
1.Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
guifeili@shu.edu.cn (G.F.L.)
jbyin@oa.shu.edu.cn (J.B.Y.)
Scan for full text
Zhen Shi, Qi Wang, Gui-Fei Li, et al. Preparation and Characterization of Attractive Poly(amino acid) Hydrogels Based on 2-Ureido-4[1
Zhen Shi, Qi Wang, Gui-Fei Li, et al. Preparation and Characterization of Attractive Poly(amino acid) Hydrogels Based on 2-Ureido-4[1
Self-healing hydrogels with the shear-thinning property are novel injectable materials and are superior to traditional injectable hydrogels. The self-healing hydrogels based on 2-ureido-4[1,H,]-pyrimidinone (UPy) have recently received extensive attention due to their dynamic reversibility of UPy dimerization. However, generally, UPy-based self-healing hydrogels exhibit poor stability, cannot degrade ,in vivo, and can hardly be excreted from the body, which considerably limit their bio-application. Here, using poly(,l,-glutamic acid) (PLGA) as biodegradable matrix, branching ,α,-hydroxy-,ω,-amino poly(ethylene oxide) (HAPEO) as bridging molecule to introduce UPy, and ethyl acrylate polyethylene glycol (MAPEG) to introduce double bond, the hydrogel precursors (PMHU) are prepared. A library of the self-healing hydrogels has been achieved with well self-healable and shear-thinning properties. With the increase of MAPEG grafting ratio, the storage modulus of the self-healing hydrogels decreases. The self-healing hydrogels are stable in solution only for 6 h, hard to meet the requirements of tissue regeneration. Consequently, ultraviolet (UV) photo-crosslinking is involved to obtain the dual crosslinking hydrogels with enhanced mechanical properties and stability. When MAPEG grafting ratio is 35.5%, the dual crosslinking hydrogels can maintain the shape in phosphate-buffered saline solution (PBS) for at least 8 days. Loading with adipose-derived stem cell spheroids, the self-healing hydrogels are injected and self-heal to a whole, and then they are crosslinked ,in situ via, UV-irradiation, obtaining the dual crosslinking hydrogels/cell spheroids complex with cell viability of 86.7%±6.0%, which demonstrates excellent injectability, subcutaneous gelatinization, and biocompatibility of hydrogels as cell carriers. The novel PMHU hydrogels crosslinked by quadruple hydrogen bonding and then dual photo-crosslinking of double bond are expected to be applied for minimal invasive surgery or therapies in tissue engineering.
2-Ureido-4[1H]-pyrimidinone (UPy)Poly(l-glutamic acid) (PLGA)Self-healablePhoto-crosslinking
Yang, J.; Yeom, J.; Hwang, B.; Hoffman, A. S.; Hahn, S. K. . In situ-forming injectable hydrogels for regenerative medicine . Prog. Polym. Sci. , 2014 . 39 1973 -1986 . DOI:10.1016/j.progpolymsci.2014.07.006http://doi.org/10.1016/j.progpolymsci.2014.07.006 .
Sun, Y.; Ren, Y. Y.; Li, Q.; Shi, R. W.; Hu, Y.; Guo, J. N.; Sun, Z.; Yan, F . Conductive, stretchable, and self-healing ionic gel based on dynamic covalent bonds and electrostatic interaction . Chinese J. Polym. Sci. , 2019 . 37 1053 -1059 . DOI:10.1007/s10118-019-2325-xhttp://doi.org/10.1007/s10118-019-2325-x .
Yang, L.; Lu, L.; Zhang, C.; Zhou, C. . Highly stretchable and self-healing hydrogels based on poly(acrylic acid) and functional POSS . Chinese J. Polym. Sci. , 2016 . 34 185 -194 . DOI:10.1007/s10118-016-1744-1http://doi.org/10.1007/s10118-016-1744-1 .
Hou, S.; Wang, X.; Park, S.; Jin, X.; Ma, P. X. . Rapid self-integrating, injectable hydrogel for tissue complex regeneration . Adv. Healthc. Mater. , 2015 . 4 1491 -1495 . DOI:10.1002/adhm.201500093http://doi.org/10.1002/adhm.201500093 .
Liu, X.; Zhong, M.; Shi, F.; Xu, H.; Xie, X. . Multi-bond network hydrogels with robust mechanical and self-healable properties . Chinese J. Polym. Sci. , 2017 . 35 1253 -1267 . DOI:10.1007/s10118-017-1971-0http://doi.org/10.1007/s10118-017-1971-0 .
Dai, X.; Zhang, Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y.; Liu, W. . A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel . Adv. Mater. , 2015 . 27 3566 -3571 . DOI:10.1002/adma.201500534http://doi.org/10.1002/adma.201500534 .
William, L. J.; Julianto, P. . Importance of secondary interactions in triply hydrogen bonded complexes: guanine-cytosine vs uracil-2,6-diaminopyridine . J. Am. Chem. Soc. , 1990 . 112 2008 -2010 . DOI:10.1021/ja00161a061http://doi.org/10.1021/ja00161a061 .
Chai, Z.; Xie, Z.; Zhang, P.; Ouyang, X.; Li, R.; Gao, S.; Wei, H.; Liu, L.; Shuai, Z. . High impact resistance epoxy resins by incorporation of quadruply hydrogen bonded supramolecular polymers . Chinese J. Polym. Sci. , 2016 . 34 850 -857 . DOI:10.1007/s10118-016-1809-1http://doi.org/10.1007/s10118-016-1809-1 .
Li, T.; Zheng, T.; Guo, Z.; Xu, J.; Guo, B. . A well-defined hierarchical hydrogen bonding strategy to polyureas with simultaneously improved strength and toughness . Chinese J. Polym. Sci. , 2019 . 37 1257 -1266 . DOI:10.1007/s10118-019-2275-3http://doi.org/10.1007/s10118-019-2275-3 .
Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W. . Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding . J. Am. Chem. Soc. , 1998 . 120 6761 -6769 . DOI:10.1021/ja974112ahttp://doi.org/10.1021/ja974112a .
Bastings, M. M. C.; Koudstaal, S.; Kieltyka, R. E.; Nakano, Y.; Pape, A. C. H.; Feyen, D. A. M.; Slochteren, F. J.; Doevendans, P. A.; Sluijter, J. P. G.; Meijer, E. W.; Chamuleau, S. A. J.; Dankers, P. Y. W. . A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium . Adv. Healthc. Mater. , 2014 . 3 70 -78 . DOI:10.1002/adhm.201300076http://doi.org/10.1002/adhm.201300076 .
Zhang, G.; Chen, Y.; Deng, Y.; Ngai, T.; Wang, C. . Dynamic supramolecular hydrogels: regulating hydrogel properties through self-complementary quadruple hydrogen bonds and thermo-switch . ACS Macro Lett. , 2017 . 6 641 -646 . DOI:10.1021/acsmacrolett.7b00275http://doi.org/10.1021/acsmacrolett.7b00275 .
Cui, J.; Wang, D.; Koynov, K.; del Campo, A. . 2-Ureido-4-pyrimidone-based hydrogels with multiple responses . Chem. Phys. Chem. , 2013 . 14 2932 -2938 . DOI:10.1002/cphc.201300367http://doi.org/10.1002/cphc.201300367 .
Cui, J.; del Campo, A. . Multivalent H-bonds for self-healing hydrogels . Chem. Commun. , 2012 . 48 9302 -9304 . DOI:10.1039/c2cc34701fhttp://doi.org/10.1039/c2cc34701f .
Dankers, P. Y. W.; Hermans, T. M.; Baughman, T. W.; Kamikawa, Y.; Kieltyka, R. E.; Bastings, M. M. C.; Janssen, H. M.; Sommerdijk, N. A. J. M.; Larsen, A.; Luyn, M. J. A.; Bosman, A. W.; Popa, E. R.; Fytas, G.; Meijer, E. W. . Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system . Adv. Mater. , 2012 . 24 2703 -2709 . DOI:10.1002/adma.201104072http://doi.org/10.1002/adma.201104072 .
Zhang, K.; Wu, J.; Zhang, W.; Yan, S.; Ding, J.; Chen, X.; Cui, L.; Yin, J. . In situ formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(l-glutamic acid)/poly(ε-caprolactone) hydrogel towards meniscus tissue engineering . J. Mater. Chem. B , 2018 . 6 7822 -7833 . DOI:10.1039/C8TB01453Ahttp://doi.org/10.1039/C8TB01453A .
Yan, S.; Zhang, X.; Zhang, K.; Di, H.; Feng, L.; Li, G.; Fang, J.; Cui, L.; Chen, X.; Yin, J. . Injectable in situ forming poly(l-glutamic acid) hydrogels for cartilage tissue engineering . J. Mater. Chem. B , 2016 . 4 947 -961 . DOI:10.1039/C5TB01488Chttp://doi.org/10.1039/C5TB01488C .
Xia, P.; Zhang, K.; Gong, Y.; Li, G.; Yan, S.; Yin, J. . Injectable stem cell laden open porous microgels that favor adipogenesis: in vitro and in vivo evaluation . ACS Appl. Mater. Interfaces , 2017 . 9 34751 -34761 . DOI:10.1021/acsami.7b13065http://doi.org/10.1021/acsami.7b13065 .
Zhang, K.; Yan, S.; Li, G.; Cui, L.; Yin, J. . In-situ birth of MSCs multicellular spheroids in poly(l-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration . Biomaterials , 2015 . 71 24 -34 . DOI:10.1016/j.biomaterials.2015.08.037http://doi.org/10.1016/j.biomaterials.2015.08.037 .
Cammas, S.; Nagasaki, Y.; Kataoka, K. . Heterobifunctional poly(ethylene oxide): synthesis of α-methoxy-ω-amino and α-hydroxy-ω-amino PEOs with the same molecular weights . Bioconjugate Chem. , 1995 . 6 226 -230 . DOI:10.1021/bc00032a011http://doi.org/10.1021/bc00032a011 .
Zhang, K.; He, S.; Yan, S.; Li, G.; Zhang, D.; Cui, L.; Yin, J. . Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(l-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells . J. Mater. Chem. B , 2016 . 4 2628 -2645 . DOI:10.1039/C5TB02113Hhttp://doi.org/10.1039/C5TB02113H .
Li, G.; Wu, J.; Wang, B.; Yan, S.; Zhang, K.; Ding, J.; Yin, J. . Self-healing supramolecular self-assembled hydrogels based on poly(l-glutamic acid) . Biomacromolecules , 2015 . 16 3508 -3518 . DOI:10.1021/acs.biomac.5b01287http://doi.org/10.1021/acs.biomac.5b01287 .
Cao, K.; Liu, G. . Low-molecular-weight, high-mechanical- strength, and solution-processable telechelic poly(ether imide) end-capped with ureidopyrimidinone . Macromolecules , 2017 . 50 2016 -2023 . DOI:10.1021/acs.macromol.7b00156http://doi.org/10.1021/acs.macromol.7b00156 .
Pang, X.; Duan, R.; Li, X.; Chen, X. . Bimetallic salen-aluminum complexes: synthesis, characterization and their reactivity with rac-lactide and ε-caprolactone . Polym. Chem. , 2014 . 5 3894 -3900 . DOI:10.1039/c3py01774ehttp://doi.org/10.1039/c3py01774e .
Ameya, P.; Zhang, C.; Arman, B.; Hsu, C.; Mashelkar, R. A.; Lele, A. K.; Tauber, M. J.; Arya, G.; Varghese, S. . Rapid self-healing hydrogels . Proc. Natl. Acad. Sci. USA , 2012 . 109 4383 -4388 . DOI:10.1073/pnas.1201122109http://doi.org/10.1073/pnas.1201122109 .
Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. . Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding . Science , 1997 . 278 1601 -1604 . DOI:10.1126/science.278.5343.1601http://doi.org/10.1126/science.278.5343.1601 .
Denisin, A. K.; Pruitt, B. L. . Tuning the range of polyacrylamide gel stiffness for mechanobiology applications . ACS Appl. Mater. Interfaces , 2016 . 8 21893 -21902 . DOI:10.1021/acsami.5b09344http://doi.org/10.1021/acsami.5b09344 .
Guvendiren, M.; Lu, H. D.; Burdick, J. A. . Shear-thinning hydrogels for biomedical applications . Soft Matter , 2012 . 8 260 -272 . DOI:10.1039/C1SM06513Khttp://doi.org/10.1039/C1SM06513K .
Yan, C. Q.; Altunbas, A.; Yucel, T.; Nagarkar, R. P.; Schneider, J. P.; Pochan, D. J. . Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels . Soft Matter , 2010 . 6 5143 -5156 . DOI:10.1039/c0sm00642dhttp://doi.org/10.1039/c0sm00642d .
Miao, X.; Guo, Y.; He, L.; Meng, Y.; Li, X. . Rheological behaviors of a series of hyperbranched polyethers . Chinese J. Polym. Sci. , 2015 . 33 1574 -1585 . DOI:10.1007/s10118-015-1707-yhttp://doi.org/10.1007/s10118-015-1707-y .
Young, D.; Choi, Y.; Engler, A.; Christman, K. . Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue . Biomaterials , 2013 . 34 8581 -8588 . DOI:10.1016/j.biomaterials.2013.07.103http://doi.org/10.1016/j.biomaterials.2013.07.103 .
Liang, X.; Duan, P.; Gao, J.; Guo, R.; Qu, Z.; Li, X.; He, Y.; Yao, H.; Ding, J. . Bilayered PLGA/PLGA-HAp composite scaffold for osteochondral tissue engineering and tissue regeneration . ACS Biomater. Sci. Eng. , 2018 . 4 3506 -3521 . DOI:10.1021/acsbiomaterials.8b00552http://doi.org/10.1021/acsbiomaterials.8b00552 .
Zhang, P.; Tang, A.; Wang, Z.; Lu, J.; Zhu, B.; Zhu, L. . Tough poly(L-DOPA)-containing double network hydrogel beads with high capacity of dye adsorption . Chinese J. Polym. Sci. , 2018 . 36 1251 -1261 . DOI:10.1007/s10118-018-2163-2http://doi.org/10.1007/s10118-018-2163-2 .
Chen, L.; Li, X.; Cao, L.; Li, X.; Meng, J.; Dong, J.; Yu, L.; Ding, J. . An injectable hydrogel with or without drugs for prevention of epidural scar adhesion after laminectomy in rats . Chinese J. Polym. Sci. , 2016 . 34 147 -163 . DOI:10.1007/s10118-016-1740-5http://doi.org/10.1007/s10118-016-1740-5 .
Shou, Y.; Zhang, J.; Yan, S.; Xia, P.; Li, G.; Zhang, K.; Yin, J. . Thermoresponsive chitosan/DOPA-based hydrogel as an injectable therapy approach for tissue-adhesion and hemostasis . ACS Biomater. Sci. Eng. , 2020 . 6 3619 -3629 . DOI:10.1021/acsbiomaterials.0c00545http://doi.org/10.1021/acsbiomaterials.0c00545 .
Qian, Q.; Zhu, L.; Zhu, X.; Sun, M.; Yan, D. . Drug-polymer hybrid macromolecular engineering: degradable PEG integrated by platinum (IV) for cancer therapy . Matter , 2019 . 1 1618 -1630 . DOI:10.1016/j.matt.2019.09.016http://doi.org/10.1016/j.matt.2019.09.016 .
Zhu, Y.; Liu, T.; Song, K.; Fan, X.; Ma, X.; Cui, Z. . Adipose-derived stem cell: a better stem cell than BMSC . Cell Biochem. Funct. , 2008 . 26 664 -675 . DOI:10.1002/cbf.1488http://doi.org/10.1002/cbf.1488 .
Bhang, S. H.; Cho, S. W.; La, W. G.; Lee, T. J.; Yang, H. S.; Sun, A. Y.; Baek, S. H.; Rhie, J. W.; Kim, B. S. . Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells . Biomaterials , 2011 . 32 2734 -2747 . DOI:10.1016/j.biomaterials.2010.12.035http://doi.org/10.1016/j.biomaterials.2010.12.035 .
0
Views
1
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621