1.Department of Chemistry, Ministry of Education Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
chunli@mail.tsinghua.edu.cn
Scan for full text
Hong-Wu Chen, Chun Li. PEDOT: Fundamentals and Its Nanocomposites for Energy Storage. [J]. Chinese Journal of Polymer Science 38(5):435-448(2020)
Hong-Wu Chen, Chun Li. PEDOT: Fundamentals and Its Nanocomposites for Energy Storage. [J]. Chinese Journal of Polymer Science 38(5):435-448(2020) DOI: 10.1007/s10118-020-2373-2.
PEDOT, or poly(3,4-ethylenedioxythiophene), is among the most successful conducting polymer products because of its stable conductivity, colloidal processability, and rich assembly behavior. Since the very first patents on PEDOT filed in 1988, the material has been widely explored for decades in many applications. In this review, a comprehensive summary on the synthesis, processing and post-treatment of PEDOT will be presented for the sake of the discussion on PEDOT and its nanocomposites for energy storage. Knowing what PEDOT lends itself to the electrode materials is of importance to the rational design of energy storage devices that maximize the real-world performance. Based on these discussions, a roadmap for the development of PEDOT as promising multifunctional electrode component is presented.
PEDOTEnergy storageNanomaterialsCapacitorBattery
Letheby, H. . On the production of a blue substance by the electrolysis of sulphate of aniline . J. Chem. Soc. , 1862 . 15 161 -163 . DOI:10.1039/JS8621500161http://doi.org/10.1039/JS8621500161 .
Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. . Progress in preparation, processing and applications of polyaniline . Prog. Polym. Sci. , 2009 . 34 783 -810 . DOI:10.1016/j.progpolymsci.2009.04.003http://doi.org/10.1016/j.progpolymsci.2009.04.003 .
Geniès, E. M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. . Polyaniline: a historical survey . Synth. Met. , 1990 . 36 139 -182 . DOI:10.1016/0379-6779(90)90050-Uhttp://doi.org/10.1016/0379-6779(90)90050-U .
Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. . Electrical conductivity in doped polyacetylene . Phys. Rev. Lett. , 1977 . 39 1098 -1101 . DOI:10.1103/PhysRevLett.39.1098http://doi.org/10.1103/PhysRevLett.39.1098 .
Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. . Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x . J. Chem. Soc. Chem. Commun. , 1977 . 578 -580. .
Kanazawa, K. K.; Diaz, A. F.; Geiss, R. H.; Gill, W. D.; Kwak, J. F.; Logan, J. A.; Rabolt, J. F.; Street, G. B. . “Organic metals”: polypyrrole, a stable synthetic “metallic” polymer . J. Chem. Soc. Chem. Commun. , 1979 . 854 -855. .
Tourillon, G.; Garnier, F. . New electrochemically generated organic conducting polymers . J. Electroanal. Chem. , 1982 . 135 173 -178 . DOI:10.1016/0022-0728(82)90015-8http://doi.org/10.1016/0022-0728(82)90015-8 .
Kudoh, Y.; Akami, K.; Matsuya, Y. . Solid electrolytic capacitor with highly stable conducting polymer as a counter electrode . Synth. Met. , 1999 . 102 973 -974 . DOI:10.1016/S0379-6779(98)01012-1http://doi.org/10.1016/S0379-6779(98)01012-1 .
Jonas, F.; Heywang, G.; Schmidtberg, W. 1988, Germany Pat., DE 38 13 589 A1.
Jonas, F.; Schrader, L. . Conductive modifications of polymers with polypyrroles and polythiophenes . Synth. Met. , 1991 . 41 831 -836 . DOI:10.1016/0379-6779(91)91506-6http://doi.org/10.1016/0379-6779(91)91506-6 .
Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S. . PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes . Synth. Met. , 2000 . 111 139 -143. .
Liu, Y.; Varahramyan, K.; Cui, T. . Low-voltage all-polymer field-effect transistor fabricated using an inkjet printing technique . Macromol. Rapid. Commun. , 2005 . 26 1955 -1959 . DOI:10.1002/marc.200500493http://doi.org/10.1002/marc.200500493 .
Pei, Q.; Zuccarello, G.; Ahlskogt, M.; Inganäs, O. . Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue . Polymer , 1994 . 35 1347 -1351 . DOI:10.1016/0032-3861(94)90332-8http://doi.org/10.1016/0032-3861(94)90332-8 .
Jonas, F.; Krafft, W. 1990, Europe Pat., EP 440 957.
Laforgue, A. . All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers . J. Power Sources , 2011 . 196 559 -564 . DOI:10.1016/j.jpowsour.2010.07.007http://doi.org/10.1016/j.jpowsour.2010.07.007 .
Aasmundtveit, K. E.; Samuelsen, E. J.; Pettersson, L. A. A.; Inganäs, O.; Johansson, T.; Feidenhans'l, R. . Structure of thin films of poly(3,4-ethylenedioxythiophene) . Synth. Met. , 1999 . 101 561 -564 . DOI:10.1016/S0379-6779(98)00315-4http://doi.org/10.1016/S0379-6779(98)00315-4 .
Åsberg, D. P.; Inganäs, O. . PEDOT/PSS hydrogel networks as 3-D enzyme electrodes . Synth. Met. , 2003 . 137 1403 -1404 . DOI:10.1016/S0379-6779(02)01060-3http://doi.org/10.1016/S0379-6779(02)01060-3 .
Snook, G. A.; Kao, P.; Best, A. S. . Conducting-polymer-based supercapacitor devices and electrodes . J. Power Sources , 2011 . 196 1 -12 . DOI:10.1016/j.jpowsour.2010.06.084http://doi.org/10.1016/j.jpowsour.2010.06.084 .
Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F. H.; Ouyang, J. . Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices . J. Mater. Sci.: Mater. Electron. , 2015 . 26 4438 -4462 . DOI:10.1007/s10854-015-2895-5http://doi.org/10.1007/s10854-015-2895-5 .
Shown, I.; Ganguly, A.; Chen, L. C.; Chen, K. H. . Conducting polymer-based flexible supercapacitor . Energy Sci. Eng. , 2015 . 3 2 -26 . DOI:10.1002/ese3.50http://doi.org/10.1002/ese3.50 .
Meng, Q.; Cai, K.; Chen, Y.; Chen, L. . Research progress on conducting polymer-based supercapacitor electrode materials . Nano Energy , 2017 . 36 268 -285 . DOI:10.1016/j.nanoen.2017.04.040http://doi.org/10.1016/j.nanoen.2017.04.040 .
Ratha, S.; Samantara, A. K. Supercapacitor: instrumentation, measurement and performance evaluation techniques. Springer Singapore, 2018.
Hocker, J.; Wieder, W.; Merten, R.; Witte, J. 1980, Europe Pat., EP 45905.
Hocker, J.; Wieder, W.; Dhein, R. 1980, Europe Pat., EP 45908.
Elschner, A.; Kirchmeyer, K.; Lövenich, W.; Merker, U.; Reuter, K. PEDOT: principles and applications of an intrinsically conductive polymer. CRC Press, 2011.
Feldhues, M.; Kämpf, G.; Litterer, H.; Mecklenburg, T.; Wegener, P. . Polyalkoxythiophenes. Soluble electrically conducting polymers . Synth. Met. , 1989 . 28 C487 -C493 . DOI:10.1016/0379-6779(89)90563-8http://doi.org/10.1016/0379-6779(89)90563-8 .
Hagiwara, T.; Yamaura, M.; Sato, K.; Hirasaka, M.; Iwata, K. . Synthesis and properties of poly(3,4-dimethoxythiophene) . Synth. Met. , 1989 . 32 367 -379 . DOI:10.1016/0379-6779(89)90778-9http://doi.org/10.1016/0379-6779(89)90778-9 .
Feldhues, M.; Mecklenburg, T.; Wegener, P.; Kämpf, G. 1987, Europe Pat., EP 257 573.
Kämpf, G.; Feldhues, M. 1987, Europe Pat., EP 292 905.
Gogte, V. N.; Shah, L. G.; Tilak, B. D.; Gadekar, K. N.; Sahasrabudhe, M. B. . Synthesis of potential anticancer agents-I, synthesis of substituted thiophenes . Tetrahedron , 1967 . 23 2437 -2441 . DOI:10.1016/0040-4020(67)80079-6http://doi.org/10.1016/0040-4020(67)80079-6 .
Heywang, G.; Jonas F. . Poly(alkylenedioxythiophene)s: new, very stable conducting polymers . Adv. Mater. , 1992 . 4 116 -118 . DOI:10.1002/adma.19920040213http://doi.org/10.1002/adma.19920040213 .
Heywang, G.; Jonas, F.; Heinze, J.; Dietrich, M. 1988, Germany Pat., DE 38 43 412.
Skotheim T. A.; Reynolds, J. A. Handbook of conducting polymers, 3rd Ed., CRC Press, 2007.
Audebert, P.; Catel, J. M.; Duchenet, V.; Guyard, L.; Hapiot, P.; Le Coustumer, G. . Redox chemistry of thiophene, pyrrole and thiophene-pyrrole-thiophene oligomers . Synth. Met. , 1999 . 101 642 -645 . DOI:10.1016/S0379-6779(98)00311-7http://doi.org/10.1016/S0379-6779(98)00311-7 .
Reuter, K.; Nikanorov, V. A.; Bazhenov, V. M., 2002, Europe Pat., EP 1 375 560.
de Leeuw, D. M.; Krakman, P. A.; Bongaerts, P. F. G.; Mutsaers, C. M. J.; Klaassen, D. B. M. . Electroplating of conductive polymers for the metallization of insulators . Synth. Met. , 1994 . 26 263 -273. .
Winther-Jensen, B.; Breiby, D. W.; West K. . Base inhibited oxidative polymerization of 3,4-ethylenedioxythiophene with iron(III)tosylate . Synth. Met. , 2005 . 152 1 -4 . DOI:10.1016/j.synthmet.2005.07.085http://doi.org/10.1016/j.synthmet.2005.07.085 .
Ha, Y. H.; Nikolov, N.; Pollack, S. K.; Mastrangelo, J.; Martin, B. D.; Shashidar, R. . Towards a transparent, highly conductive poly(3,4-ethylenedioxythiophene) . Adv. Funct. Mater. , 2004 . 14 615 -622 . DOI:10.1002/adfm.200305059http://doi.org/10.1002/adfm.200305059 .
Im, S. G.; Kusters, D.; Choi, W.; Baxamusa, S. H.; van de Sanden, M. C. M.; Gleason, K. K. . Conformal coverage of poly(3,4-ethylenedioxythiophene) films with tunable nanoporosity via oxidative chemical vapor deposition . ACS Nano , 2008 . 2 1959 -1967 . DOI:10.1021/nn800380ehttp://doi.org/10.1021/nn800380e .
Corradi, R.; Armes, S. P. . Chemical synthesis of poly(3,4-ethylenedioxythiophene) . Synth. Met. , 1997 . 84 453 -454 . DOI:10.1016/S0379-6779(97)80828-4http://doi.org/10.1016/S0379-6779(97)80828-4 .
Wolf, G. D.; Jonas, F.; Schomaecker, R. 1994, Europe Pat., EP 707 440.
Jonas, F.; Krafft, W.; Muys, B. . Poly(3,4-ethylenedioxythiophene): conductive coatings, technical applications and properties . Macromol. Symp. , 1995 . 100 169 -173 . DOI:10.1002/masy.19951000128http://doi.org/10.1002/masy.19951000128 .
Reuter K.; Kirchmeyer, S. 2006, Europe Pat., EP 1 979 393.
Sakmeche, N.; Aaron, J. J.; Fall, M.; Aeiyach, S.; Jouini, M.; Lacroix, J. C.; Lacaze, P. C. . Anionic micelles; a new aqueous medium for electropolymerization of poly(3,4-ethylenedioxythiophene) films on Pt electrodes . Chem. Commun. , 1996 . 2723 -2724. .
Lima, A.; Schottland, P.; Sadki, S.; Chevrot, C. . Electropolymerization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene methanol in the presence of dodecylbenzenesulfonate . Synth. Met. , 1998 . 93 33 -41 . DOI:10.1016/S0379-6779(98)80129-Xhttp://doi.org/10.1016/S0379-6779(98)80129-X .
Jonas, F.; Heywang, G.; Schmidtberg, W.; Heinze, J.; Dietrich, M. 1988, Europe Pat., EP 339 340.
Lock, J. P.; Im, S. G.; Gleason, K. K. . Oxidative chemical vapor deposition of electrically conducting poly(3,4-ethylenedioxythiophene) films . Macromolecules , 2006 . 39 5326 -5329 . DOI:10.1021/ma060113ohttp://doi.org/10.1021/ma060113o .
Kim, J. Y.; Kwon, M. H.; Min, Y. K.; Kwon, S.; Ihm, D. W. . Self-assembly and crystalline growth of poly(3,4-ethylenedioxythiophene) nanofilms . Adv. Mater. , 2007 . 19 3501 -3506 . DOI:10.1002/adma.200602163http://doi.org/10.1002/adma.200602163 .
Wang, X.; Zhang, X.; Sun, L.; Lee, D.; Lee, S.; Wang, M.; Zhao, J.; Shao-Horn, Y.; Dincă, M.; Palacios, T.; Gleason, K. K. . High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment . Sci. Adv. , 2018 . 4 eaat5780 DOI:10.1126/sciadv.aat5780http://doi.org/10.1126/sciadv.aat5780 .
Zhang, C.; Higgins, T. M.; Park, S. H.; O'Brien, S. E.; Long, D.; Coleman, J. N.; Nicolosi, V. . Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films . Nano Energy , 2016 . 28 495 -505 . DOI:10.1016/j.nanoen.2016.08.052http://doi.org/10.1016/j.nanoen.2016.08.052 .
Zhang, M.; Zhou, Q.; Chen, J.; Yu, X.; Huang, L.; Li, Y.; Li, C.; Shi, G. . An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for ac line-filtering . Energy Environ. Sci. , 2016 . 9 2005 -2010 . DOI:10.1039/C6EE00615Ahttp://doi.org/10.1039/C6EE00615A .
Worfolk, B. J.; Andrews, S. C.; Park, S.; Reinspach, J.; Liu, N.; Toney, M. F.; Mannsfeld, S. C. B.; Bao, Z. . Ultrahigh electrical conductivity in solution-sheared polymeric transparent films . Proc. Natl. Acad. Sci. USA , 2015 . 112 14138 -14143 . DOI:10.1073/pnas.1509958112http://doi.org/10.1073/pnas.1509958112 .
Yoshioka, Y.; Jabbour, G. E. . Desktop inkjet printer as a tool to print conducting polymers . Synth. Met. , 2006 . 11 779 -783. .
Cho, S.; Kim, M.; Jang, J. . Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor . ACS Appl. Mater. Interfaces , 2015 . 7 10213 -10227 . DOI:10.1021/acsami.5b00657http://doi.org/10.1021/acsami.5b00657 .
Yao, B.; Wang, H.; Zhou, Q.; Wu, M.; Zhang, M.; Li, C.; Shi, G. . Ultrahigh-conductivity polymer hydrogels with arbitrary structures . Adv. Mater. , 2017 . 29 1700974 DOI:10.1002/adma.201700974http://doi.org/10.1002/adma.201700974 .
Lu, B.; Yuk, H.; Lin, S.; Jian, N.; Qu, K.; Xu, J.; Zhao, X. . Pure PEDOT:PSS hydrogels . Nat. Commun. , 2019 . 10 1043 DOI:10.1038/s41467-019-09003-5http://doi.org/10.1038/s41467-019-09003-5 .
Feig, V. R.; Tran, H.; Lee, M.; Liu, K.; Huang, Z.; Beker, L.; Mackanic, D. G.; Bao, Z. . An electrochemical gelation method for patterning conductive PEDOT:PSS hydrogels . Adv. Mater. , 2019 . DOI:10.1002/adma.201902869http://doi.org/10.1002/adma.201902869 .
Ma, T.; Zhao, Q.; Wang, J.; Pan, Z.; Chen, J. . A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery . Angew. Chem. Int. Ed. , 2016 . 55 6428 -6432 . DOI:10.1002/anie.201601119http://doi.org/10.1002/anie.201601119 .
Hwang, J.; Tanner, D. B.; Schwendeman, I.; Reynolds, J. R. . Optical properties of nondegenerate ground-state polymers: three dioxythiophene-based conjugated polymers . Phys. Rev. B , 2003 . 67 115205 DOI:10.1103/PhysRevB.67.115205http://doi.org/10.1103/PhysRevB.67.115205 .
Ouyang, J.; Chu, C. W.; Chen, F. C.; Xu, Q.; Yang, Y. . High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film and its application in polymer optoelectronic devices . Adv. Funct. Mater. , 2005 . 15 203 -208 . DOI:10.1002/adfm.200400016http://doi.org/10.1002/adfm.200400016 .
Jönsson, S. K. M.; Birgerson, J.; Crispin, X.; Greczynski, G.; Osikowicz, W.; van der Gon, A. W. D.; Salaneck, W. R.; Fahlman, M. . The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films . Synth. Met. , 2003 . 139 1 -10 . DOI:10.1016/S0379-6779(02)01259-6http://doi.org/10.1016/S0379-6779(02)01259-6 .
Kim, W. H.; Makinen, A. J.; Nikolov, N.; Shashidhar, R.; Kim, H.; Kafafi, Z. H. . Molecular organic light-emitting diodes using highly conducting polymers as anodes . Appl. Phys. Lett. , 2002 . 80 3844 -3846 . DOI:10.1063/1.1480100http://doi.org/10.1063/1.1480100 .
Ouyang, J.; Xu, Q.; Chu, C. W.; Yang, Y.; Li, G.; Shinar, J. . On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment . Polymer , 2004 . 45 8443 -8450 . DOI:10.1016/j.polymer.2004.10.001http://doi.org/10.1016/j.polymer.2004.10.001 .
Timpanaro, S.; Kemerink, M.; Touwslager, F. J.; De Kok, M. M.; Schrader, S. . Morphology and conductivity of PEDOT/PSS films studied by scanning tunneling microscopy . Chem. Phys. Lett. , 2004 . 394 339 -343 . DOI:10.1016/j.cplett.2004.07.035http://doi.org/10.1016/j.cplett.2004.07.035 .
Kim, J. Y.; Jung, J. H.; Lee, D. E.; Joo, J. . Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents . Synth. Met. , 2002 . 126 311 -316 . DOI:10.1016/S0379-6779(01)00576-8http://doi.org/10.1016/S0379-6779(01)00576-8 .
Crispin, X.; Jakobsson, F. L. E.; Crispin, A.; Grim, P. C. M.; Andersson, P.; Volodin, A.; van Haesendonck, C.; van der Auweraer, M.; Salaneck, W. R.; Berggren, M. . The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) plastic electrodes . Chem. Mater. , 2006 . 18 4354 -4360 . DOI:10.1021/cm061032+http://doi.org/10.1021/cm061032+ .
Nardes, A. M.; Janssen, R. A. J.; Kemerink, M. . A morphological model for the solvent-enhanced conductivity of PEDOT:PSS thin films . Adv. Funct. Mater. , 2008 . 18 865 -871 . DOI:10.1002/adfm.200700796http://doi.org/10.1002/adfm.200700796 .
Xia, Y.; Sun, K.; Ouyang, J. . Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices . Adv. Mater. , 2012 . 24 2436 -2440 . DOI:10.1002/adma.201104795http://doi.org/10.1002/adma.201104795 .
Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y. R.; Kim, B. J.; Lee, K. . Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization . Adv. Mater. , 2014 . 26 2268 -2272 . DOI:10.1002/adma.201304611http://doi.org/10.1002/adma.201304611 .
MacDiarmid, A. G.; Epstein, A. G. . The concept of secondary doping as applied to polyaniline . Synth. Met. , 1994 . 65 103 -116 . DOI:10.1016/0379-6779(94)90171-6http://doi.org/10.1016/0379-6779(94)90171-6 .
Ashizawa, S.; Horikawa, R.; Okuzaki, H. . Effects of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) . Synth. Met. , 2005 . 153 5 -8 . DOI:10.1016/j.synthmet.2005.07.214http://doi.org/10.1016/j.synthmet.2005.07.214 .
Gueye, M. N.; Carella, A.; Massonnet, N.; Yvenou, E.; Brenet, S.; Faure-Vincent, J.; Pouget, S.; Rieutord, F.; Okuno, H.; Benayad, A.; Demadrille, R.; Simonato, J. P. . Structure and dopant engineering in PEDOT thin films: practical tools for a dramatic conductivity enhancement . Chem. Mater. , 2016 . 28 3462 -3468 . DOI:10.1021/acs.chemmater.6b01035http://doi.org/10.1021/acs.chemmater.6b01035 .
Menon, R.; Yoon, C. O.; Moses, D.; Heeger, A. J.; Cao, Y. . Transport in polyaniline near the critical regime of the metal-insulator transition . Phys. Rev. B: Condens. Matter Mater. Phys. , 1993 . 48 17685 -17694 . DOI:10.1103/PhysRevB.48.17685http://doi.org/10.1103/PhysRevB.48.17685 .
Lee, K.; Cho, S.; Park, S. H.; Heeger, A. J.; Lee, C. W.; Lee, S. H. . Metallic transport in polyaniline . Nature , 2006 . 441 65 -68 . DOI:10.1038/nature04705http://doi.org/10.1038/nature04705 .
Bubnova, O.; Khan, Z. U.; Wang, H.; Braun, S.; Evans, D. R.; Fabretto, M.; Hojati-Talemi, P.; Dagnelund, D.; Arlin, J. B.; Geerts, Y. H.; Desbief, S.; Breiby, D. W.; Andreasen, J. W.; Lazzaroni, R.; Chen, W. M.; Zozoulenko, I.; Fahlman, M.; Murphy, P. J.; Berggren, M.; Crispin, X. . Semi-metallic polymers . Nat. Mater. , 2013 . 13 190 -194. .
Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I.; Chen, Z.; Chung, J. W.; Linder, C.; Toney, M. F.; Murmann, B.; Bao, Z. . A highly stretchable, transparent, and conductive polymer . Sci. Adv. , 2017 . 3 e1602076 DOI:10.1126/sciadv.1602076http://doi.org/10.1126/sciadv.1602076 .
Cho, B.; Park, K. S.; Baek, J.; Oh, H. S.; Koo, Lee Y. E.; Sung, M. M. . Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity . Nano Lett. , 2014 . 14 3321 -3327 . DOI:10.1021/nl500748yhttp://doi.org/10.1021/nl500748y .
Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K. . Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells . Adv. Funct. Mater. , 2011 . 21 1076 -1081 . DOI:10.1002/adfm.201002290http://doi.org/10.1002/adfm.201002290 .
Yano, H.; Kudo, K.; Marumo, K.; Okuzaki, H. . Fully soluble self-doped poly(3,4-ethylenedioxythiophene) with an electrical conductivity greater than 1000 S cm−1 . Sci. Adv. , 2019 . 5 eaav9492 DOI:10.1126/sciadv.aav9492http://doi.org/10.1126/sciadv.aav9492 .
Morvant, M. C.; Reynolds, J. R. . In situ conductivity studies of poly(3,4-ethylenedioxythiophene) . Synth. Met. , 2005 . 153 5 -8 . DOI:10.1016/S0379-6779(98)80023-4http://doi.org/10.1016/S0379-6779(98)80023-4 .
Gogotsi, Y.; Simon, P. . True performance metrics in electrochemical energy storage . Science , 2011 . 334 917 -918 . DOI:10.1126/science.1213003http://doi.org/10.1126/science.1213003 .
Volkov, A. V.; Wijeratne, K.; Mitraka, E.; Ail, U.; Zhao, D.; Tybrandt, K.; Andreasen, J. W.; Berggren, M.; Crispin, X.; Zozoulenko, I. V. . Understanding the capacitance of PEDOT:PSS . Adv. Funct. Mater. , 2017 . 27 1700329 DOI:10.1002/adfm.201700329http://doi.org/10.1002/adfm.201700329 .
Tybrandt, K.; Zozoulenko, I. V.; Berggren, M. . Chemical potential-electric double layer coupling in conjugated polymer-polyelectrolyte blends . Sci. Adv. , 2017 . 3 eaao3569 .
Boota, M.; Gogotsi, Y. . MXene—conducting polymer asymmetric pseudocapacitors . Adv. Energy Mater. , 2019 . 9 1802917 DOI:10.1002/aenm.201802917http://doi.org/10.1002/aenm.201802917 .
Li, W.; Zhang, Q.; Zheng, G.; Seh, Z. W.; Yao, H.; Cui, Y. . Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance . Nano Lett. , 2013 . 13 5534 -5540 . DOI:10.1021/nl403130hhttp://doi.org/10.1021/nl403130h .
Su, D.; Cortie, M.; Fan, H.; Wang, G. . Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries . Adv. Mater. , 2017 . 29 1700587 DOI:10.1002/adma.201700587http://doi.org/10.1002/adma.201700587 .
Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y. . Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings . Energy Environ. Sci. , 2012 . 5 7927 -7930 . DOI:10.1039/c2ee21437ghttp://doi.org/10.1039/c2ee21437g .
Mai, L.; Dong, F.; Xu, X.; Luo, Y.; An, Q.; Zhao, Y.; Pan, J.; Yang, J. . Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability . Nano Lett. , 2013 . 13 740 -745 . DOI:10.1021/nl304434vhttp://doi.org/10.1021/nl304434v .
Yang, H.; Xu, H.; Li, M.; Zhang, L.; Huang, Y.; Hu, X. . Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors . ACS Appl. Mater. Interfaces , 2016 . 8 1774 -1779 . DOI:10.1021/acsami.5b09526http://doi.org/10.1021/acsami.5b09526 .
Zhang, G.; Zhao, X. S. . Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes . J. Phys. Chem. C , 2012 . 116 5420 -5426. .
Chao, D.; Xia, X.; Liu, J.; Fan, Z.; Ng, C. F.; Lin, J.; Zhang, H.; Shen, Z. X.; Fan, H. J. . A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries . Adv. Mater. , 2014 . 26 5794 -5800 . DOI:10.1002/adma.201400719http://doi.org/10.1002/adma.201400719 .
Han, J.; Dou, Y.; Zhao, J.; Wei, M.; Evans, D. G.; Duan, X. . Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage . Small , 2013 . 9 98 -106 . DOI:10.1002/smll.201201336http://doi.org/10.1002/smll.201201336 .
Liu, R.; Lee, S. B. . MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage . J. Am. Chem. Soc. , 2008 . 130 2942 -2943 . DOI:10.1021/ja7112382http://doi.org/10.1021/ja7112382 .
Liu, R.; Duay, J.; Lee, S. B. . Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage . ACS Nano , 2010 . 4 4299 -4307 . DOI:10.1021/nn1010182http://doi.org/10.1021/nn1010182 .
Fong, K. D.; Wang, T.; Kim, H.-K.; Kumar, R. V.; Smoukov, S. K. . Semi-interpenetrating polymer networks for enhanced supercapacitor electrodes . ACS Energy Lett. , 2017 . 2 2014 -2020 . DOI:10.1021/acsenergylett.7b00466http://doi.org/10.1021/acsenergylett.7b00466 .
Zeng, Y.; Han, Y.; Zhao, Y.; Zeng, Y.; Yu, M.; Liu, Y.; Tang, H.; Tong, Y.; Lu, X. . Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors . Adv. Energy Mater. , 2015 . 5 1402176 DOI:10.1002/aenm.201402176http://doi.org/10.1002/aenm.201402176 .
Mulzer, C. R.; Shen, L.; Bisbey, R. P.; McKone, J. R.; Zhang, N.; Abruña, H. D.; Dichtel, W. R. . Superior charge storage and power density of a conducting polymer-modified covalent organic framework . ACS Cent. Sci. , 2016 . 2 667 -673 . DOI:10.1021/acscentsci.6b00220http://doi.org/10.1021/acscentsci.6b00220 .
Anothumakkool, B.; Soni, B.; Bhange, S. N.; Kurungot, S. . Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor . Energy Environ. Sci. , 2015 . 8 1339 -1347 . DOI:10.1039/C5EE00142Khttp://doi.org/10.1039/C5EE00142K .
Liu, A.; Kovacik, P.; Peard, N.; Tian, W.; Goktas, H.; Lau, J.; Dunn, B.; Gleason, K. K. . Monolithic flexible supercapacitors integrated into single sheets of paper and membrane via vapor printing . Adv. Mater. , 2017 . 29 1606091 DOI:10.1002/adma.201606091http://doi.org/10.1002/adma.201606091 .
D’Arcy, J. M.; El-Kady, M. F.; Khine, P. P.; Zhang, L.; Lee, S. H.; Davis, N. R.; Liu, D. S.; Yeung, M. T.; Kim, S. Y.; Turner, C. L.; Lech, A. T.; Hammond, P. T.; Kaner, R. B. . Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors . ACS Nano , 2014 . 8 1500 -1510 . DOI:10.1021/nn405595rhttp://doi.org/10.1021/nn405595r .
Goodenough, J. B.; Kim, Y. . Challenges for rechargeable Li batteries . Chem. Mater. , 2010 . 22 587 -603 . DOI:10.1021/cm901452zhttp://doi.org/10.1021/cm901452z .
Scrosati, B.; Hassoun, J.; Sun, Y. K. . Lithium-ion batteries a look into the future . Energy Environ. Sci. , 2011 . 4 3287 -3295. .
Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. . Rechargeable lithium-sulfur batteries . Chem. Rev. , 2014 . 114 11751 -11787 . DOI:10.1021/cr500062vhttp://doi.org/10.1021/cr500062v .
Xiao, P.; Bu, F.; Yang, G.; Zhang, Y.; Xu, Y. . Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices . Adv. Mater. , 2017 . 29 1703324 DOI:10.1002/adma.201703324http://doi.org/10.1002/adma.201703324 .
Zhang, M.; Yu, X.; Ma, H.; Du, W.; Qu, L.; Li, C.; Shi, G. . Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance . Energy Environ. Sci. , 2018 . 11 559 -565 . DOI:10.1039/C7EE03349Dhttp://doi.org/10.1039/C7EE03349D .
Gund, G. S.; Park, J. H.; Harpalsinh, R.; Kota, M.; Shin, J. H.; Kim, T.; Gogotsi, Y.; Park, H. S. . MXene/polymer hybrid materials for flexible ac-filtering electrochemical capacitors . Joule , 2019 . 3 164 -176 . DOI:10.1016/j.joule.2018.10.017http://doi.org/10.1016/j.joule.2018.10.017 .
Hou, Y.; Cheng, Y.; Hobson, T.; Liu, J. . Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes . Nano Lett. , 2010 . 10 2727 -2733 . DOI:10.1021/nl101723ghttp://doi.org/10.1021/nl101723g .
Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; Nicolosi, V.; Coleman, J. N. . A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes . ACS Nano , 2016 . 10 3702 -3713 . DOI:10.1021/acsnano.6b00218http://doi.org/10.1021/acsnano.6b00218 .
Yu, Z.; Li, C.; Abbitt, D.; Thomas, J. . Flexible, sandwich-like Ag-nanowire/PEDOT:PSS nanopillar/MnO2 high performance supercapacitors . J. Mater. Chem. A , 2014 . 2 10923 -10929 . DOI:10.1039/C4TA01245Chttp://doi.org/10.1039/C4TA01245C .
Li, Z.; Ma, G.; Ge, R.; Qin, F.; Dong, X.; Meng, W.; Liu, T.; Tong, J.; Jiang, F.; Zhou, Y.; Li, K.; Min, X.; Huo, K.; Zhou, Y. . Free-standing conducting polymer films for high-performance energy devices . Angew. Chem. Int. Ed. , 2016 . 55 979 -982 . DOI:10.1002/anie.201509033http://doi.org/10.1002/anie.201509033 .
Miller, J. R.; Outlaw, R. A.; Holloway, B. C. . Graphene double-layer capacitor with ac line-filtering performance . Science , 2010 . 329 1637 -1639 . DOI:10.1126/science.1194372http://doi.org/10.1126/science.1194372 .
Wang, C.; Wang, C.; Huang, Z.; Xu, S. . Materials and structures toward soft electronics . Adv. Mater. , 2018 . 30 1801368 DOI:10.1002/adma.201801368http://doi.org/10.1002/adma.201801368 .
Liu, W.; Song, M. S.; Kong, B.; Cui, Y. . Flexible and stretchable energy storage: recent advances and future perspectives . Adv. Mater. , 2017 . 29 1603436 DOI:10.1002/adma.201603436http://doi.org/10.1002/adma.201603436 .
Blohm, M. L.; Pickett, J. E.; VanDort, P. C. 1991, US Pat. 5 111 327.
Wustoni, S.; Combe, C.; Ohayon, D.; Akhtar, M. H.; McCulloch, I.; Inal, S. . Membrane-free detection of metal cations with an organic electrochemical transistor . Adv. Funct. Mater. , 2019 . DOI:10.1002/adfm.201904403http://doi.org/10.1002/adfm.201904403 .
Emanuelsson, R.; Sterby, M.; Strømme, M.; Sjödin, M. . An all-organic proton battery . J. Am. Chem. Soc. , 2017 . 139 4828 -4834 . DOI:10.1021/jacs.7b00159http://doi.org/10.1021/jacs.7b00159 .
0
Views
4
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution