a.State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
b.Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
c.Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
d.Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
zhanglening@jlu.edu.cn (L.N.Z.)
hao_zhang@jlu.edu.cn (H.Z.)
Scan for full text
Shu-Wei Liu, Lu Wang, Min Lin, et al. Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. [J]. Chinese Journal of Polymer Science 37(2):115-128(2019)
Shu-Wei Liu, Lu Wang, Min Lin, et al. Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. [J]. Chinese Journal of Polymer Science 37(2):115-128(2019) DOI: 10.1007/s10118-019-2193-4.
The past decade has witnessed the booming developments of the new methodologies for noninvasive tumor treatment, which are considered to overcome the current limitation of low treating efficacy, high risk of tumor recurrence, and severe side effects. Among a variety of novel therapeutic methods, photothermal therapy, employing nanometer-sized agents as the heat generators under near-infrared (NIR) light irradiation to ablate tumors, gives new insights into noninvasive tumor treatments with minimal side effects. Although many nanomaterials possess photothermal effects, inorganic nanoparticles and polymers are the most competitive alternatives considering the high photothermal performance and good biocompatibility. In this review, we summarized the tumor photothermal therapy using the nanocomposites composed of inorganic nanoparticles and polymers. Extinction coefficient and photothermal transduction efficiency are the two main factors to evaluate the photothermal performance of nanocomposites ,in vitro,. Considering the improvement in the stability, biocompatibility, blood circulation half-life, and tumor uptake rate after polymer coating, these nanocomposites should be designed with inorganic core and polymer shell, thus improving the tumor treating efficacy ,in vivo,. Such structure fulfills the requirements of high photothermal performance and good bio-security, making it possible to achieve complete ablation for shallow and small tumors under the safe limitation of NIR laser power density.
NanocompositesPhotothermal therapyInorganic nanoparticlesPolymersTumor theranostics
Gong, P.; Liang, S.; Carlton, E. J.; Jiang, Q.; Wu, J.; Wang, L.; Remals, J. V . Urbanisation and health in China . Lancet , 2012 . 379 (9818 ):843 -852 . DOI:10.1016/S0140-6736(11)61878-3http://doi.org/10.1016/S0140-6736(11)61878-3 .
Chen, W . Cancer incidence and mortality in China, 2013 . Cancer Lett. , 2017 . 401 63 -71 . DOI:10.1016/j.canlet.2017.04.024http://doi.org/10.1016/j.canlet.2017.04.024 .
Choueiri, T. K.; Motzer, R. J . Systemic therapy for metastatic renal-cell carcinoma . N. Engl. J. Med. , 2017 . 376 (4 ):354 -366 . DOI:10.1056/NEJMra1601333http://doi.org/10.1056/NEJMra1601333 .
Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R . Nanocarriers as an emerging platform for cancer therapy . Nat. Nanotechnol. , 2007 . 2 (12 ):751 -760 . DOI:10.1038/nnano.2007.387http://doi.org/10.1038/nnano.2007.387 .
Fang, R. H.; Kroll, A. V.; Gao, W.; Zhang, L . Cell membrane coating nanotechnology . Adv. Mater. , 2018 . 30 (23 ):1706759 DOI:10.1002/adma.v30.23http://doi.org/10.1002/adma.v30.23 .
Wang, Z.; Liu, W.; Shi, J.; Chen, N.; Fan, C . Nanoscale delivery systems for cancer immunotherapy . Mater. Horiz. , 2018 . 5 (3 ):344 -362 . DOI:10.1039/C7MH00991Ghttp://doi.org/10.1039/C7MH00991G .
Vankayala, R.; Hwang, K. C . Near-infrared-light-activatable nanomaterials-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment . Adv. Mater. , 2018 . 30 (23 ):1706320 DOI:10.1002/adma.v30.23http://doi.org/10.1002/adma.v30.23 .
Xu, L.; Mou, F.; Gong, H.; Luo, M.; Guan, J . Light-driven micro/nanomotors: From fundamentals to applications . Chem. Soc. Rev. , 2017 . 46 (22 ):6905 -6926 . DOI:10.1039/C7CS00516Dhttp://doi.org/10.1039/C7CS00516D .
Gai, S.; Yang, G.; Yang, P.; He, F.; Lin, J.; Jin, D.; Xing, B . Recent advances in functional nanomaterials for light-triggered cancer therapy . Nano Today , 2018 . 19 146 -187 . DOI:10.1016/j.nantod.2018.02.010http://doi.org/10.1016/j.nantod.2018.02.010 .
Zhao, J.; Zhong, D.; Zhou, S . NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy . J. Mater. Chem. B , 2018 . 6 (3 ):349 -365 . DOI:10.1039/C7TB02573Dhttp://doi.org/10.1039/C7TB02573D .
Liu, B.; Li, C.; Cheng, Z.; Hou, Z.; Huang, S.; Lin, J . Functional nanomaterials for near-infrared-triggered cancer therapy . Biomater. Sci. , 2016 . 4 (6 ):890 -909 . DOI:10.1039/C6BM00076Bhttp://doi.org/10.1039/C6BM00076B .
Zhang, P.; Hu, C.; Ran, W.; Meng, J.; Yin, Q.; Li, Y . Recent progress in light-triggered nanotheranostics for cancer treatment . Theranostics , 2016 . 6 (7 ):948 -968 . DOI:10.7150/thno.15217http://doi.org/10.7150/thno.15217 .
Kang, H.; Mintri, S.; Menon, A. V.; Lee, H. Y.; Choi, H. S.; Kim, J . Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles . Nanoscale , 2015 . 7 (45 ):18848 -18862. .
Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S . Organic molecule-based photothermal agents: An expanding photothermal therapy universe . Chem. Soc. Rev. , 2018 . 47 (7 ):2280 -2297 . DOI:10.1039/C7CS00522Ahttp://doi.org/10.1039/C7CS00522A .
Wu, M. X.; Yang, Y. W . Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy . Adv. Mater. , 2017 . 29 (23 ):1606134 DOI:10.1002/adma.201606134http://doi.org/10.1002/adma.201606134 .
Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y . Gold nanomaterials at work in biomedicine . Chem. Rev. , 2015 . 115 (19 ):10410 -10488 . DOI:10.1021/acs.chemrev.5b00193http://doi.org/10.1021/acs.chemrev.5b00193 .
Spyratou, E.; Makropoulou, M.; Efstathopoulos, E. P.; Georgakilas, A. G.; Sihver, L . Recent advances in cancer therapy based on dual mode gold nanoparticles . Cancers , 2017 . 9 (12 ):173 DOI:10.3390/cancers9120173http://doi.org/10.3390/cancers9120173 .
Gu, Z.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y . Graphene-based smart platforms for combined cancer therapy . Adv. Mater. , 2018 . 1800662 DOI:10.1002/adma.201800662http://doi.org/10.1002/adma.201800662 .
Wang, H.; Chen, Q.; Zhou, S . Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery . Chem. Soc. Rev. , 2018 . 47 (11 ):4198 -4232 . DOI:10.1039/C7CS00399Dhttp://doi.org/10.1039/C7CS00399D .
Hassan, M.; Gomes, V. G.; Dehghani, A.; Ardekani, S. M . Engineering carbon quantum dots for photomediated theranostics . Nano Res. , 2018 . 11 (1 ):1 -41 . DOI:10.1007/s12274-017-1616-1http://doi.org/10.1007/s12274-017-1616-1 .
Cai, Y.; Si, W.; Huang, W.; Chen, P.; Shao, J.; Dong, X . Organic dye based nanoparticles for cancer phototheranostics . Small , 2018 . 14 (25 ):1704247 DOI:10.1002/smll.v14.25http://doi.org/10.1002/smll.v14.25 .
Wang, H.; Li, X.; Tse, B. W. C.; Yang, H.; Thorling, C. A.; Liu, Y.; Touraud, M.; Chouane, J. B.; Liu, X.; Roberts, M. S.; Liang, X . Indocyanine green-incorporating nanoparticles for cancer theranostics . Theranostics , 2018 . 8 (5 ):1227 -1242 . DOI:10.7150/thno.22872http://doi.org/10.7150/thno.22872 .
Liang, X.; Li, Y.; Li, X.; Jing, L.; Deng, Z.; Yue, X.; Li, C.; Dai, Z . PEGylated polypyrrole nanoparticles conjugating gadolinium chelates for dual-modal MRI/photoacoustic imaging guided photothermal therapy of cancer . Adv. Funct. Mater. , 2015 . 25 (9 ):1451 -1462 . DOI:10.1002/adfm.v25.9http://doi.org/10.1002/adfm.v25.9 .
Song, X.; Gong, H.; Yin, S.; Cheng, L.; Wang, C.; Li, Z.; Li, Y.; Wang, X.; Liu, G.; Liu, Z . Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy . Adv. Funct. Mater. , 2014 . 24 (9 ):1194 -1201 . DOI:10.1002/adfm.v24.9http://doi.org/10.1002/adfm.v24.9 .
Yang, Y.; Aw, J.; Xing, B . Nanostructures for NIR light-controlled therapies . Nanoscale , 2017 . 9 (11 ):3698 -3718 . DOI:10.1039/C6NR09177Fhttp://doi.org/10.1039/C6NR09177F .
Lin, M.; Wang, D. D., Liu, S. W., Zhou, D.; Zhang, H.; Liu, C.; Sun, H. C . Construction of nanoparticle/polymer composite photothermal nanoplatforms and therapeutic applications . Acta Polymerica Sinica (in Chinese) , 2015 . (2 ):133 -146. .
Lin, M.; Guo, C.; Li, J.; Zhou, D.; Liu, K.; Zhang, X.; Xu, T.; Zhang, H.; Wang, L.; Yang, B . Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70% . ACS Appl. Mater. Interfaces , 2014 . 6 (8 ):5860 -5868 . DOI:10.1021/am500715fhttp://doi.org/10.1021/am500715f .
Roper, D. K.; Ahn, W.; Hoepfner, M . Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles . J. Phys. Chem. C , 2007 . 111 (9 ):3636 -3641 . DOI:10.1021/jp064341whttp://doi.org/10.1021/jp064341w .
Dykman, L. A.; Khlebtsov, N. G . Multifunctional gold-based nanocomposites for theranostics . Biomaterials , 2016 . 108 13 -34 . DOI:10.1016/j.biomaterials.2016.08.040http://doi.org/10.1016/j.biomaterials.2016.08.040 .
Abadeer, N. S.; Murphy, C. J . Recent progress in cancer thermal therapy using gold nanoparticles . J. Phys. Chem. C , 2016 . 120 (9 ):4691 -4716 . DOI:10.1021/acs.jpcc.5b11232http://doi.org/10.1021/acs.jpcc.5b11232 .
Zhu, S.; Gong, L.; Xie, J.; Gu, Z.; Zhao, Y . Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications . Small Methods , 2017 . 1 (12 ):1700220 DOI:10.1002/smtd.v1.12http://doi.org/10.1002/smtd.v1.12 .
Li, X.; Shan, J.; Zhang, W.; Su, S.; Yuwen, L.; Wang, L . Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets . Small , 2017 . 13 (5 ):1602660 DOI:10.1002/smll.v13.5http://doi.org/10.1002/smll.v13.5 .
Estelrich, J.; Busquets, M. A . Iron oxide nanoparticles in photothermal therapy . Molecules , 2018 . 23 (7 ):1567 DOI:10.3390/molecules23071567http://doi.org/10.3390/molecules23071567 .
Xie, X.; Li, Z.; Zhang, Y.; Guo, S.; Pendharkar, A. I.; Lu, M.; Huang, L.; Huang, W.; Han, G . Emerging ≈800 nm excited lanthanide-doped upconversion nanoparticles . Small , 2017 . 13 (6 ):1602843 DOI:10.1002/smll.v13.6http://doi.org/10.1002/smll.v13.6 .
Sun, L.; Wei, R.; Feng, J.; Zhang, H . Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects . Coord. Chem. Rev. , 2018 . 364 10 -32 . DOI:10.1016/j.ccr.2018.03.007http://doi.org/10.1016/j.ccr.2018.03.007 .
Jabeen, F.; Najam-ul-Haq, M.; Javeed, R.; Huck, C. W.; Bonn, G. K . Au-nanomaterials as a superior choice for near-infrared photothermal therapy . Molecules , 2014 . 19 (12 ):20580 -20593 . DOI:10.3390/molecules191220580http://doi.org/10.3390/molecules191220580 .
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z . Functional nanomaterials for phototherapies of cancer . Chem. Rev. , 2014 . 114 (21 ):10869 -10939 . DOI:10.1021/cr400532zhttp://doi.org/10.1021/cr400532z .
Dickerson, E. B.; Dreaden, E. C.; Huang, X.; El-Sayed, I. H.; Chu, H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A . Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice . Cancer Lett. , 2008 . 269 (1 ):57 -66 . DOI:10.1016/j.canlet.2008.04.026http://doi.org/10.1016/j.canlet.2008.04.026 .
An, L.; Wang, Y.; Tian, Q.; Yang, S . Small gold nanorods: Recent advances in synthesis, biological imaging, and cancer therapy . Materials , 2017 . 10 (12 ):1372 DOI:10.3390/ma10121372http://doi.org/10.3390/ma10121372 .
Dong, L.; Li, Y.; Li, Z.; Xu, N.; Liu, P.; Du, H.; Zhang, Y.; Huang, Y.; Zhu, J.; Ren, G.; Xie, J.; Wang, K.; Zhou, Y.; Shen, C.; Zhu, J.; Tao, J . Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors . ACS Appl. Mater. Interfaces , 2018 . 10 (11 ):9247 -9256 . DOI:10.1021/acsami.7b18293http://doi.org/10.1021/acsami.7b18293 .
Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, Z.; Yu, H.; Zhang, P.; Wang, S.; Li, Y . Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer . Adv. Funct. Mater. , 2017 . 27 (3 ):1604300 DOI:10.1002/adfm.v27.3http://doi.org/10.1002/adfm.v27.3 .
Yang, D. P.; Liu, X.; Teng, C. P.; Owh, C.; Win, K. Y.; Lin, M.; Loh, X. J.; Wu, Y. L.; Li, Z.; Ye, E . Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy . Nanoscale , 2017 . 9 (41 ):15753 -15759 . DOI:10.1039/C7NR06286Ahttp://doi.org/10.1039/C7NR06286A .
Li, S.; Zhang, L.; Wang, T.; Li, L.; Wang, C.; Su, Z . The facile synthesis of hollow Au nanoflowers for synergistic chemo-photothermal cancer therapy . Chem. Commun. , 2015 . 51 (76 ):14338 -14341 . DOI:10.1039/C5CC05676Dhttp://doi.org/10.1039/C5CC05676D .
Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L . Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy . Nano Lett. , 2007 . 7 1929 DOI:10.1021/nl070610yhttp://doi.org/10.1021/nl070610y .
Bi, C.; Chen, J.; Chen, Y.; Song, Y.; Li, A.; Mao, Z.; Gao, C.; Wang, D.; Möhwald, H.; Xia, H . Realizing a record photothermal conversion efficiency of spiky gold nanoparticles in the second near-infrared window by structure-based rational design . Chem. Mater. , 2018 . 30 2709 -2718 . DOI:10.1021/acs.chemmater.8b00312http://doi.org/10.1021/acs.chemmater.8b00312 .
Zhao, Y.; Liu, W.; Tian, Y.; Yang, Z.; Wang, X.; Zhang, Y.; Tang, Y.; Zhao, S.; Wang, C.; Liu, Y.; Sun, J.; Teng, Z.; Wang, S.; Lu, G . Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer . ACS Appl. Mater. Interfaces , 2018 . 10 16992 -17003 . DOI:10.1021/acsami.7b19013http://doi.org/10.1021/acsami.7b19013 .
Wang, L.; Chen, Y.; Lin, H. Y.; Hou, Y. T.; Yang, L. C.; Sun, A. Y.; Liu, J. Y.; Chang, C. W.; Wan, D . Near-IR-absorbing gold nanoframes with enhanced physiological stability and improved biocompatibility for in vivo biomedical applications . ACS Appl. Mater. Interfaces , 2017 . 9 3873 -3884 . DOI:10.1021/acsami.6b12591http://doi.org/10.1021/acsami.6b12591 .
Yang, K.; Yang, G.; Chen, L.; Cheng, L.; Wang, L.; Ge, C.; Liu, Z . FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy . Biomaterials , 2015 . 38 1 -9 . DOI:10.1016/j.biomaterials.2014.10.052http://doi.org/10.1016/j.biomaterials.2014.10.052 .
Miao, Z. H.; Lv, L. X.; Li, K.; Liu, P. Y.; Li, Z.; Yang, H.; Zhao, Q.; Chang, M.; Zhen, L.; Xu, C. Y . Liquid exfoliation of colloidal rhenium disulfide nanosheets as a multifunctional theranostic agent for in vivo photoacoustic/CT imaging and photothermal therapy . Small , 2018 . 14 (14 ):1703789 DOI:10.1002/smll.v14.14http://doi.org/10.1002/smll.v14.14 .
Bu, X.; Zhou, D.; Li, J.; Zhang, X.; Zhang, K.; Zhang, H.; Yang, B . Copper sulfide self-assembly architectures with improved photothermal performance . Langmuir , 2014 . 30 (5 ):1416 -1423 . DOI:10.1021/la404009dhttp://doi.org/10.1021/la404009d .
Sun, S.; Li, P.; Liang, S.; Yang, Z . Diversified copper sulfide (Cu2-xS) micro-/nanostructures: A comprehensive review on synthesis, modifications and applications . Nanoscale , 2017 . 9 (32 ):11357 -11404 . DOI:10.1039/C7NR03828Chttp://doi.org/10.1039/C7NR03828C .
Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J . Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells . Adv. Mater. , 2011 . 23 (31 ):3542 -3547 . DOI:10.1002/adma.201101295http://doi.org/10.1002/adma.201101295 .
Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J . Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo . ACS Nano , 2011 . 5 (12 ):9761 -9771. .
Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J . Localized surface plasmon resonance in semiconductor nanocrystals . Chem. Rev. , 2018 . 118 (6 ):3121 -3207 . DOI:10.1021/acs.chemrev.7b00613http://doi.org/10.1021/acs.chemrev.7b00613 .
Liu, T.; Liu, Z . 2D MoS2 nanostructures for biomedical applications . Adv. Healthcare Mater. , 2018 . 7 (8 ):1701158 DOI:10.1002/adhm.v7.8http://doi.org/10.1002/adhm.v7.8 .
Chen, H.; Liu, T.; Su, Z.; Shang, L.; Wei, G . 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy . Nanoscale Horiz. , 2018 . 3 (2 ):74 -89 . DOI:10.1039/C7NH00158Dhttp://doi.org/10.1039/C7NH00158D .
Huang, X.; Zhang, W.; Guan, G.; Song, G.; Zou, R.; Hu, J . Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics . Acc. Chem. Res. , 2017 . 50 (10 ):2529 -2538 . DOI:10.1021/acs.accounts.7b00294http://doi.org/10.1021/acs.accounts.7b00294 .
Hu, Y.; Mignani, S.; Majoral, J. P.; Shen, M.; Shi, X . Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy . Chem. Soc. Rev. , 2018 . 47 (5 ):1874 -1900 . DOI:10.1039/C7CS00657Hhttp://doi.org/10.1039/C7CS00657H .
Shen, L.; Li, B.; Qiao, Y . Fe3O4 nanoparticles in targeted drug/gene delivery systems . Materials , 2018 . 11 (2 ):324 DOI:10.3390/ma11020324http://doi.org/10.3390/ma11020324 .
Chen, Y.; Ye, D.; Wu, M.; Chen, H.; Zhang, L.; Shi, J.; Wang, L . Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer . Adv. Mater. , 2014 . 26 (41 ):7019 -7026 . DOI:10.1002/adma.201402572http://doi.org/10.1002/adma.201402572 .
Manthiram, K.; Alivisatos, A. P . Tunable localized surface plasmon resonances in tungsten oxide nanocrystals . J. Am. Chem. Soc. , 2012 . 134 (9 ):3995 -3998 . DOI:10.1021/ja211363whttp://doi.org/10.1021/ja211363w .
Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M.; Zhao, D . Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo . Adv. Mater. , 2013 . 25 (14 ):2095 -2100 . DOI:10.1002/adma.201204616http://doi.org/10.1002/adma.201204616 .
Fang, Z.; Jiao, S.; Wang, B.; Yin, W.; Liu, S.; Gao, R.; Liu, Z.; Pang, G.; Feng, S . Synthesis of reduced cubic phase WO3-x nanosheet by direct reduction of H2WO4·H2O . Materials Today Energy , 2017 . 6 146 -153 . DOI:10.1016/j.mtener.2017.09.014http://doi.org/10.1016/j.mtener.2017.09.014 .
Wang, F.; Song, C.; Guo, W.; Ding, D.; Zhang, Q.; Gao, Y.; Yan, M.; Guo, C.; Liu, S . Urchin-like tungsten suboxide for photoacoustic imaging-guided photothermal and photodynamic cancer combination therapy . New J. Chem. , 2017 . 41 (23 ):14179 -14187 . DOI:10.1039/C7NJ03078Ahttp://doi.org/10.1039/C7NJ03078A .
Song, G.; Shen, J.; Jiang, F.; Hu, R.; Li, W.; An, L.; Zou, R.; Chen, Z.; Qin, Z.; Hu, J . Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells . ACS Appl. Mater. Interfaces , 2014 . 6 (6 ):3915 -3922 . DOI:10.1021/am4050184http://doi.org/10.1021/am4050184 .
Fan, W.; Bu, W.; Shi, J . On the latest three-stage development of nanomedicines based on upconversion nanoparticles . Adv. Mater. , 2016 . 28 (21 ):3987 -4011 . DOI:10.1002/adma.201505678http://doi.org/10.1002/adma.201505678 .
Cheng, L.; Yang, K.; Li, Y.; Chen, J.; Wang, C.; Shao, M.; Lee, S. T.; Liu, Z . Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy . Angew. Chem. Int. Ed. , 2011 . 50 (32 ):7385 -7390 . DOI:10.1002/anie.v50.32http://doi.org/10.1002/anie.v50.32 .
Sun, T.; Ai, F.; Zhu, G.; Wang, F . Upconversion in nanostructured materials: From optical tuning to biomedical applications . Chem. Asian J. , 2018 . 13 (4 ):373 -385 . DOI:10.1002/asia.v13.4http://doi.org/10.1002/asia.v13.4 .
Huang, X.; Tang, S.; Yang, J.; Tan, Y.; Zheng, N . Etching growth under surface confinement: An effective strategy to prepare mesocrystalline Pd nanocorolla . J. Am. Chem. Soc. , 2011 . 133 (40 ):15946 -15949 . DOI:10.1021/ja207788hhttp://doi.org/10.1021/ja207788h .
Qin, Z.; Li, Y.; Gu, N . Progress in applications of Prussian blue nanoparticles in biomedicine . Adv. Healthcare Mater. , 2018 . 1800347 .
Fu, G.; Liu, W.; Feng, S.; Yue, X . Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy . Chem. Commun. , 2012 . 48 (94 ):11567 -11569 . DOI:10.1039/c2cc36456ehttp://doi.org/10.1039/c2cc36456e .
Dacarro, G.; Taglietti, A.; Pallavicini, P . Prussian blue nanoparticles as a versatile photothermal tool . Molecules , 2018 . 23 (6 ):1414 DOI:10.3390/molecules23061414http://doi.org/10.3390/molecules23061414 .
Nel, A.; Xia, T.; Mädler, L.; Li, N . Toxic potential of materials at the nanolevel . Science , 2006 . 311 (5761 ):622 -627 . DOI:10.1126/science.1114397http://doi.org/10.1126/science.1114397 .
Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P.; Mahmoudi, M . Toxicity of nanomaterials . Chem. Soc. Rev. , 2012 . 41 (6 ):2323 -2343 . DOI:10.1039/C1CS15188Fhttp://doi.org/10.1039/C1CS15188F .
Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C . Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods . J. Am. Chem. Soc. , 2014 . 136 (20 ):7317 -7326 . DOI:10.1021/ja412735phttp://doi.org/10.1021/ja412735p .
Xu, B.; Ju, Y.; Cui, Y.; Song, G.; Iwase, Y.; Hosoi, A.; Morita, Y . tLyP-1-conjugated Au-nanorod@SiO2core-shell nanoparticles for tumor-targeted drug delivery and photothermal therapy . Langmuir , 2014 . 30 (26 ):7789 -7797 . DOI:10.1021/la500595bhttp://doi.org/10.1021/la500595b .
Shi, Y.; Liu, M.; Deng, F.; Zeng, G.; Wan, Q.; Zhang, X.; Wei, Y . Recent progress and development on polymeric nanomaterials for photothermal therapy: A brief overview . J. Mater. Chem. B , 2017 . 5 (2 ):194 -206 . DOI:10.1039/C6TB02249Ahttp://doi.org/10.1039/C6TB02249A .
Jin, Y.; Yang, X.; Tian, J . Targeted polypyrrole nanoparticles for the identification and treatment of hepatocellular carcinoma . Nanoscale , 2018 . 10 (20 ):9594 -9601 . DOI:10.1039/C8NR02036Ahttp://doi.org/10.1039/C8NR02036A .
Wang, Y.; Xiao, Y.; Tang, R . Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo . Chem. Eur. J. , 2014 . 20 (37 ):11826 -11834 . DOI:10.1002/chem.201403480http://doi.org/10.1002/chem.201403480 .
Wang, M . Emerging multifunctional NIR photothermal therapy systems based on polypyrrole nanoparticles . Polymers , 2016 . 8 (10 ):373 DOI:10.3390/polym8100373http://doi.org/10.3390/polym8100373 .
Zha, Z.; Yue, X.; Ren, Q.; Dai, Z . Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells . Adv. Mater. , 2013 . 25 (5 ):777 -782 . DOI:10.1002/adma.201202211http://doi.org/10.1002/adma.201202211 .
Chen, M.; Fang, X.; Tang, S.; Zheng, N . Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy . Chem. Commun. , 2012 . 48 (71 ):8934 -8936 . DOI:10.1039/c2cc34463ghttp://doi.org/10.1039/c2cc34463g .
Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K.; Huh, Y. M.; Haam, S . Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells . Angew. Chem. Int. Ed. , 2011 . 50 (2 ):441 -444 . DOI:10.1002/anie.201005075http://doi.org/10.1002/anie.201005075 .
Mrówczyński, R . Polydopamine-based multifunctional (nano)materials for cancer therapy . ACS Appl. Mater. Interfaces , 2018 . 10 (9 ):7541 -7561 . DOI:10.1021/acsami.7b08392http://doi.org/10.1021/acsami.7b08392 .
Liu, M.; Zeng, G.; Wang, K.; Wan, Q.; Tao, L.; Zhang, X.; Wei, Y . Recent developments in polydopamine: An emerging soft matter for surface modification and biomedical applications . Nanoscale , 2016 . 8 (38 ):16819 -16840 . DOI:10.1039/C5NR09078Dhttp://doi.org/10.1039/C5NR09078D .
Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z . In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles . Adv. Mater. , 2012 . 24 (41 ):5586 -5592 . DOI:10.1002/adma.201202625http://doi.org/10.1002/adma.201202625 .
Zhou, J.; Lu, Z.; Zhu, X.; Wang, X.; Liao, Y.; Ma, Z.; Li, F . NIR photothermal therapy using polyaniline nanoparticles . Biomaterials , 2013 . 34 (37 ):9584 -9592 . DOI:10.1016/j.biomaterials.2013.08.075http://doi.org/10.1016/j.biomaterials.2013.08.075 .
Lin, M.; Wang, D.; Li, S.; Tang, Q.; Liu, S.; Ge, R.; Liu, Y.; Zhang, D.; Sun, H.; Zhang, H.; Yang, B . Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy . Biomaterials , 2016 . 104 213 -222 . DOI:10.1016/j.biomaterials.2016.07.021http://doi.org/10.1016/j.biomaterials.2016.07.021 .
Zhong, X.; Yang, K.; Dong, Z.; Yi, X.; Wang, Y.; Ge, C.; Zhao, Y.; Liu, Z . Polydopamine as a biocompatible multifunctional nanocarrier for combined radioisotope therapy and chemotherapy of cancer . Adv. Funct. Mater. , 2015 . 25 (47 ):7327 -7336 . DOI:10.1002/adfm.v25.47http://doi.org/10.1002/adfm.v25.47 .
Dong, Z.; Gong, H.; Gao, M.; Zhu, W.; Sun, X.; Feng, L.; Fu, T.; Li, Y.; Liu, Z . Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy . Theranostics , 2016 . 6 (7 ):1031 -1042 . DOI:10.7150/thno.14431http://doi.org/10.7150/thno.14431 .
Ge, R.; Lin, M.; Li, X.; Liu, S.; Wang, W.; Li, S.; Zhang, X.; Liu, Y.; Liu, L.; Shi, F.; Sun, H.; Zhang, H.; Yang, B . Cu2+-loaded polydopamine nanoparticles for magnetic resonance imaging-guided pH- and near-infrared-light-stimulated thermochemotherapy . ACS Appl. Mater. Interfaces , 2017 . 9 (23 ):19706 -19716 . DOI:10.1021/acsami.7b05583http://doi.org/10.1021/acsami.7b05583 .
Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A . Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods . J. Am. Chem. Soc. , 2006 . 128 (6 ):2115 -2120 . DOI:10.1021/ja057254ahttp://doi.org/10.1021/ja057254a .
Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J. X . Gold nanorods mediate tumor cell death by compromising membrane integrity . Adv. Mater. , 2007 . 19 (20 ):3136 -3141 . DOI:10.1002/adma.200701974http://doi.org/10.1002/adma.200701974 .
Huang, X.; Peng, X.; Wang, Y.; Wang, Y.; Shin, D. M.; El-Sayed, M. A.; Nie, S . A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands . ACS Nano , 2010 . 4 (10 ):5887 -5896 . DOI:10.1021/nn102055shttp://doi.org/10.1021/nn102055s .
Wang, J.; Zhu, C.; Han, J.; Han, N.; Xi, J.; Fan, L.; Guo, R . Controllable synthesis of gold nanorod/conducting polymer core/shell hybrids toward in vitro and in vivo near-infrared photothermal therapy . ACS Appl. Mater. Interfaces , 2018 . 10 (15 ):12323 -12330 . DOI:10.1021/acsami.7b16784http://doi.org/10.1021/acsami.7b16784 .
Liu, Z.; Ye, B.; Jin, M.; Chen, H.; Zhong, H.; Wang, X.; Guo, Z . Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy . Nanoscale , 2015 . 7 (15 ):6754 -6761 . DOI:10.1039/C5NR01055Ahttp://doi.org/10.1039/C5NR01055A .
Du, C.; Wang, A.; Fei, J.; Zhao, J.; Li, J . Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy . J. Mater. Chem. B , 2015 . 3 (22 ):4539 -4545 . DOI:10.1039/C5TB00560Dhttp://doi.org/10.1039/C5TB00560D .
Jiang, N.; Shao, L.; Wang, J . (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths . Adv. Mater. , 2014 . 26 (20 ):3282 -3289 . DOI:10.1002/adma.v26.20http://doi.org/10.1002/adma.v26.20 .
Hou, H.; Chen, L.; He, H.; Chen, L.; Zhao, Z.; Jin, Y . Fine-tuning the LSPR response of gold nanorod-polyaniline core-shell nanoparticles with high photothermal efficiency for cancer cell ablation . J. Mater. Chem. B , 2015 . 3 (26 ):5189 -5196 . DOI:10.1039/C5TB00556Fhttp://doi.org/10.1039/C5TB00556F .
Liu, S.; Wang, L.; Lin, M.; Wang, D.; Song, Z.; Li, S.; Ge, R.; Zhang, X.; Liu, Y.; Li, Z.; Sun, H.; Yang, B.; Zhang, H . Cu(II)-doped polydopamine-coated gold nanorods for tumor theranostics . ACS Appl. Mater. Interfaces , 2017 . 9 (51 ):44293 -44306 . DOI:10.1021/acsami.7b13643http://doi.org/10.1021/acsami.7b13643 .
Zhang, L.; Su, H.; Cai, J.; Cheng, D.; Ma, Y.; Zhang, J.; Zhou, C.; Liu, S.; Shi, H.; Zhang, Y.; Zhang, C . A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods . ACS Nano , 2016 . 10 (11 ):10404 -10417 . DOI:10.1021/acsnano.6b06267http://doi.org/10.1021/acsnano.6b06267 .
Wang, S.; Zhao, X.; Wang, S.; Qian, J.; He, S . Biologically inspired polydopamine capped gold nanorods for drug delivery and light-mediated cancer therapy . ACS Appl. Mater. Interfaces , 2016 . 8 (37 ):24368 -24384 . DOI:10.1021/acsami.6b05907http://doi.org/10.1021/acsami.6b05907 .
Lu, W.; Singh, A. K.; Khan, S. A.; Senapati, D.; Yu, H.; Ray, P. C . Gold nano-popcorn-based targeted diagaosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy . J. Am. Chem. Soc. , 2010 . 132 (51 ):18103 -18114 . DOI:10.1021/ja104924bhttp://doi.org/10.1021/ja104924b .
Wang, L.; Meng, D.; Hao, Y.; Hu, Y.; Niu, M.; Zheng, C.; Yin, Y. Y.; Li, D.; Zhang, P.; Chang, J.; Zhang, Z.; Zhang, Y . A gold nanostar based multi-functional tumor-targeting nanoplatform for tumor theranostic applications . J. Mater. Chem. B , 2016 . 4 (35 ):5895 -5906 . DOI:10.1039/C6TB01304Jhttp://doi.org/10.1039/C6TB01304J .
Yuan, H.; Fales, A. M.; Vo-Dinh, T . TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance . J. Am. Chem. Soc. , 2012 . 134 (28 ):11358 -11361 . DOI:10.1021/ja304180yhttp://doi.org/10.1021/ja304180y .
Li, J.; Han, J.; Xu, T.; Guo, C.; Bu, X.; Zhang, H.; Wang, L.; Sun, H.; Yang, B . Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency . Langmuir , 2013 . 29 (23 ):7102 -7110 . DOI:10.1021/la401366chttp://doi.org/10.1021/la401366c .
Li, J.; Wang, W.; Zhao, L.; Rong, L.; Lan, S.; Sun, H.; Zhang, H.; Yang, B . Hydroquinone-assisted synthesis of branched Au-Ag nanoparticles with polydopamine coating as highly efficient photothermal agents . ACS Appl. Mater. Interfaces , 2015 . 7 (21 ):11613 -11623 . DOI:10.1021/acsami.5b02666http://doi.org/10.1021/acsami.5b02666 .
Skralak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y . Gold nanocages: Synthesis, properties, and applications . Acc. Chem. Res. , 2008 . 41 (12 ):1587 -1595 . DOI:10.1021/ar800018vhttp://doi.org/10.1021/ar800018v .
Au, L.; Zheng, D.; Zhou, F.; Li, Z. Y.; Li, X.; Xia, Y . A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells . ACS Nano , 2008 . 2 (8 ):1645 -1652 . DOI:10.1021/nn800370jhttp://doi.org/10.1021/nn800370j .
Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.; Zhang, H.; Xia, Y.; Li, X . Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells . Nano Lett. , 2007 . 7 (5 ):1318 -1322 . DOI:10.1021/nl070345ghttp://doi.org/10.1021/nl070345g .
Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M. J.; Xia, Y . Gold nanocages as photothermal transducers for cancer treatment . Small , 2010 . 6 (7 ):811 -817 . DOI:10.1002/smll.v6:7http://doi.org/10.1002/smll.v6:7 .
Jenkins, S. V.; Nedosekin, D. A.; Miller, E. K.; Zharov, V. P.; Dings, R. P. M.; Chen, J.; Griffin, R. J . Galectin-1-based tumour-targeting for gold nanostructure-mediated photothermal therapy . Int. J. Hyperthermia. , 2018 . 34 (1 ):19 -29 . DOI:10.1080/02656736.2017.1317845http://doi.org/10.1080/02656736.2017.1317845 .
Jeon, J. W.; Ledin, P. A.; Geldmeier, J. A.; Ponder, J. F. Jr.; Mahmoud, M. A.; El-Sayed, M.; Reynolds, J. R.; Tsukruk, V. V . Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: Transparent plasmonic aggregates . Chem. Mater. , 2016 . 28 (8 ):2868 -2881 . DOI:10.1021/acs.chemmater.6b00882http://doi.org/10.1021/acs.chemmater.6b00882 .
Zha, Z.; Wang, S.; Zhang, S.; Qu, E.; Ke, H.; Wang, J.; Dai, Z . Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy . Nanoscale , 2013 . 5 (8 ):3216 -3219 . DOI:10.1039/c3nr00541khttp://doi.org/10.1039/c3nr00541k .
Li, Y.; Lu, W.; Huang, Q.; Li, C.; Chen, W . Copper sulfide nanoparticles for photothermal ablation of tumor cells . Nanomedicine , 2010 . 5 (8 ):1161 -1171 . DOI:10.2217/nnm.10.85http://doi.org/10.2217/nnm.10.85 .
Ku, G.; Zhou, M.; Song, S.; Huang, Q.; Hazle, J.; Li, C . Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm . ACS Nano , 2012 . 6 (8 ):7489 -7496 . DOI:10.1021/nn302782yhttp://doi.org/10.1021/nn302782y .
Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C . A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy . J. Am. Chem. Soc. , 2010 . 132 (43 ):15351 -15358 . DOI:10.1021/ja106855mhttp://doi.org/10.1021/ja106855m .
Peng, H.; Ma, G.; Sun, K.; Mu, J.; Wang, H.; Lei, Z . High-performance supercapacitor based on multi-structural CuS@polypyrrole composites prepared by in situ oxidative polymerization . J. Mater. Chem. A , 2014 . 2 (10 ):3303 -3307 . DOI:10.1039/c3ta13859chttp://doi.org/10.1039/c3ta13859c .
Zhao, R.; Sun, X.; Sun, J.; Wang, L.; Han, J . Polypyrrole-modified CuS nanoprisms for efficient near-infrared photothermal therapy . RSC Adv. , 2017 . 7 (17 ):10143 -10149 . DOI:10.1039/C6RA28228Hhttp://doi.org/10.1039/C6RA28228H .
Li, Z.; Hu, Y.; Howard, K. A.; Jiang, T.; Fan, X.; Miao, Z.; Sun, Y.; Besenbacher, F.; Yu, M . Multifunctional bismuth selenide nanocomposites for antitumor thermo-chemotherapy and imaging . ACS Nano , 2016 . 10 (1 ):984 -997 . DOI:10.1021/acsnano.5b06259http://doi.org/10.1021/acsnano.5b06259 .
Wang, C.; Bai, J.; Liu, Y.; Jia, X.; Jiang, X . Polydopamine coated selenide molybdenum: A new photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy . ACS Biomater. Sci. Eng. , 2016 . 2 (11 ):2011 -2017 . DOI:10.1021/acsbiomaterials.6b00416http://doi.org/10.1021/acsbiomaterials.6b00416 .
Zheng, R.; Wang, S.; Tian, Y.; Jiang, X.; Fu, D.; Shen, S.; Yang, W . Polydopamine-coated magnetic composite particles with an enhanced photothermal effect . ACS Appl. Mater. Interfaces , 2015 . 7 (29 ):15876 -15884 . DOI:10.1021/acsami.5b03201http://doi.org/10.1021/acsami.5b03201 .
Saeed, M.; Iqbal, M. Z.; Ren, W.; Xia, Y.; Liu, C.; Khanac, W. S.; Wu, A . Controllable synthesis of Fe3O4 nanoflowers: Enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO2 . J. Mater. Chem. B , 2018 . 6 (22 ):3800 -3810 . DOI:10.1039/C8TB00745Dhttp://doi.org/10.1039/C8TB00745D .
Espinosa, A.; Corato, R. D.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C . Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment . ACS Nano , 2016 . 10 (2 ):2436 -2446 . DOI:10.1021/acsnano.5b07249http://doi.org/10.1021/acsnano.5b07249 .
Ge, R.; Li, X.; Lin, M.; Wang, D.; Li, S.; Liu, S.; Tang, Q.; Liu, Y.; Jiang, J.; Liu, L.; Sun, H.; Zhang, H.; Yang, B . Fe3O4@polydopamine composite theranostic superparticles employing preassembled Fe3O4 nanoparticles as the core . ACS Appl. Mater. Interfaces , 2016 . 8 (35 ):22942 -22952 . DOI:10.1021/acsami.6b07997http://doi.org/10.1021/acsami.6b07997 .
Zhang, X.; Xu, X.; Li, T.; Lin, M.; Lin, X.; Zhang, H.; Sun, H.; Yang, B . Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures . ACS Appl. Mater. Interfaces , 2014 . 6 (16 ):14552 -14561 . DOI:10.1021/am503831mhttp://doi.org/10.1021/am503831m .
Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J.; Yang, H. H.; Liu, G.; Chen, X . Multifunctional Fe3O4@polydopamine coreshell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy . ACS Nano , 2014 . 8 (4 ):3876 -3883 . DOI:10.1021/nn500722yhttp://doi.org/10.1021/nn500722y .
Guo, H.; Sun, H.; Zhu, H.; Guo, H.; Sun, H . Synthesis of Gd-functionalized Fe3O4@polydopamine nanocomposites for T1/T2 dual-modal magnetic resonance imaging-guided photothermal therapy . New J. Chem. , 2018 . 42 (9 ):7119 -7124 . DOI:10.1039/C8NJ00454Dhttp://doi.org/10.1039/C8NJ00454D .
Zhou, J.; Li, J.; Ding, X.; Liu, J.; Luo, Z.; Liu, Y.; Ran, Q.; Cai, K . Multifunctional Fe2O3@PPy-PEG nanocomposite for combination cancer therapy with MR imaging . Nanotechnology , 2015 . 26 (42 ):425101 DOI:10.1088/0957-4484/26/42/425101http://doi.org/10.1088/0957-4484/26/42/425101 .
Guo, W.; Wang, F.; Ding, D.; Song, C.; Guo, C.; Liu, S . TiO2–x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy . Chem. Mater. , 2017 . 29 (21 ):9262 -9274 . DOI:10.1021/acs.chemmater.7b03241http://doi.org/10.1021/acs.chemmater.7b03241 .
Jin, Y.; Li, Y.; Ma, X.; Zha, Z.; Shi, L.; Tian, J.; Dai, Z . Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer . Biomaterials , 2014 . 35 (22 ):5795 -5804 . DOI:10.1016/j.biomaterials.2014.03.086http://doi.org/10.1016/j.biomaterials.2014.03.086 .
Xiao, Z.; Peng, C.; Jiang, X.; Peng, Y.; Huang, X.; Guan, G.; Zhang, W.; Liu, X.; Qin, Z.; Hu, J . Polypyrrole-encapsulated iron tungstate nanocomposites: A versatile platform for multimodal tumor imaging and photothermal therapy . Nanoscale , 2016 . 8 (26 ):12917 -12928 . DOI:10.1039/C6NR03336Ahttp://doi.org/10.1039/C6NR03336A .
0
Views
0
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution