a.State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
b.Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences; Oujiang Laboratory, Wenzhou 325000, China
y.liu@ucas.ac.cn (Y.L.)
shilinqi@nankai.edu.cn (L.Q.S.)
Scan for full text
Lin-Zhu Su, Yong Liu, Yuan-Feng Li, et al. Responsive Polymeric Nanoparticles for Biofilm-infection Control. [J]. Chinese Journal of Polymer Science 39(11):1376-1391(2021)
Lin-Zhu Su, Yong Liu, Yuan-Feng Li, et al. Responsive Polymeric Nanoparticles for Biofilm-infection Control. [J]. Chinese Journal of Polymer Science 39(11):1376-1391(2021) DOI: 10.1007/s10118-021-2610-3.
With the emergence of multidrug resistance (MDR) in many pathogens, bacterial infections are becoming a growing threat to public health. The frightening scenario is due largely to the formation of biofilms, in which the bacteria are extremely recalcitrant to the conventional antibiotic regimens. To address the emergence of MDR and biofilm-associated infections, numerous polymer-based materials have been designed and prepared recently. The subject of this perspective is the recent development of polymer-based materials that have been applied to combat multidrug-resistant pathogens, to prevent the formation of biofilms, or enhance the eradication efficacy to mature biofilms ,via, killing biofilm-bacteria or dispersing biofilms. The advantages and shortcomings of these polymer-based materials are discussed, as well as the challenges we are facing in the clinical translation of these systems.
AntibacterialBiofilmMultidrug resistancePolymeric nanoparticlesStimuli-responsive
Howard, S. J.; Hopwood, S.; Davies, S. C. . Antimicrobial resistance: a global challenge . Sci. Transl. Med. , 2014 . 6 236ed10 DOI:10.1126/scitranslmed.3009315http://doi.org/10.1126/scitranslmed.3009315 .
Humphreys, G.; Fleck, F. In United Nations meeting on antimicrobial resistance, Bull. World Health Organ., Sep 1; Bull. World Health Organ: 2016; pp 638−639.
Davies, D. . Understanding biofilm resistance to antibacterial agents . Nat. Rev. Drug Discov. , 2003 . 2 114 -122 . DOI:10.1038/nrd1008http://doi.org/10.1038/nrd1008 .
Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P. . Bacterial biofilms: from the natural environment to infectious diseases . Nat. Rev. Microbiol. , 2004 . 2 95 -108 . DOI:10.1038/nrmicro821http://doi.org/10.1038/nrmicro821 .
Flemming, H. C.; Wingender, J. . The biofilm matrix . Nat. Rev. Microbiol. , 2010 . 8 623 -633 . DOI:10.1038/nrmicro2415http://doi.org/10.1038/nrmicro2415 .
Van Acker, H.; Coenye, T. . The role of efflux and physiological adaptation in biofilm tolerance and resistance . J. Biol. Chem. , 2016 . 291 12565 -12572 . DOI:10.1074/jbc.R115.707257http://doi.org/10.1074/jbc.R115.707257 .
Ramirez, M. S.; Tolmasky, M. E. . Aminoglycoside modifying enzymes . Drug Resistance Update. , 2010 . 13 151 -171 . DOI:10.1016/j.drup.2010.08.003http://doi.org/10.1016/j.drup.2010.08.003 .
Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. . Antibiotic resistance of bacterial biofilms . Int. J. Antimicrob. Agents. , 2010 . 35 322 -332 . DOI:10.1016/j.ijantimicag.2009.12.011http://doi.org/10.1016/j.ijantimicag.2009.12.011 .
Piddock, L. J. V. . The crisis of no new antibiotics-what is the way forward? . Lancet Infect. Dis. , 2012 . 12 249 -253 . DOI:10.1016/S1473-3099(11)70316-4http://doi.org/10.1016/S1473-3099(11)70316-4 .
Liu, Y.; Shi, L.; Su, L.; van der Mei, H. C.; Jutte, P. C.; Ren, Y.; Busscher, H. J. . Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control . Chem. Soc. Rev. , 2019 . 48 428 -446 . DOI:10.1039/C7CS00807Dhttp://doi.org/10.1039/C7CS00807D .
Zheng, C, X.; Zhao, Y.; Liu, Y. . Recent advances in self-assembled nano-therapeutics . Chinese J. Polym. Sci. , 2018 . 36 322 -346 . DOI:10.1007/s10118-018-2078-yhttp://doi.org/10.1007/s10118-018-2078-y .
Matyjaszewski, K.; Tsarevsky, N. V. . Macromolecular engineering by atom transfer radical polymerization . J. Am. Chem. Soc. , 2014 . 136 6513 -6533 . DOI:10.1021/ja408069vhttp://doi.org/10.1021/ja408069v .
Xu, F. J.; Yang, W. T. . Polymer vectors via controlled/living radical polymerization for gene delivery . Prog. Polym. Sci. , 2011 . 36 1099 -1131 . DOI:10.1016/j.progpolymsci.2010.11.005http://doi.org/10.1016/j.progpolymsci.2010.11.005 .
Lutz, J. F.; Neugebauer, D.; Matyjaszewski, K. . Stereoblock copolymers and tacticity control in controlled/living radical polymerization . J. Am. Chem. Soc. , 2003 . 125 6986 -6993 . DOI:10.1021/ja029517whttp://doi.org/10.1021/ja029517w .
Wu, Y. M.; Zhang, W. W.; Zhou, R. Y.; Chen, Q.; Xie, C. Y.; Xiang, H. X.; Sun, B.; Zhu, M. F.; Liu, R. H. . Facile synthesis of high molecular weight polypeptides via fast and moisture insensitive polymerization of α-amino acid n-carboxyanhydrides . Chinese J. Polym. Sci. , 2020 . 38 1131 -1140 . DOI:10.1007/s10118-020-2471-1http://doi.org/10.1007/s10118-020-2471-1 .
Ding, X.; Wang, A.; Tong, W.; Xu, F. J. . Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria . Small , 2019 . 15 e1900999 DOI:10.1002/smll.201900999http://doi.org/10.1002/smll.201900999 .
Chin, W.; Yang, C. A.; Ng, V. W. L.; Huang, Y.; Cheng, J. C.; Tong, Y. W.; Coady, D. J.; Fan, W. M.; Hedrick, J. L.; Yang, Y. Y. . Biodegradable broad-spectrum antimicrobial polycarbonates: investigating the role of chemical structure on activity and selectivity . Macromolecules , 2013 . 46 8797 -8807 . DOI:10.1021/ma4019685http://doi.org/10.1021/ma4019685 .
Gupta, A.; Landis, R. F.; Li, C. H.; Schnurr, M.; Das, R.; Lee, Y. W.; Yazdani, M.; Liu, Y.; Kozlova, A.; Rotello, V. M. . Engineered polymer nanoparticles with unprecedented antimicrobial efficacy and therapeutic indices against multidrug-resistant bacteria and biofilms . J. Am. Chem. Soc. , 2018 . 140 12137 -12143 . DOI:10.1021/jacs.8b06961http://doi.org/10.1021/jacs.8b06961 .
Pu, Y. J.; Hou, Z.; Khin, M. M.; Zamudio-Vazquez, R.; Poon, K. L.; Duan, H. W.; Chan-Park, M. B. . Synthesis and antibacterial study of sulfobetaine/quaternary ammonium-modified star-shaped poly[2-(dimethylamino)ethyl methacrylate]-based copolymers with an inorganic core . Biomacromolecules , 2017 . 18 44 -55 . DOI:10.1021/acs.biomac.6b01279http://doi.org/10.1021/acs.biomac.6b01279 .
Tan, J. P. K.; Coady, D. J.; Sardon, H.; Yuen, A.; Gao, S. J.; Lim, S. W.; Liang, Z. C.; Tan, E. W.; Venkataraman, S.; Engler, A. C.; Fevre, M.; Ono, R.; Yang, Y. Y.; Hedrick, J. L. . Broad spectrum macromolecular antimicrobials with biofilm disruption capability and in vivo efficacy . Adv. Healthc. Mater. , 2017 . 6 1601420 DOI:10.1002/adhm.201601420http://doi.org/10.1002/adhm.201601420 .
Patel, M.; Patel, R.; Chi, W. S.; Kim, J. H.; Sung, J. S. . Antibacterial behaviour of quaternized poly(vinyl chloride)-g-poly(4-vinyl pyridine) graft copolymers . Chinese J. Polym. Sci. , 2015 . 33 265 -274 . DOI:10.1007/s10118-015-1577-3http://doi.org/10.1007/s10118-015-1577-3 .
Wang, M.; Zhou, C.; Chen, J.; Xiao, Y.; Du, J. . Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities . Bioconjug. Chem. , 2015 . 26 725 -734 . DOI:10.1021/acs.bioconjchem.5b00061http://doi.org/10.1021/acs.bioconjchem.5b00061 .
Xi, Y.; Song, T.; Tang, S.; Wang, N.; Du, J. . Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities . Biomacromolecules , 2016 . 17 3922 -3930 . DOI:10.1021/acs.biomac.6b01285http://doi.org/10.1021/acs.biomac.6b01285 .
Takahashi, H.; Nadres, E. T.; Kuroda, K. . Cationic amphiphilic polymers with antimicrobial activity for oral care applications: eradication of S. mutans biofilm . Biomacromolecules , 2017 . 18 257 -265 . DOI:10.1021/acs.biomac.6b01598http://doi.org/10.1021/acs.biomac.6b01598 .
Nimmagadda, A.; Liu, X.; Teng, P.; Su, M.; Li, Y.; Qiao, Q.; Khadka, N. K.; Sun, X.; Pan, J.; Xu, H.; Li, Q.; Cai, J. . Polycarbonates with potent and selective antimicrobial activity toward gram-positive bacteria . Biomacromolecules , 2017 . 18 87 -95 . DOI:10.1021/acs.biomac.6b01385http://doi.org/10.1021/acs.biomac.6b01385 .
Zou, Y. J.; He, S. S.; Du, J. Z. . ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities . Chinese J. Polym. Sci. , 2018 . 36 1239 -1250 . DOI:10.1007/s10118-018-2156-1http://doi.org/10.1007/s10118-018-2156-1 .
Xia, G. X.; Wu, Y. M.; Bi, Y. F.; Chen, K.; Zhang, W. W.; Liu, S. Q.; Zhang, W. J.; Liu, R. H. . Antimicrobial properties and application of polysaccharides and their derivatives . Chinese J. Polym. Sci. , 2021 . 39 133 -146 . DOI:10.1007/s10118-021-2506-2http://doi.org/10.1007/s10118-021-2506-2 .
Ibrahim, H. R.; Thomas, U.;Pellegrini, A. . A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action . J. Biol. Chem. , 2001 . 276 43767 -43774 . DOI:10.1074/jbc.M106317200http://doi.org/10.1074/jbc.M106317200 .
Wang, J.; Chen, X. Y.; Zhao, Y.; Yang, Y.; Wang, W.; Wu, C.; Yang, B.; Zhang, Z.; Zhang, L.; Liu, Y.; Du, X.; Li, W.; Qiu, L.; Jiang, P.; Mou, X. Z.;Li, Y. Q. . pH-Switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds . ACS Nano , 2019 . 13 11686 -11697 . DOI:10.1021/acsnano.9b05608http://doi.org/10.1021/acsnano.9b05608 .
Xiong, M.; Lee, M. W.; Mansbach, R. A.; Song, Z.; Bao, Y.; Peek, R. M.; Yao, C.; Chen, L. F.; Ferguson, A. L.; Wong, G. C. L.; Cheng, J. J. . Helical antimicrobial polypeptides with radial amphiphilicity . Proc. Natl. Acad. Sci. U. S. A. , 2015 . 112 13155 -13160 . DOI:10.1073/pnas.1507893112http://doi.org/10.1073/pnas.1507893112 .
Liu, Y.; Li, Y.; Shi, L. . Controlled drug delivery systems in eradicating bacterial biofilm-associated infections . J. Control. Release , 2021 . 329 1102 -1116 . DOI:10.1016/j.jconrel.2020.10.038http://doi.org/10.1016/j.jconrel.2020.10.038 .
Matsumura, Y.; Maeda, H. . A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs . Cancer Res. , 1986 . 46 6387 -6392. .
Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. . Cancer nanomedicine: progress, challenges and opportunities . Nat. Rev. Cancer , 2017 . 17 20 -37 . DOI:10.1038/nrc.2016.108http://doi.org/10.1038/nrc.2016.108 .
Gerlowski, L. E.; Jain, R. K. . Microvascular permeability of normal and neoplastic tissues . Microvasc. Res. , 1986 . 31 288 -305 . DOI:10.1016/0026-2862(86)90018-Xhttp://doi.org/10.1016/0026-2862(86)90018-X .
Maeda, H. . The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting . Adv. Enzyme Regul. , 2001 . 41 189 -207 . DOI:10.1016/S0065-2571(00)00013-3http://doi.org/10.1016/S0065-2571(00)00013-3 .
Ding, Y.; Xu, Y.; Yang, W.; Niu, P.; Li, X.; Chen, Y.; Li, Z.; Liu, Y.; An, Y.; Liu, Y.; Shen, W.; Shi, L. . Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy . Nano Today , 2020 . 35 100970 DOI:10.1016/j.nantod.2020.100970http://doi.org/10.1016/j.nantod.2020.100970 .
Liu, Y.; Sun, D.; Fan, Q.; Ma, Q.; Dong, Z.; Tao, W.; Tao, H.; Liu, Z.; Wang, C. . The enhanced permeability and retention effect based nanomedicine at the site of injury . Nano Res. , 2020 . 13 564 -569 . DOI:10.1007/s12274-020-2655-6http://doi.org/10.1007/s12274-020-2655-6 .
Maeda, H. . The 35th anniversary of the discovery of EPR effect: a new wave of nanomedicines for tumor-targeted drug delivery-personal remarks and future prospects . J. Pers Med. , 2021 . 11 229 DOI:10.3390/jpm11030229http://doi.org/10.3390/jpm11030229 .
Maruo, K.; Akaike, T.; Inada, Y.; Ohkubo, I.; Ono, T.; Maeda, H. . Effect of microbial and mite proteases on low and high molecular weight kininogens. Generation of kinin and inactivation of thiol protease inhibitory activity . J. Biol. Chem. , 1993 . 268 17711 -17715 . DOI:10.1016/S0021-9258(17)46762-7http://doi.org/10.1016/S0021-9258(17)46762-7 .
Molla, A.; Yamamoto, T.; Akaike, T.; Miyoshi, S.; Maeda, H. . Activation of hageman factor and prekallikrein and generation of kinin by various microbial proteinases . J. Biol. Chem. , 1989 . 264 10589 -10594 . DOI:10.1016/S0021-9258(18)81661-1http://doi.org/10.1016/S0021-9258(18)81661-1 .
Kamata, R.; Yamamoto, T.; Matsumoto, K.; Maeda, H. . A serratial protease causes vascular permeability reaction by activation of the Hageman factor-dependent pathway in guinea pigs . Infect. Immun. , 1985 . 48 747 -753 . DOI:10.1128/iai.48.3.747-753.1985http://doi.org/10.1128/iai.48.3.747-753.1985 .
Matsumoto, K.; Yamamoto, T.; Kamata, R.; Maeda, H. . Pathogenesis of serratial infection: activation of the Hageman factor-prekallikrein cascade by serratial protease . J. Biochem. , 1984 . 96 739 -749 . DOI:10.1093/oxfordjournals.jbchem.a134892http://doi.org/10.1093/oxfordjournals.jbchem.a134892 .
von Ohle, C.; Gieseke, A.; Nistico, L.; Decker, E. M.; deBeer, D.; Stoodley, P. . Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine . Appl. Environ. Microbiol. , 2010 . 76 2326 -2334 . DOI:10.1128/AEM.02090-09http://doi.org/10.1128/AEM.02090-09 .
Simmen, H. P.; Battaglia, H.; Giovanoli, P.; Blaser, J. . Analysis of pH, pO2 and pCO2 in drainage fluid allows for rapid detection of infectious complications during the follow-up period after abdominal surgery . Infection , 1994 . 22 386 -389 . DOI:10.1007/BF01715494http://doi.org/10.1007/BF01715494 .
Su, L.; Li, Y.; Liu, Y.; Ma, R.; Liu, Y.; Huang, F.; An, Y.; Ren, Y.; van der Mei, H. C.; Busscher, H. J.; Shi, L. . Antifungal-inbuilt metal-organic-frameworks eradicate Candida albicans biofilms . Adv. Funct. Mater. , 2020 . 30 2000537 DOI:10.1002/adfm.202000537http://doi.org/10.1002/adfm.202000537 .
Simmen, H. P.; Blaser, J. . Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery . Am. J. Surg. , 1993 . 166 24 -27 . DOI:10.1016/S0002-9610(05)80576-8http://doi.org/10.1016/S0002-9610(05)80576-8 .
Su, L.; Li, Y.; Liu, Y.; An, Y.; Shi, L. . Recent advances and future prospects on adaptive biomaterials for antimicrobial applications . Macromol. Biosci. , 2019 . 19 1900289 DOI:10.1002/mabi.201900289http://doi.org/10.1002/mabi.201900289 .
Stewart, P. S.; Franklin, M. J. . Physiological heterogeneity in biofilms . Nat. Rev. Microbiol. , 2008 . 6 199 -210 . DOI:10.1038/nrmicro1838http://doi.org/10.1038/nrmicro1838 .
Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S. . Biofilms: an emergent form of bacterial life . Nat. Rev. Microbiol. , 2016 . 14 563 -575 . DOI:10.1038/nrmicro.2016.94http://doi.org/10.1038/nrmicro.2016.94 .
Thambi, T.; Park, J. H.; Lee, D. S. . Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives . Chem. Commun. , 2016 . 52 8492 -8500 . DOI:10.1039/C6CC02972Hhttp://doi.org/10.1039/C6CC02972H .
Kumari, R.; Sunil, D.; Ningthoujam, R. S. . Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: an up-to-date review . J. Control. Release , 2020 . 319 135 -156 . DOI:10.1016/j.jconrel.2019.12.041http://doi.org/10.1016/j.jconrel.2019.12.041 .
Hu, D.; Zou, L.; Yu, W.; Jia, F.; Han, H.; Yao, K.; Jin, Q.; Ji, J. . Relief of biofilm hypoxia using an oxygen nanocarrier: a new paradigm for enhanced antibiotic therapy . Adv. Sci. , 2020 . 7 2000398 DOI:10.1002/advs.202000398http://doi.org/10.1002/advs.202000398 .
Devnarain, N.; Osman, N.; Fasiku, V. O.; Makhathini, S.; Salih, M.; Ibrahim, U. H.; Govender, T. . Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades . WIREs-Nanomed. Nanobiotechnol. , 2021 . 13 e1664 DOI:10.1002/wnan.1664http://doi.org/10.1002/wnan.1664 .
Legigan, T.; Clarhaut, J.; Tranoy-Opalinski, I.; Monvoisin, A.; Renoux, B.; Thomas, M.; Le Pape, A.; Lerondel, S.; Papot, S. . The first generation of β-galactosidase-responsive prodrugs designed for the selective treatment of solid tumors in prodrug monotherapy . Angew. Chem. Int. Ed. , 2012 . 51 11606 -11610 . DOI:10.1002/anie.201204935http://doi.org/10.1002/anie.201204935 .
DeVinney, R.; Steele-Mortimer, O.; Finlay, B. B. . Phosphatases and kinases delivered to the host cell by bacterial pathogens . Trends Microbiol. , 2000 . 8 29 -33 . DOI:10.1016/S0966-842X(99)01657-1http://doi.org/10.1016/S0966-842X(99)01657-1 .
Xu, S.; Wang, Q.; Zhang, Q.; Zhang, L.; Zuo, L.; Jiang, J. D.; Hu, H. Y. . Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe . Chem. Commun. , 2017 . 53 11177 -11180 . DOI:10.1039/C7CC07050Khttp://doi.org/10.1039/C7CC07050K .
Kumar Shukla, S.; Rao, T. S. . Dispersal of bap-mediated Staphylococcus aureus biofilm by proteinase K . J. Antibiotics , 2013 . 66 55 -60 . DOI:10.1038/ja.2012.98http://doi.org/10.1038/ja.2012.98 .
Gupta, R.; Gupta, N.; Rathi, P. . Bacterial lipases: an overview of production, purification and biochemical properties . Appl. Microbiol. Biotechnol. , 2004 . 64 763 -781 . DOI:10.1007/s00253-004-1568-8http://doi.org/10.1007/s00253-004-1568-8 .
Songer, J. G. . Bacterial phospholipases and their role in virulence . Trends Microbiol. , 1997 . 5 156 -161 . DOI:10.1016/S0966-842X(97)01005-6http://doi.org/10.1016/S0966-842X(97)01005-6 .
Gill, D. M. . Bacterial toxins: a table of lethal amounts . Microbiol. Rev. , 1982 . 46 86 -94 . DOI:10.1128/mr.46.1.86-94.1982http://doi.org/10.1128/mr.46.1.86-94.1982 .
Middlebrook, J. L.; Dorland, R. B. . Bacterial toxins: cellular mechanisms of action . Microbiol. Rev. , 1984 . 48 199 -221 . DOI:10.1128/mr.48.3.199-221.1984http://doi.org/10.1128/mr.48.3.199-221.1984 .
Li, Y.; Liu, G.; Wang, X.; Hu, J.; Liu, S. . Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents . Angew. Chem. In. Ed. , 2016 . 55 1760 -1764 . DOI:10.1002/anie.201509401http://doi.org/10.1002/anie.201509401 .
Pulendran, B.; Kumar, P.; Cutler, C. W.; Mohamadzadeh, M.; Van Dyke, T.; Banchereau, J. . Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo . J. Immunol. , 2001 . 167 5067 -5076 . DOI:10.4049/jimmunol.167.9.5067http://doi.org/10.4049/jimmunol.167.9.5067 .
Murphy, M. P.; Holmgren, A.; Larsson, N. G.; Halliwell, B.; Chang, C. J.; Kalyanaraman, B.; Rhee, S. G.; Thornalley, P. J.; Partridge, L.; Gems, D.; Nystrom, T.; Belousov, V.; Schumacker, P. T.; Winterbourn, C. C. . Unraveling the biological roles of reactive oxygen species . Cell Metab. , 2011 . 13 361 -366 . DOI:10.1016/j.cmet.2011.03.010http://doi.org/10.1016/j.cmet.2011.03.010 .
Ye, H.; Zhou, Y.; Liu, X.; Chen, Y.; Duan, S.; Zhu, R.; Liu, Y.; Yin, L. . Recent advances on reactive oxygen species-responsive delivery and diagnosis system . Biomacromolecules. , 2019 . 20 2441 -2463 . DOI:10.1021/acs.biomac.9b00628http://doi.org/10.1021/acs.biomac.9b00628 .
Li, C.; Liu, X.; Liu, Y.; Huang, F.; Wu, G.; Liu, Y.; Zhang, Z.; Ding, Y.; Lv, J.; Ma, R.; An, Y.; Shi, L. . Glucose and H2O2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery . Nanoscale , 2019 . 11 9163 -9175 . DOI:10.1039/C9NR01554Jhttp://doi.org/10.1039/C9NR01554J .
Li, Y.; Hu, J.; Liu, X.; Liu, Y.; Lv, S.; Dang, J.; Ji, Y.; He, J.; Yin, L. . Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment . Nano Res. , 2019 . 12 999 -1008 . DOI:10.1007/s12274-019-2330-yhttp://doi.org/10.1007/s12274-019-2330-y .
Dalsin, J. L.; Messersmith, P. B. . Bioinspired antifouling polymers . Mater. Today , 2005 . 8 38 -46 . DOI:10.1016/S1369-7021(05)71079-8http://doi.org/10.1016/S1369-7021(05)71079-8 .
Gong, Y. K.; Liu, L. P.; Messersmith, P. B. . Doubly biomimetic catecholic phosphorylcholine copolymer: a platform strategy for fabricating antifouling surfaces . Macromol. Biosci. , 2012 . 12 979 -985 . DOI:10.1002/mabi.201200074http://doi.org/10.1002/mabi.201200074 .
Cao, Z.; Mi, L.; Mendiola, J.; Ella-Menye, J. R.; Zhang, L.; Xue, H.; Jiang, S. . Reversibly switching the function of a surface between attacking and defending against bacteria . Angew. Chem. Int. Ed. , 2012 . 51 2602 -2605 . DOI:10.1002/anie.201106466http://doi.org/10.1002/anie.201106466 .
Khoo, X.; Grinstaff, M. W. . Novel infection-resistant surface coatings: a bioengineering approach . MRS Bull. , 2011 . 36 357 -366 . DOI:10.1557/mrs.2011.66http://doi.org/10.1557/mrs.2011.66 .
Ramstedt, M.; Ekstrand-Hammarstrom, B.; Shchukarev, A. V.; Bucht, A.; Osterlund, L.; Welch, M.; Huck, W. T. S . Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts . Biomaterials , 2009 . 30 1524 -1531 . DOI:10.1016/j.biomaterials.2008.12.008http://doi.org/10.1016/j.biomaterials.2008.12.008 .
Zhang, L.; Pornpattananangkul, D.; Hu, C. M. J.; Huang, C. M. . Development of nanoparticles for antimicrobial drug delivery . Curr. Med. Chem. , 2010 . 17 585 -594 . DOI:10.2174/092986710790416290http://doi.org/10.2174/092986710790416290 .
Epand, R. F.; Savage, P. B.; Epand, R. M. . Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins) . Biochim. Biophys. Acta-Biomembr. , 2007 . 1768 2500 -2509 . DOI:10.1016/j.bbamem.2007.05.023http://doi.org/10.1016/j.bbamem.2007.05.023 .
Nagasaki, Y. . Construction of a densely poly(ethylene glycol)-chain-tethered surface and its performance . Polym. J. , 2011 . 43 949 -958 . DOI:10.1038/pj.2011.93http://doi.org/10.1038/pj.2011.93 .
Jiang, S.; Cao, Z. . Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications . Adv. Mater. , 2010 . 22 920 -932 . DOI:10.1002/adma.200901407http://doi.org/10.1002/adma.200901407 .
Mi, L.; Bernards, M. T.; Cheng, G.; Yu, Q.; Jiang, S. . pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers . Biomaterials , 2010 . 31 2919 -2925 . DOI:10.1016/j.biomaterials.2009.12.038http://doi.org/10.1016/j.biomaterials.2009.12.038 .
Cao, Z.; Brault, N.; Xue, H.; Keefe, A.; Jiang, S. . Manipulating sticky and non-sticky properties in a single material . Angew. Chem. Int. Ed. , 2011 . 50 6102 -6104 . DOI:10.1002/anie.201100004http://doi.org/10.1002/anie.201100004 .
Cheng, Y.; Feng, G.; Moraru, C. I. . Micro- and nanotopography sensitive bacterial attachment mechanisms: a review . Front. Microbiol. , 2019 . 10 191 DOI:10.3389/fmicb.2019.00191http://doi.org/10.3389/fmicb.2019.00191 .
Lee, S. W.; Phillips, K. S.; Gu, H.; Kazemzadeh-Narbat, M.; Ren, D. . How microbes read the map: effects of implant topography on bacterial adhesion and biofilm formation . Biomaterials , 2021 . 268 120595 DOI:10.1016/j.biomaterials.2020.120595http://doi.org/10.1016/j.biomaterials.2020.120595 .
Keskin, D.; Zu, G.; Forson, A. M.; Tromp, L.; Sjollema, J.; van Rijn, P. . Nanogels: a novel approach in antimicrobial delivery systems and antimicrobial coatings . Bioactive Mater. , 2021 . 6 3634 -3657 . DOI:10.1016/j.bioactmat.2021.03.004http://doi.org/10.1016/j.bioactmat.2021.03.004 .
Keskin, D.; Mergel, O.; van der Mei, H. C.; Busscher, H. J.; van Rijn, P. . Inhibiting bacterial adhesion by mechanically modulated microgel coatings . Biomacromolecules , 2019 . 20 243 -253 . DOI:10.1021/acs.biomac.8b01378http://doi.org/10.1021/acs.biomac.8b01378 .
Jiang, R. J.; Yan, S. J.; Tian, L. M.; Xu, S. A.; Xin, Z. R.; Luan, S. F.; Yin, J. H.; Ren, L. Q.; Zhao, J. . A biomimetic surface for infection-resistance through assembly of metal-phenolic networks . Chinese J. Polym. Sci. , 2018 . 36 576 -583 . DOI:10.1007/s10118-018-2032-zhttp://doi.org/10.1007/s10118-018-2032-z .
Jin, X.; Xiong, Y. H.; Zhang, X. Y.; Wang, R.; Xing, Y.; Duan, S.; Chen, D.; Tian, W.; Xu, F. J. . Self-adaptive antibacterial porous implants with sustainable responses for infected bone defect therapy . Adv. Funct. Mater. , 2019 . 29 1807915 DOI:10.1002/adfm.201807915http://doi.org/10.1002/adfm.201807915 .
Zhao, C. J.; An, Y. L.; Yin, F. F.; Zhang, W. Q.; Shi, L. Q. . The self-assembly of polystyrene-b-poly(acrylic acid)/polystyrene in water . Acta Polymerica Sinica (in Chinese) , 2005 . 379 -383. .
He, Z.; Sun, P.; Xiong, D. A.; Ma, R.; Lin, H.; Shi, L . Investigation of the micellization process of diblock copolymers containing pH sensitive poly(4-vinylpyridine) by NMR . Acta Polymerica Sinica (in Chinese) , 2008 . 691 -696 . DOI:10.3724/SP.J.1105.2008.00691http://doi.org/10.3724/SP.J.1105.2008.00691 .
Chai, Z. H.; Ma, R. J.; Zhang, Z. K.; Shi, L. Q. . Recent progress in biomimetic light-harvesting materials . Acta Polymerica Sinica (in Chinese) , 2012 . 1108 -1117 . DOI:10.3724/SP.J.1105.2012.12128http://doi.org/10.3724/SP.J.1105.2012.12128 .
Xiong, J.; Wang, J. Z.; Ran, Q. P.; An, Y. L.; Zhang, Z. K.; Shi, L. Q. . Solution behavior of comb-like copolymer dispersants probed by laser light scattering . Acta Polymerica Sinica (in Chinese) , 2013 . 750 -754 . DOI:10.3724/SP.J.1105.2013.12435http://doi.org/10.3724/SP.J.1105.2013.12435 .
Hao, J.; Li, A.; Liu, Y.; Ma, R. J.; Shi, L. Q.; An, Y. L. . Tpps aggregates with chirality induced by hydrogen bonds from polycationic glycoconjugate . Acta Polymerica Sinica (in Chinese) , 2014 . 1378 -1385 . DOI:10.11777/j.issn1000-3304.2014.14029http://doi.org/10.11777/j.issn1000-3304.2014.14029 .
Liu, G.; Yang, H.; Ma, R. J.; Shi, L. Q. . Phenylboronic acid based glucose-responsive polymeric materials for insulin delivery and glucose monitoring . Acta Polymerica Sinica (in Chinese) , 2014 . 1161 -1173 . DOI:10.11777/j.issn1000-3304.2014.14079http://doi.org/10.11777/j.issn1000-3304.2014.14079 .
Zhang, H. X.; Song, Y. Q.; An, Y. L.; Wang, Y.; Shi, L. Q. . Protein refolding assisted by thermosensitive complex micelles . Acta Polymerica Sinica (in Chinese) , 2014 . 1561 -1567 . DOI:10.11777/j.issn1000-3304.2014.14096http://doi.org/10.11777/j.issn1000-3304.2014.14096 .
Liu, Y.; Busscher, H. J.; Zhao, B.; Li, Y.; Zhang, Z.; van der Mei, H. C.; Ren, Y.; Shi, L. . , Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms . ACS Nano , 2016 . 10 4779 -4789 . DOI:10.1021/acsnano.6b01370http://doi.org/10.1021/acsnano.6b01370 .
Huang, F.; Gao, Y.; Zhang, Y.; Cheng, T.; Ou, H.; Yang, L.; Liu, J.; Shi, L.; Liu, J. . Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity . ACS Appl. Mater. Interfaces , 2017 . 9 16880 -16889 . DOI:10.1021/acsami.7b03347http://doi.org/10.1021/acsami.7b03347 .
Praphakar, R. A.; Ebenezer, R. S.; Vignesh, S.; Shakila, H.; Rajan, M. . Versatile pH-responsive chitosan-g-polycaprolactone/maleic anhydride-isoniazid polymeric micelle to improve the bioavailability of tuberculosis multidrugs . ACS Appl. Bio Mater. , 2019 . 2 1931 -1943 . DOI:10.1021/acsabm.9b00003http://doi.org/10.1021/acsabm.9b00003 .
Soria-Carrera, H.; Lucia, A.; De Matteis, L.; Ainsa, J. A.; de la Fuente, J. M.; Martin-Rapun, R. . Polypeptidic micelles stabilized with sodium alginate enhance the activity of encapsulated bedaquiline . Macromol. Biosci. , 2019 . 19 1800397 DOI:10.1002/mabi.201800397http://doi.org/10.1002/mabi.201800397 .
Liu, Y.; Li, Y.; Keskin, D.; Shi, L. . Poly(β-amino esters): synthesis, formulations, and their biomedical applications . Adv. Healthc. Mater. , 2019 . 8 1801359 DOI:10.1002/adhm.201801359http://doi.org/10.1002/adhm.201801359 .
Liu, Y.; van der Mei, H. C.; Zhao, B.; Zhai, Y.; Cheng, T.; Li, Y.; Zhang, Z.; Busscher, H. J.; Ren, Y.; Shi, L. . Eradication of multidrug-resistant staphylococcal infections by light-activatable micellar nanocarriers in a murine model . Adv. Funct. Mater. , 2017 . 27 1701974 DOI:10.1002/adfm.201701974http://doi.org/10.1002/adfm.201701974 .
Elsabahy, M.; Wooley, K. L. . Design of polymeric nanoparticles for biomedical delivery applications . Chem. Soc. Rev. , 2012 . 41 2545 -2561 . DOI:10.1039/c2cs15327khttp://doi.org/10.1039/c2cs15327k .
Pelgrift, R. Y.; Friedman, A. J. . Nanotechnology as a therapeutic tool to combat microbial resistance . Adv. Drug Del. Rev. , 2013 . 65 1803 -1815 . DOI:10.1016/j.addr.2013.07.011http://doi.org/10.1016/j.addr.2013.07.011 .
Liu, Y.; Ren, Y.; Li, Y.; Su, L.; Zhang, Y.; Huang, F.; Liu, J.; Liu, J.; van Kooten, T. G.; An, Y.; Shi, L.; van der Mei, H. C.; Busscher, H. J. . Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models . Acta Biomater. , 2018 . 79 331 -343 . DOI:10.1016/j.actbio.2018.08.038http://doi.org/10.1016/j.actbio.2018.08.038 .
Ferrer, M. C. C.; Dastghey, S.; Hickok, N. J.; Eckrnann, D. M.; Composto, R. J. . Designing nanogel carriers for antibacterial applications . Acta Biomater. , 2014 . 10 2105 -2111 . DOI:10.1016/j.actbio.2014.01.009http://doi.org/10.1016/j.actbio.2014.01.009 .
Liu, T.; Liu, H. X.; Wu, Z. M.; Chen, T.; Zhou, L.; Liang, Y. Y.; Me, B.; Huang, H. X.; Jiang, Z. Y.; Xie, M. Q.; Wu, T. . The use of poly(methacrylic acid) nanogel to control the release of amoxycillin with lower cytotoxicity . Mater. Sci. Eng. C-Mater. Biol. Appl. , 2014 . 43 622 -629 . DOI:10.1016/j.msec.2014.07.067http://doi.org/10.1016/j.msec.2014.07.067 .
Chen, T.; Chen, L.; Li, H. C.; Chen, Y. H.; Guo, H. X.; Shu, Y.; Chen, Z. Y.; Cai, C. H.; Guo, L. N.; Zhang, X. N.; Zhou, L.; Zhong, Q. . Design and in vitro evaluation of a novel poly(methacrylic acid)/metronidazole antibacterial nanogel as an oral dosage form . Colloid. Surf. B , 2014 . 118 65 -71 . DOI:10.1016/j.colsurfb.2014.02.011http://doi.org/10.1016/j.colsurfb.2014.02.011 .
Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. . Hydrogels in biology and medicine: from molecular principles to bionanotechnology . Adv. Mater. , 2006 . 18 1345 -1360 . DOI:10.1002/adma.200501612http://doi.org/10.1002/adma.200501612 .
Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K. . The development of microgels/nanogels for drug delivery applications . Prog. Polym. Sci. , 2008 . 33 448 -477 . DOI:10.1016/j.progpolymsci.2008.01.002http://doi.org/10.1016/j.progpolymsci.2008.01.002 .
Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderon, M. . Stimuli-responsive nanogel composites and their application in nanomedicine . Chem. Soc. Rev. , 2015 . 44 6161 -6186 . DOI:10.1039/C5CS00199Dhttp://doi.org/10.1039/C5CS00199D .
Hu, Y.; Zhang, Z. Y.; Li, Y.; Ding, X. K.; Li, D. W.; Shen, C. N.; Xu, F. J. . Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications . Macromol. Rapid Commun. , 2018 . 39 1800069 DOI:10.1002/marc.201800069http://doi.org/10.1002/marc.201800069 .
Liu, J. Y.; Li, Y.; Hu, Y.; Cheng, G.; Ye, E. Y.; Shen, C. A.; Xu, F. J. . Hemostatic porous sponges of cross-linked hyaluronic acid/cationized dextran by one self-foaming process . Mater. Sci. Eng. C-Mater. Biol. Appl. , 2018 . 83 160 -168 . DOI:10.1016/j.msec.2017.10.007http://doi.org/10.1016/j.msec.2017.10.007 .
Li, L. L.; Xu, J. H.; Qi, G. B.; Zhao, X. Z.; Yu, F. Q.; Wang, H. . Core-shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery . ACS Nano , 2014 . 8 4975 -4983 . DOI:10.1021/nn501040hhttp://doi.org/10.1021/nn501040h .
Wang, D. Y.; van der Mei, H. C.; Ren, Y.; Busscher, H. J.; Shi, L. . Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections . Front. Chem. , 2020 . 7 872 DOI:10.3389/fchem.2019.00872http://doi.org/10.3389/fchem.2019.00872 .
Mugabe, C.; Halwani, M.; Azghani, A. O.; Lafrenie, R. M.; Omri, A. . Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa . Antimicrob. Agents Chemother. , 2006 . 50 2016 -2022 . DOI:10.1128/AAC.01547-05http://doi.org/10.1128/AAC.01547-05 .
Mugabe, C.; Azghani, A. O.; Omri, A. . Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients . J. Antimicrob. Chemother. , 2005 . 55 269 -271 . DOI:10.1093/jac/dkh518http://doi.org/10.1093/jac/dkh518 .
Sachetelli, S.; Khalil, H.; Chen, T.; Beaulac, C.; Senechal, S.; Lagace, J. . Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells . Biochim. Biophys. Acta-Biomembr. , 2000 . 1463 254 -266 . DOI:10.1016/S0005-2736(99)00217-5http://doi.org/10.1016/S0005-2736(99)00217-5 .
Marier, J. F.; Lavigne, J.; Ducharme, M. P. . Pharmacokinetics and efficacies of liposomal and conventional formulations of tobramycin after intratracheal administration in rats with pulmonary Burkholdefia cepacia infection . Antimicrob. Agents Chemother. , 2002 . 46 3776 -3781 . DOI:10.1128/AAC.46.12.3776-3781.2002http://doi.org/10.1128/AAC.46.12.3776-3781.2002 .
Messiaen, A. S.; Forier, K.; Nelis, H.; Braeckmans, K.; Coenye, T. . Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms . PLoS One , 2013 . 8 e79220 DOI:10.1371/journal.pone.0079220http://doi.org/10.1371/journal.pone.0079220 .
Nicolosi, D.; Scalia, M.; Nicolosi, V. M.; Pignatello, R. . Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria . Int. J. Antimicrob. Agents , 2010 . 35 553 -558 . DOI:10.1016/j.ijantimicag.2010.01.015http://doi.org/10.1016/j.ijantimicag.2010.01.015 .
Chakraborty, S. P.; Sahu, S. K.; Pramanik, P.; Roy, S. . In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus . Int. J. Pharm. , 2012 . 436 659 -676 . DOI:10.1016/j.ijpharm.2012.07.033http://doi.org/10.1016/j.ijpharm.2012.07.033 .
Solleti, V. S.; Alhariri, M.; Halwani, M.; Omri, A. . Antimicrobial properties of liposomal azithromycin for Pseudomonas infections in cystic fibrosis patients . J. Antimicrob. Chemother. , 2015 . 70 784 -796 . DOI:10.1093/jac/dku452http://doi.org/10.1093/jac/dku452 .
Vyas, S. P.; Sihorkar, V.; Dubey, P. K. . Preparation, characterization and in vitro antimicrobial activity of metronidazole bearing lectinized liposomes for intra-periodontal pocket delivery . Pharmazie , 2001 . 56 554 -560. .
Meers, P.; Neville, M.; Malinin, V.; Scotto, A. W.; Sardaryan, G.; Kurumunda, R.; Mackinson, C.; James, G.; Fisher, S.; Perkins, W. R. . Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections . J. Antimicrob. Chemother. , 2008 . 61 859 -868 . DOI:10.1093/jac/dkn059http://doi.org/10.1093/jac/dkn059 .
Hu, F.; Zhou, Z.; Xu, Q.; Fan, C.; Wang, L.; Ren, H.; Xu, S.; Ji, Q.; Chen, X. . A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment . Int. J. Biol. Macromol. , 2019 . 129 1113 -1119 . DOI:10.1016/j.ijbiomac.2018.09.057http://doi.org/10.1016/j.ijbiomac.2018.09.057 .
Zhou, Z.; Hu, F.; Hu, S.; Kong, M.; Feng, C.; Liu, Y.; Cheng, X.; Ji, Q.; Chen, X. . pH-Activated nanoparticles with targeting for the treatment of oral plaque biofilm . J. Mater. Chem. B , 2018 . 6 586 -592 . DOI:10.1039/C7TB02682Jhttp://doi.org/10.1039/C7TB02682J .
Rozenbaum, R. T.; Su, L.; Umerska, A.; Eveillard, M.; Hakansson, J.; Mahlapuu, M.; Huang, F.; Liu, J.; Zhang, Z.; Shi, L.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K. . Antimicrobial synergy of monolaurin lipid nanocapsules with adsorbed antimicrobial peptides against Staphylococcus aureus biofilms in vitro is absent in vivo . J. Control. Release , 2019 . 293 73 -83 . DOI:10.1016/j.jconrel.2018.11.018http://doi.org/10.1016/j.jconrel.2018.11.018 .
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. . Liposome: classification, preparation, and applications . Nanoscale Res. Lett , 2013 . 8 102 DOI:10.1186/1556-276X-8-102http://doi.org/10.1186/1556-276X-8-102 .
Liu, D. Q.; Sun, H.; Xiao, Y. F.; Chen, S.; Cornel, E. J.; Zhu, Y. Q.; Du, J. Z. . Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes . J. Control. Release , 2020 . 326 365 -386 . DOI:10.1016/j.jconrel.2020.07.018http://doi.org/10.1016/j.jconrel.2020.07.018 .
Xi, Y.; Wang, Y.; Gao, J.; Xiao, Y.; Du, J. . Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis . ACS Nano , 2019 . 13 13645 -13657 . DOI:10.1021/acsnano.9b03237http://doi.org/10.1021/acsnano.9b03237 .
Gao, Y.; Wang, J.; Chai, M.; Li, X.; Deng, Y.; Jin, Q.; Ji, J. . Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management . ACS Nano , 2020 . 14 5686 -5699 . DOI:10.1021/acsnano.0c00269http://doi.org/10.1021/acsnano.0c00269 .
Zhang, L. J.; Parente, J.; Harris, S. A.; Woods, D. E.; Hancock, R. E. W.; Fallal, T. J. . Antimicrobial peptide therapeutics for cystic fibrosis . Antimicrob. Agents Chemother. , 2005 . 49 2921 -2927 . DOI:10.1128/AAC.49.7.2921-2927.2005http://doi.org/10.1128/AAC.49.7.2921-2927.2005 .
Karlsson, A. J.; Pomerantz, W. C.; Weisblum, B.; Gellman, S. H.; Palecek, S. P. . Antifungal activity from 14-helical β-peptides . J. Am. Chem. Soc. , 2006 . 128 12630 -12631 . DOI:10.1021/ja064630yhttp://doi.org/10.1021/ja064630y .
Hancock, R. E. W.; Sahl, H. G. . Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies . Nat. Biotechnol. , 2006 . 24 1551 -1557 . DOI:10.1038/nbt1267http://doi.org/10.1038/nbt1267 .
Hancock, R. E. . Cationic peptides: effectors in innate immunity and novel antimicrobials . Lancet Infect. Dis. , 2001 . 1 156 -164 . DOI:10.1016/S1473-3099(01)00092-5http://doi.org/10.1016/S1473-3099(01)00092-5 .
Epand, R. M.; Vogel, H. J. . Diversity of antimicrobial peptides and their mechanisms of action . Biochim. Biophys. Acta-Biomembr. , 1999 . 1462 11 -28 . DOI:10.1016/S0005-2736(99)00198-4http://doi.org/10.1016/S0005-2736(99)00198-4 .
Aliferis, T.; Iatrou, H.; Hadjichristidis, N. . Living polypeptides . Biomacromolecules , 2004 . 5 1653 -1656 . DOI:10.1021/bm0497217http://doi.org/10.1021/bm0497217 .
Zasloff, M. . Antimicrobial peptides of multicellular organisms . Nature , 2002 . 415 389 -395 . DOI:10.1038/415389ahttp://doi.org/10.1038/415389a .
Lam, S. J.; O'Brien-Simpson, N. M.; Pantarat, N.; Sulistio, A.; Wong, E. H.; Chen, Y. Y.; Lenzo, J. C.; Holden, J. A.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G. . Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers . Nat. Microbiol , 2016 . 1 16162 DOI:10.1038/nmicrobiol.2016.162http://doi.org/10.1038/nmicrobiol.2016.162 .
Zhou, C.; Wang, M.; Zou, K.; Chen, J.; Zhu, Y.; Du, J. . Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs . ACS Macro Lett. , 2013 . 2 1021 -1025 . DOI:10.1021/mz400480zhttp://doi.org/10.1021/mz400480z .
Ergene, C.; Yasuhara, K.; Palermo, E. F. . Biomimetic antimicrobial polymers: recent advances in molecular design . Polym. Chem. , 2018 . 9 2407 -2427 . DOI:10.1039/C8PY00012Chttp://doi.org/10.1039/C8PY00012C .
Rahman, M. A.; Bam, M.; Luat, E.; Jui, M. S.; Ganewatta, M. S.; Shokfai, T.; Nagarkatti, M.; Decho, A. W.; Tang, C. . Macromolecular-clustered facial amphiphilic antimicrobials . Nat. Commun. , 2018 . 9 5231 DOI:10.1038/s41467-018-07651-7http://doi.org/10.1038/s41467-018-07651-7 .
Xiong, M.; Han, Z.; Song, Z.; Yu, J.; Ying, H.; Yin, L.; Cheng, J. . Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition . Angew. Chem. Int. Ed. , 2017 . 56 10826 -10829 . DOI:10.1002/anie.201706071http://doi.org/10.1002/anie.201706071 .
Xiong, M. H.; Bao, Y.; Xu, X.; Wang, H.; Han, Z. Y.; Wang, Z. Y.; Liu, Y. Q.; Huang, S. Y.; Song, Z. Y.; Chen, J. J.; Peek, R. M.; Yin, L. C.; Chen, L. F.; Cheng, J. J. . Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides . Proc. Natl. Acad. Sci. U. S. A. , 2017 . 114 12675 -12680 . DOI:10.1073/pnas.1710408114http://doi.org/10.1073/pnas.1710408114 .
Davies, D. G. . Biofilm dispersion . Biofilm Highlights , 2011 . 5 571 DOI:10.1007/978-3-642-19940-0_1http://doi.org/10.1007/978-3-642-19940-0_1 .
Fleming, D.; Rumbaugh, K. P. . Approaches to dispersing medical biofilms . Microorganisms , 2017 . 5 15 DOI:10.3390/microorganisms5020015http://doi.org/10.3390/microorganisms5020015 .
Guilhen, C.; Forestier, C.; Balestrino, D. . Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties . Mol. Microbiol. , 2017 . 105 188 -210 . DOI:10.1111/mmi.13698http://doi.org/10.1111/mmi.13698 .
Kaplan, J. B.; LoVetri, K.; Cardona, S. T.; Madhyastha, S.; Sadovskaya, I.; Jabbouri, S.; Izano, E. A. . Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci . J. Antibiot. , 2012 . 65 73 -77 . DOI:10.1038/ja.2011.113http://doi.org/10.1038/ja.2011.113 .
Lister, J. L.; Horswill, A. R. . Staphylococcus aureus biofilms: recent developments in biofilm dispersal . Front. Cell. Infect. Microbiol. , 2014 . 4 178 DOI:10.3389/fcimb.2014.00178http://doi.org/10.3389/fcimb.2014.00178 .
Swartjes, J. J. T. M.; Das, T.; Sharifi, S.; Subbiahdoss, G.; Sharma, P. K.; Krom, B. P.; Busscher, H. J.; van der Mei, H. C. . A Functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm . Adv. Funct. Mater. , 2013 . 23 2843 -2849 . DOI:10.1002/adfm.201202927http://doi.org/10.1002/adfm.201202927 .
Al-Shabib, N. A.; Husain, F. M.; Ahmed, F.; Khan, R. A.; Khan, M. S.; Ansari, F. A.; Alam, M. Z.; Ahmed, M. A.; Khan, M. S.; Baig, M. H.; Khan, J. M.; Shahzad, S. A.; Arshad, M.; Alyousef, A.; Ahmad, I. . Low temperature synthesis of superparamagnetic iron oxide (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria . Front. Microbiol. , 2018 . 9 2567 DOI:10.3389/fmicb.2018.02567http://doi.org/10.3389/fmicb.2018.02567 .
Gao, L.; Giglio, K. M.; Nelson, J. L.; Sondermann, H.; Travis, A. J. . Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination . Nanoscale , 2014 . 6 2588 -2593 . DOI:10.1039/C3NR05422Ehttp://doi.org/10.1039/C3NR05422E .
Gao, L.; Liu, Y.; Kim, D.; Li, Y.; Hwang, G.; Naha, P. C.; Cormode, D. P.; Koo, H. . Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo . Biomaterials , 2016 . 101 272 -284 . DOI:10.1016/j.biomaterials.2016.05.051http://doi.org/10.1016/j.biomaterials.2016.05.051 .
Yan, Z.; Bing, W.; Ding, C.; Dong, K.; Ren, J.; Qu, X. . A H2O2-free depot for treating bacterial infection: localized cascade reactions to eradicate biofilms in vivo . Nanoscale , 2018 . 10 17656 -17662 . DOI:10.1039/C8NR03963Ahttp://doi.org/10.1039/C8NR03963A .
Diez-Castellnou, M.; Mancin, F.; Scrimin, P. . Efficient phosphodiester cleaving nanozymes resulting from multivalency and local medium polarity control . J. Am. Chem. Soc. , 2014 . 136 1158 -1161 . DOI:10.1021/ja411969ehttp://doi.org/10.1021/ja411969e .
Bleem, A.; Francisco, R.; Bryers, J. D.; Daggett, V. . Designed α-sheet peptides suppress amyloid formation in Staphylococcus aureus biofilms . Npj Biofilms and Microbiomes. , 2017 . 3 16 DOI:10.1038/s41522-017-0025-2http://doi.org/10.1038/s41522-017-0025-2 .
De la Fuente-Nunez, C.; Reffuveille, F.; Haney, E. F.; Straus, S. K.; Hancock, R. E. W. . Broad-spectrum anti-biofilm peptide that targets a cellular stress response . PLoS Path. , 2014 . 10 e1004152 DOI:10.1371/journal.ppat.1004152http://doi.org/10.1371/journal.ppat.1004152 .
Paranjapye, N.; Daggett, V. . De Novo designed α-sheet peptides inhibit functional amyloid formation of Streptococcus mutans biofilms . J. Mol. Biol. , 2018 . 430 3764 -3773 . DOI:10.1016/j.jmb.2018.07.005http://doi.org/10.1016/j.jmb.2018.07.005 .
Zhang, S.; Xiao, X. M.; Qi, F.; Ma, P. C.; Zhang, W. W.; Dai, C. Z.; Zhang, D. F.; Liu, R. H. . Biofilm disruption utilizing α/β chimeric polypeptide molecular brushes . Chinese J. Polym. Sci. , 2019 . 37 1105 -1112 . DOI:10.1007/s10118-019-2278-0http://doi.org/10.1007/s10118-019-2278-0 .
Frei, R.; Breitbach, A. S.; Blackwell, H. E. . 2-Aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms . Angew. Chem. Int. Ed. , 2012 . 51 5226 -5229 . DOI:10.1002/anie.201109258http://doi.org/10.1002/anie.201109258 .
Ng, W.-L.; Bassler, B. L. . Bacterial quorum-sensing network architectures . Annu. Rev. Genet. , 2009 . 43 197 -222 . DOI:10.1146/annurev-genet-102108-134304http://doi.org/10.1146/annurev-genet-102108-134304 .
Kolodkin-Gal, I.; Romero, D.; Cao, S.; Clardy, J.; Kolter, R.; Losick, R. . D-amino acids trigger biofilm disassembly . Science , 2010 . 328 627 -629 . DOI:10.1126/science.1188628http://doi.org/10.1126/science.1188628 .
Bonnichsen, L.; Svenningsen, N. B.; Rybtke, M.; de Bruijn, I.; Raaijmakers, J. M.; Tolker-Nielsen, T.; Nybroe, O. . Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms . Microbiology-Sgm. , 2015 . 161 2289 -2297 . DOI:10.1099/mic.0.000191http://doi.org/10.1099/mic.0.000191 .
Davey, M. E.; Caiazza, N. C.; O'Toole, G. A. . Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1 . J. Bacteriol. , 2003 . 185 1027 -1036 . DOI:10.1128/JB.185.3.1027-1036.2003http://doi.org/10.1128/JB.185.3.1027-1036.2003 .
Engelsman, A. F.; Krom, B. P.; Busscher, H. J.; van Dam, G. M.; Ploeg, R. J.; van der Mei, H. C. . Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model . Acta Biomater. , 2009 . 5 1905 -1910 . DOI:10.1016/j.actbio.2009.01.041http://doi.org/10.1016/j.actbio.2009.01.041 .
Chen, M.; Wei, J.; Xie, S.; Tao, X.; Zhang, Z.; Ran, P.; Li, X. . Bacterial biofilm destruction by size/surface charge-adaptive micelles . Nanoscale , 2019 . 11 1410 -1422 . DOI:10.1039/C8NR05575Khttp://doi.org/10.1039/C8NR05575K .
Liu, C.; Zhao, Y.; Su, W.; Chai, J.; Xu, L.; Cao, J.; Liu, Y. . Encapsulated DNase improving the killing efficiency of antibiotics in staphylococcal biofilms . J. Mater. Chem. B , 2020 . 8 4395 -4401 . DOI:10.1039/D0TB00441Chttp://doi.org/10.1039/D0TB00441C .
Abenojar, E. C.; Wickramasinghe, S.; Ju, M.; Uppaluri, S.; Klika, A.; George, J.; Barsoum, W.; Frangiamore, S. J.; Higuera-Rueda, C. A.; Samia, A. C. S. . Magnetic glycol chitin-based hydrogel nanocomposite for combined thermal and D-amino-acid-assisted biofilrn disruption . ACS Infect. Dis. , 2018 . 4 1246 -1256 . DOI:10.1021/acsinfecdis.8b00076http://doi.org/10.1021/acsinfecdis.8b00076 .
Duong, H. T. T.; Adnan, N. N. M.; Barraud, N.; Basuki, J. S.; Kutty, S. K.; Jung, K.; Kumar, N.; Davis, T. P.; Boyer, C. . Functional gold nanoparticles for the storage and controlled release of nitric oxide: applications in biofilm dispersal and intracellular delivery . J. Mater. Chem. B , 2014 . 2 5003 -5011 . DOI:10.1039/C4TB00632Ahttp://doi.org/10.1039/C4TB00632A .
Hasan, N.; Cao, J.; Lee, J.; Naeem, M.; Hlaing, S. P.; Kim, J.; Jung, Y.; Lee, B. L.; Yoo, J. W. . PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix . Mater. Sci. Eng. C-Mater. Biol. Appl. , 2019 . 103 109741 DOI:10.1016/j.msec.2019.109741http://doi.org/10.1016/j.msec.2019.109741 .
Nguyen, T. K.; Selvanayagam, R.; Ho, K. K. K.; Chen, R.; Kutty, S. K.; Rice, S. A.; Kumar, N.; Barraud, N.; Duong, H. T. T.; Boyer, C. . Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles . Chem. Sci. , 2016 . 7 1016 -1027 . DOI:10.1039/C5SC02769Ahttp://doi.org/10.1039/C5SC02769A .
Tan, Y.; Ma, S.; Liu, C.; Yu, W.; Han, F. . Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles . Microbiol. Res. , 2015 . 178 35 -41 . DOI:10.1016/j.micres.2015.06.001http://doi.org/10.1016/j.micres.2015.06.001 .
Patel, K. K.; Agrawal, A. K.; Anjum, M. M.; Tripathi, M.; Pandey, N.; Bhattacharya, S.; Tilak, R.; Singh, S. . DNase-I functionalization of ciprofloxacin-loaded chitosan nanoparticles overcomes the biofilm-mediated resistance of Pseudomonas aeruginosa . Appl. Nanosci. , 2020 . 10 563 -575 . DOI:10.1007/s13204-019-01129-8http://doi.org/10.1007/s13204-019-01129-8 .
Hayden, S. C.; Zhao, G.; Saha, K.; Phillips, R. L.; Li, X.; Miranda, O. R.; Rotello, V. M.; El-Sayed, M. A.; Schmidt-Krey, I.; Bunz, U. H. . Aggregation and interaction of cationic nanoparticles on bacterial surfaces . J. Am. Chem. Soc. , 2012 . 134 6920 -3 . DOI:10.1021/ja301167yhttp://doi.org/10.1021/ja301167y .
Duan, X.; Li, Y. . Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking . Small , 2013 . 9 1521 -1532 . DOI:10.1002/smll.201201390http://doi.org/10.1002/smll.201201390 .
Tian, S.; Su, L.; Liu, Y.; Cao, J.; Yang, G.; Ren, Y.; Huang, F.; Liu, J.; An, Y.; van der Mei, H. C.; Busscher, H. J.; Shi, L. . Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms—an intravital imaging study in mice . Sci. Adv. , 2020 . 6 eabb1112 DOI:10.1126/sciadv.abb1112http://doi.org/10.1126/sciadv.abb1112 .
Hu, D.; Deng, Y.; Jia, F.; Jin, Q.; Ji, J. . Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms . ACS Nano. , 2020 . 14 347 -359 . DOI:10.1021/acsnano.9b05493http://doi.org/10.1021/acsnano.9b05493 .
Zhao, Y.; Li, Q.; Chai, J.; Liu, Y. . Cargo-templated crosslinked polymer nanocapsules and their biomedical applications . Adv. NanoBiomed Res. , 2021 . 1 2000078 DOI:10.1002/anbr.202000078http://doi.org/10.1002/anbr.202000078 .
Li, Y.; Liu, Y.; Ren, Y.; Su, L.; Li, A.; An, Y.; Rotello, V.; Zhang, Z.; Wang, Y.; Liu, Y.; Liu, S.; Liu, J.; Laman, J. D.; Shi, L.; Mei, H. C.; Busscher, H. J. . Coating of a novel antimicrobial nanoparticle with a macrophage membrane for the selective entry into infected macrophages and killing of intracellular Staphylococci . Adv. Funct. Mater. , 2020 . 30 2004942 DOI:10.1002/adfm.202004942http://doi.org/10.1002/adfm.202004942 .
Li, Y.; Yang, G.; Ren, Y.; Shi, L.; Ma, R.; van der Mei, H. C.; Busscher, H. J. . Applications and perspectives of cascade reactions in bacterial infection control . Front. Chem. , 2020 . 7 861 DOI:10.3389/fchem.2019.00861http://doi.org/10.3389/fchem.2019.00861 .
0
Views
4
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution