . Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: a critical review . Sep. Purif. Technol. , 2021 . 266 118567 DOI:10.1016/j.seppur.2021.118567http://doi.org/10.1016/j.seppur.2021.118567 .
Ma, M. Q.; Zhang, C.; Zhu, C. Y.; Huang, S.; Yang, J.; Xu, Z.-K . Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance . J. Membr. Sci. , 2019 . 591 117316 DOI:10.1016/j.memsci.2019.117316http://doi.org/10.1016/j.memsci.2019.117316 .
Yu, J. C.; Ma, M. Q.; Zhu, C. Y.; Hu, D. F.; Ji, J.; Xu, Z.-K. . MoS2 membranes with photothermal conversion property for nanofiltration and antibacterial activity . Acta Polymerica Sinica (in Chinese) , 2021 . 52 505 -513 . DOI:10.11777/j.issn1000-3304.2020.20264http://doi.org/10.11777/j.issn1000-3304.2020.20264 .
Huang, S.; Wu, M. B.; Zhu, C. Y.; Ma, M. Q.; Yang, J.; Wu, J.; Xu, Z.-K. . Polyamide nanofiltration membranes incorporated with cellulose nanocrystals for enhanced water flux and chlorine resistance . ACS Sustain. Chem. Eng. , 2019 . 7 9b01651 DOI:10.1021/acssuschemeng.9b01651http://doi.org/10.1021/acssuschemeng.9b01651 .
0
Views
11
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution