1.Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
Yang Liu, E-mail yliu@nankai.edu.cn
Scan for full text
Chun-Xiong Zheng, Yu Zhao, Yang Liu. Recent Advances in Self-assembled Nano-therapeutics. [J]. Chinese Journal of Polymer Science 36(3):322-346(2018)
Chun-Xiong Zheng, Yu Zhao, Yang Liu. Recent Advances in Self-assembled Nano-therapeutics. [J]. Chinese Journal of Polymer Science 36(3):322-346(2018) DOI: 10.1007/s10118-018-2078-y.
The applications of nanotechnology in biomedicine have gained considerable attentions in recent years owing to the great enhancement of therapeutic efficiency. Integration of self-assembly into nanotechnology has brought tremendous convenience during the formation of nano-carriers. Based on distinctive methods of self-assembly, nano-therapeutics have been developed to an impressive stage with the ability to perform site-specific delivery with temporal and spatial control. This review focuses on the recent advances in the preparing methods for nano-therapeutics, and their applications in the treatments of diseases.
Self-assemblyNano-therapeuticsHydrophobic effectElectrostatic interactionSupramolecular host-guest interaction
J. A. Salomon , H. Wang , M. K. Freeman . Healthy life expectancy for 187 countries, ,1990-2010:a systematic analysis for the global burden of disease study . Lancet , 2013 . 381 (9867 ):628 -628 . http://europepmc.org/abstract/MED/23245606http://europepmc.org/abstract/MED/23245606, .
R. Porter . The nature of suffering and the goals of medicine . Hist. Phil. Life Sci. , 1997 . 19 (2 ):297 -298. .
Y. Liu , J. Li , Y. Lu . Enzyme therapeutics for systemic detoxification . Adv. Drug Deliv. Rev. , 2015 . 90 (1 ):24 -39 . http://europepmc.org/abstract/med/25980935http://europepmc.org/abstract/med/25980935, .
R. Duncan . Polymer conjugates as anticancer nanomedicines . Nat. Rev. Cancer , 2006 . 6 (9 ):688 -701 . DOI:10.1038/nrc1958http://doi.org/10.1038/nrc1958.
O. C. Farokhzad , R. Langer . Impact of nanotechnology on drug delivery . ACS Nano , 2009 . 3 (1 ):16 -20 . DOI:10.1021/nn900002mhttp://doi.org/10.1021/nn900002m.
L. Zhang , F. X. Gu , J. M. Chan , A. Z. Wang . Nanoparticles in medicine:Therapeutic applications and developments . Clin. Pharmacol. Ther. , 2008 . 83 (5 ):761 -769 . DOI:10.1038/sj.clpt.6100400http://doi.org/10.1038/sj.clpt.6100400.
M. Ferrari . Cancer nanotechnology:opportunities and challenges . Nat. Rev. Cancer , 2005 . 5 (3 ):161 -171 . DOI:10.1038/nrc1566http://doi.org/10.1038/nrc1566.
K. K. Singh . Nanotechnology in cancer detection and treatment . Technol. Cancer Res. T. , 2005 . 4 (6 ):583 -583 . DOI:10.1177/153303460500400601http://doi.org/10.1177/153303460500400601.
P. Couvreur , C. Vauthier . Nanotechnology:intelligent design to treat complex disease . Pharm. Res. , 2006 . 23 (7 ):1417 -1450 . DOI:10.1007/s11095-006-0284-8http://doi.org/10.1007/s11095-006-0284-8.
N. Bertrand , J. Wu , X. Xu , N. Kamaly . Cancer nanotechnology:the impact of passive and active targeting in the era of modern cancer biology . Adv. Drug Deliv. Rev. , 2014 . 66 (1 ):2 -25 . https://dash.harvard.edu/bitstream/handle/1/29293165/Cancer%20Nanotechnology.pdf?sequence=1https://dash.harvard.edu/bitstream/handle/1/29293165/Cancer%20Nanotechnology.pdf?sequence=1, .
G. A. Ozin , K. Hou , B. V. Lotsch , L. Cademartiri . Nanofabrication by self-assembly . Mater. Today , 2009 . 12 (5 ):12 -23 . DOI:10.1016/S1369-7021(09)70156-7http://doi.org/10.1016/S1369-7021(09)70156-7.
M. Mastrangeli , S. Abbasi , C. Varel , C. Van Hoof . Self-assembly from milli-to nanoscales:methods and applications . J. Micromech Microeng. , 2009 . 19 (8 ):DOI:10.1088/0960-1317/19/8/083001http://doi.org/10.1088/0960-1317/19/8/083001 .
K. J. Bishop , C. E. Wilmer , S. Soh , B. A. Grzybowski . Nanoscale forces and their uses in self-assembly . Small , 2009 . 5 (14 ):1600 -1630 . DOI:10.1002/smll.v5:14http://doi.org/10.1002/smll.v5:14.
D. Peer , J. M. Karp , S. Hong , O. C. FaroKhzad . Nanocarriers as an emerging platform for cancer therapy . Nat. Nanotechnol. , 2007 . 2 (12 ):751 -760 . DOI:10.1038/nnano.2007.387http://doi.org/10.1038/nnano.2007.387.
K. Letchford , H. Burt . A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures:micelles, nanospheres, nanocapsules and polymersomes . Eur. J. Pharm. Biopharm. , 2007 . 65 (3 ):259 -269 . DOI:10.1016/j.ejpb.2006.11.009http://doi.org/10.1016/j.ejpb.2006.11.009.
D. Chandler . Interfaces and the driving force of hydrophobic assembly . Nature , 2005 . 437 (7059 ):640 -647 . DOI:10.1038/nature04162http://doi.org/10.1038/nature04162.
C. Wang , Z. Wang , X. Zhang . Amphiphilic building blocks for self-assembly:From amphiphiles to supra-amphiphiles . Acc. Chem. Res. , 2012 . 45 (4 ):608 -618 . DOI:10.1021/ar200226dhttp://doi.org/10.1021/ar200226d.
J. P. Hill , L. K. Shrestha , S. Ishihara , Q. Ji . Self-assembly:from amphiphiles to chromophores and beyond . Molecules , 2014 . 19 (6 ):8589 -8609 . http://europepmc.org/abstract/med/24959684http://europepmc.org/abstract/med/24959684, .
A. Rösler , G. W. M. Vandermeulen , H. A. Klok . Advanced drug delivery devices via self-assembly of amphiphilic block copolymers . Adv. Drug Deliv. Rev. , 2012 . 64 (1 ):270 -279 . https://www.sciencedirect.com/science/article/pii/S0169409X01002228https://www.sciencedirect.com/science/article/pii/S0169409X01002228, .
X. B. Xiong , Z. Binkhathlan , O. Molavi , A. Lavasanifar . Amphiphilic block co-polymers:Preparation and application in nanodrug and gene delivery . Acta Biomater. , 2012 . 8 (6 ):2017 -2033 . DOI:10.1016/j.actbio.2012.03.006http://doi.org/10.1016/j.actbio.2012.03.006.
Z. A. B. A. Aziz , A. Ahmad , S. H. Mohd-Setapar , H. Hassan . Recent advances in drug delivery of polymeric nano-micelles . Curr. Drug Metab. , 2017 . 18 (1 ):16 -29 . DOI:10.2174/1389200217666160921143616http://doi.org/10.2174/1389200217666160921143616.
V. Allain , C. Bourgaux , P. Couvreur . Self-assembled nucleolipids:From supramolecular structure to soft nucleic acid and drug delivery devices . Nucleic Acids Res. , 2012 . 40 (5 ):1891 -1903 . DOI:10.1093/nar/gkr681http://doi.org/10.1093/nar/gkr681.
Y. Chen , G. Liang . Enzymatic self-assembly of nanostructures for theranostics . Theranostics , 2012 . 2 (2 ):139 -147 . DOI:10.7150/thno.3696http://doi.org/10.7150/thno.3696.
Y. Mai , A. Eisenberg . Self-assembly of block copolymers . Chem. Soc. Rev. , 2012 . 41 (18 ):5969 -5985 . DOI:10.1039/c2cs35115chttp://doi.org/10.1039/c2cs35115c.
J. K. Kim , S. Y. Yang , Y. Lee , Y. Kim . Functional nanomaterials based on block copolymer self-assembly . Prog. Polym. Sci. , 2010 . 35 (11 ):1325 -1349 . DOI:10.1016/j.progpolymsci.2010.06.002http://doi.org/10.1016/j.progpolymsci.2010.06.002.
Z. Zhang , R. Ma , L. Shi . Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions . Acc. Chem. Res. , 2014 . 47 (4 ):1426 -1437 . DOI:10.1021/ar5000264http://doi.org/10.1021/ar5000264.
W. Wu , D. Wu , S. Li , Z. Lin . Doxorubicin loaded ph-sensitive micelles for potential tumor therapy . J. Control. Release , 2013 . 172 (1 ):E72 -E73. .
T. Cheng , R. Ma , Y. Zhang , Y. Ding . A surface-adaptive nanocarrier to prolong circulation time and enhance cellular uptake . Chem. Commun. , 2015 . 51 (81 ):14985 -14988 . DOI:10.1039/C5CC05854Fhttp://doi.org/10.1039/C5CC05854F.
V. V. Breus , C. D. Heyes , K. Tron , G. U. Nienhaus . Zwitterionic biocompatible quantum dots for wide ph stability and weak nonspecific binding to cells . ACS Nano , 2009 . 3 (9 ):2573 -2580 . DOI:10.1021/nn900600whttp://doi.org/10.1021/nn900600w.
R. R. Arvizo , O. R. Miranda , M. A. Thompson , C. M. Pabelick . Effect of nanoparticle surface charge at the plasma membrane and beyond . Nano Lett. , 2010 . 10 (7 ):2543 -2548 . DOI:10.1021/nl101140thttp://doi.org/10.1021/nl101140t.
M. C. Deshpande , M. C. Davies , M. C. Garnett , P. M. Williams . The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes . J. Control. Release , 2004 . 97 (1 ):143 -156 . DOI:10.1016/j.jconrel.2004.02.019http://doi.org/10.1016/j.jconrel.2004.02.019.
Y. Y. Yuan , C. Q. Mao , X. J. Du , J. Z. Du . Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor . Adv. Mater. , 2012 . 24 (40 ):5476 -5480 . DOI:10.1002/adma.v24.40http://doi.org/10.1002/adma.v24.40.
J. Z. Du , T. M. Sun , W. J. Song , J. Wu . A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery . Angew. Chem. Int. Ed. , 2010 . 49 (21 ):3621 -3626 . DOI:10.1002/anie.200907210http://doi.org/10.1002/anie.200907210.
M. H. Xiong , Y. Bao , X. Z. Yang , Y. C. Wang . Lipase-sensitive polymeric triple-layered nanogel for "on-demand" drug delivery . J. Am. Chem. Soc. , 2012 . 134 (9 ):4355 -4362 . DOI:10.1021/ja211279uhttp://doi.org/10.1021/ja211279u.
J. Z. Du , X. J. Du , C. Q. Mao , J. Wang . Tailor-made dual ph-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery . J. Am. Chem. Soc. , 2011 . 133 (44 ):17560 -17563 . DOI:10.1021/ja207150nhttp://doi.org/10.1021/ja207150n.
E. Pereverzeva , I. Treschalin , D. Bodyagin , O. Maksimenko . Intravenous tolerance of a nanoparticle-based formulation of doxorubicin in healthy rats . Toxicol. Lett. , 2008 . 178 (1 ):9 -19 . DOI:10.1016/j.toxlet.2008.01.020http://doi.org/10.1016/j.toxlet.2008.01.020.
W. G. Harker , B. I. Sikic . Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line mes-sa . Cancer Res. , 1985 . 45 (9 ):4091 -4096 . http://www.ncbi.nlm.nih.gov/pubmed/4028002http://www.ncbi.nlm.nih.gov/pubmed/4028002, .
T. Cheng , J. Liu , J. Ren , F. Huang . Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance . Theranostics , 2016 . 6 (9 ):1277 -1292 . DOI:10.7150/thno.15133http://doi.org/10.7150/thno.15133.
A. Sharma , U. S. Sharma . Liposomes in drug delivery:Progress and limitations . Int. J. Pharmaceut. , 1997 . 154 (2 ):123 -140 . DOI:10.1016/S0378-5173(97)00135-Xhttp://doi.org/10.1016/S0378-5173(97)00135-X.
Y. Wang , L. Miao , A. Satterlee , L. Huang . Delivery of oligonucleotides with lipid nanoparticles . Adv. Drug Deliv. Rev. , 2015 . 87 (1 ):68 -80 . http://www.sciencedirect.com/science/article/pii/s0169409x15000186http://www.sciencedirect.com/science/article/pii/s0169409x15000186, .
B. Goins , W. T. Phillips , A. Bao . Strategies for improving the intratumoral distribution of liposomal drugs in cancer therapy . Expert Opin. Drug Deliv. , 2016 . 13 (6 ):873 -889 . http://pubmedcentralcanada.ca/pmcc/articles/PMC4933501/http://pubmedcentralcanada.ca/pmcc/articles/PMC4933501/, .
L. Sercombe , T. Veerati , F. Moheimani , S. Y. Wu . Advances and challenges of liposome assisted drug delivery . Front Pharmacol. , 2015 . 6 DOI:10.3389/fphar.2015.00286http://doi.org/10.3389/fphar.2015.00286 .
Y. Barenholz . Liposome application:Problems and prospects . Curr. Opin. Colloid Interface Sci. , 2001 . 6 (1 ):66 -77 . DOI:10.1016/S1359-0294(00)00090-Xhttp://doi.org/10.1016/S1359-0294(00)00090-X.
J. C. Kraft , J. P. Freeling , Z. Wang , R. J. Ho . Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems . J. Pharm. Sci. , 2014 . 103 (1 ):29 -52 . http://europepmc.org/abstract/med/24338748http://europepmc.org/abstract/med/24338748, .
H. I. Chang , M. K. Yeh . Clinical development of liposome-based drugs:Formulation, characterization, and therapeutic efficacy . Int. J. Nanomed. , 2012 . 7 (1 ):49 -60 . http://europepmc.org/articles/PMC3260950/http://europepmc.org/articles/PMC3260950/, .
F. Yang , C. Jin , Y. Jiang , J. Li . Liposome based delivery systems in pancreatic cancer treatment:From bench to bedside . Cancer Treat Rev. , 2011 . 37 (8 ):633 -642 . DOI:10.1016/j.ctrv.2011.01.006http://doi.org/10.1016/j.ctrv.2011.01.006.
R. Mo , T. Jiang , Z. Gu . Recent progress in multidrug delivery to cancer cells by liposomes . Nanomedicine , 2014 . 9 (8 ):1117 -1120 . DOI:10.2217/nnm.14.62http://doi.org/10.2217/nnm.14.62.
M. L. Immordino , F. Dosio , L. Cattel . Stealth liposomes:Review of the basic science, rationale, and clinical applications, existing and potential . Int. J. Nanomed. , 2006 . 1 (3 ):297 -315 . DOI:10.2217/17435889.1.3.297http://doi.org/10.2217/17435889.1.3.297.
H. Wang , S. Zhang , Z. Liao , C. Wang . Peglated magnetic polymeric liposome anchored with tat for delivery of drugs across the blood-spinal cord barrier . Biomaterials , 2010 . 31 (25 ):6589 -6596 . DOI:10.1016/j.biomaterials.2010.04.057http://doi.org/10.1016/j.biomaterials.2010.04.057.
Z. E. Suntres . Liposomal antioxidants for protection against oxidant-induced damage . J. Toxicol. , 2011 . DOI:10.1155/2011/152474http://doi.org/10.1155/2011/152474 .
X. Zhang , S. Guo , R. Fan , M. Yu . Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells . Biomaterials , 2012 . 33 (29 ):7103 -7114 . DOI:10.1016/j.biomaterials.2012.06.048http://doi.org/10.1016/j.biomaterials.2012.06.048.
H. Wang , P. Zhao , W. Su , S. Wang . PLGA/polymeric liposome for targeted drug and gene co-delivery . Biomaterials , 2010 . 31 (33 ):8741 -8748 . DOI:10.1016/j.biomaterials.2010.07.082http://doi.org/10.1016/j.biomaterials.2010.07.082.
T. Jiang , R. Mo , A. Bellotti , J. Zhou . Gel-liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy . Adv. Funct. Mater. , 2014 . 24 (16 ):2295 -2304 . DOI:10.1002/adfm.v24.16http://doi.org/10.1002/adfm.v24.16.
R. Mo , T. Y. Jiang , Z. Gu . Enhanced anticancer efficacy by atp-mediated liposomal drug delivery . Angew. Chem. Int Ed. , 2014 . 53 (23 ):5815 -5820 . DOI:10.1002/anie.201400268http://doi.org/10.1002/anie.201400268.
J. Schafer , S. Hobel , U. Bakowsky , A. Aigner . Liposome-polyethylenimine complexes for enhanced DNA and sirna delivery . Biomaterials , 2010 . 31 (26 ):6892 -6900 . DOI:10.1016/j.biomaterials.2010.05.043http://doi.org/10.1016/j.biomaterials.2010.05.043.
A. K. Rengan , A. B. Bukhari , A. Pradhan , R. Malhotra . In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer . Nano Lett. , 2015 . 15 (2 ):842 -848 . DOI:10.1021/nl5045378http://doi.org/10.1021/nl5045378.
J. A. Hubbell , A. Chilkoti . Nanomaterials for drug delivery . Science , 2012 . 337 (6092 ):303 -305 . DOI:10.1126/science.1219657http://doi.org/10.1126/science.1219657.
J. H. Park , S. Lee , J. H. Kim , K. Park . Polymeric nanomedicine for cancer therapy . Prog. Polym. Sci. , 2008 . 33 (1 ):113 -137 . DOI:10.1016/j.progpolymsci.2007.09.003http://doi.org/10.1016/j.progpolymsci.2007.09.003.
R. Tong , J. Cheng . Anticancer polymeric nanomedicines . Polym. Rev. , 2007 . 47 (3 ):345 -381 . DOI:10.1080/15583720701455079http://doi.org/10.1080/15583720701455079.
P. Huang , D. Wang , Y. Su , W. Huang . Combination of small molecule prodrug and nanodrug delivery:Amphiphilic drug-drug conjugate for cancer therapy . J. Am. Chem. Soc. , 2014 . 136 (33 ):11748 -56 . DOI:10.1021/ja505212yhttp://doi.org/10.1021/ja505212y.
M. Hu , P. Huang , Y. Wang , Y. Su . Synergistic combination chemotherapy of camptothecin and floxuridine through self-assembly of amphiphilic drug-drug conjugate . Bioconjugate. Chem. , 2015 . 26 (12 ):2497 -2506 . DOI:10.1021/acs.bioconjchem.5b00513http://doi.org/10.1021/acs.bioconjchem.5b00513.
T. Zhang , P. Huang , L. Shi , Y. Su . Self-assembled nanoparticles of amphiphilic twin drug from floxuridine and bendamustine for cancer therapy . Mol. Pharm. , 2015 . 12 (7 ):2328 -2336 . DOI:10.1021/acs.molpharmaceut.5b00005http://doi.org/10.1021/acs.molpharmaceut.5b00005.
Y. Ma , Q. Mou , M. Sun , C. Yu . Cancer theranostic nanoparticles self-assembled from amphiphilic small molecules with equilibrium shift-induced renal clearance . Theranostics , 2016 . 6 (10 ):1703 -1716 . DOI:10.7150/thno.15647http://doi.org/10.7150/thno.15647.
Q. Mou , Y. Ma , X. Zhu , D. Yan . A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy . J. Control. Release , 2016 . 230 (1 ):34 -44 . https://www.sciencedirect.com/science/article/pii/S0168365916301833https://www.sciencedirect.com/science/article/pii/S0168365916301833, .
Y. Wang , P. Huang , M. Hu , W. Huang . Self-delivery nanoparticles of amphiphilic methotrexate-gemcitabine prodrug for synergistic combination chemotherapy via effect of deoxyribonucleotide pools . Bioconjugate. Chem. , 2016 . 27 (11 ):2722 -2733 . DOI:10.1021/acs.bioconjchem.6b00503http://doi.org/10.1021/acs.bioconjchem.6b00503.
D. W. Pack , A. S. Hoffman , S. Pun , P. S. Stayton . Design and development of polymers for gene delivery . Nat. Rev. Drug Discov. , 2005 . 4 (7 ):581 -93 . DOI:10.1038/nrd1775http://doi.org/10.1038/nrd1775.
Z. P. Xu , Q. H. Zeng , G. Q. Lu , A. B. Yu . Inorganic nanoparticles as carriers for efficient cellular delivery . Chem Eng. Sci. , 2006 . 61 (3 ):1027 -1040 . DOI:10.1016/j.ces.2005.06.019http://doi.org/10.1016/j.ces.2005.06.019.
L. Lacerda , S. Raffa , M. Prato , A. Bianco . Cell-penetrating cnts for delivery of therapeutics . Nano Today , 2007 . 2 (6 ):38 -43 . DOI:10.1016/S1748-0132(07)70172-Xhttp://doi.org/10.1016/S1748-0132(07)70172-X.
S. Mao , W. Sun , T. Kissel . Chitosan-based formulations for delivery of DNA and sirna . Adv. Drug Deliv. Rev. , 2010 . 62 (1 ):12 -27 . DOI:10.1016/j.addr.2009.08.004http://doi.org/10.1016/j.addr.2009.08.004.
J. P. Chapel , J. F. Berret . Versatile electrostatic assembly of nanoparticles and polyelectrolytes:Coating, clustering and layer-by-layer processes . Curr. Opin. Colloid Interface Sci. , 2012 . 17 (2 ):97 -105 . DOI:10.1016/j.cocis.2011.08.009http://doi.org/10.1016/j.cocis.2011.08.009.
R. B. Shmueli , D. G. Anderson , J. J. Green . Electrostatic surface modifications to improve gene delivery . Expert Opin. Drug Deliv. , 2010 . 7 (4 ):535 -550 . DOI:10.1517/17425241003603653http://doi.org/10.1517/17425241003603653.
R. C. Mulligan . The basic science of gene therapy . Science , 1993 . 260 (5110 ):926 -32 . DOI:10.1126/science.8493530http://doi.org/10.1126/science.8493530.
Y. Liu , J. Du , J. S. Choi , K. J. Chen . A high-throughput platform for formulating and screening multifunctional nanoparticles capable of simultaneous delivery of genes and transcription factors . Angew. Chem. Int. Ed. , 2016 . 55 (1 ):169 -173 . DOI:10.1002/anie.201507546http://doi.org/10.1002/anie.201507546.
I. M. Verma , N. Somia . Gene therapy-promises, problems and prospects . Nature , 1997 . 389 (6648 ):239 -42 . DOI:10.1038/38410http://doi.org/10.1038/38410.
R. Kircheis , L. Wightman , E. Wagner . Design and gene delivery activity of modified polyethylenimines . Adv. Drug Deliv. Rev. , 2001 . 53 (3 ):341 -358 . DOI:10.1016/S0169-409X(01)00202-2http://doi.org/10.1016/S0169-409X(01)00202-2.
T. J. Harris , J. J. Green , P. W. Fung , R. Langer . Tissue-specific gene delivery via nanoparticle coating . Biomaterials , 2010 . 31 (5 ):998 -1006 . DOI:10.1016/j.biomaterials.2009.10.012http://doi.org/10.1016/j.biomaterials.2009.10.012.
Y. Liu , H. Wang , K. I. Kamei , M. Yan . Delivery of intact transcription factor by using self-assembled supramolecular nanoparticles . Angew. Chem. Int. Ed. , 2011 . 50 (13 ):3058 -3062 . DOI:10.1002/anie.201005740http://doi.org/10.1002/anie.201005740.
Y. W. Won , P. P. Adhikary , K. S. Lim , H. J. Kim . Oligopeptide complex for targeted non-viral gene delivery to adipocytes . Nat. Mater. , 2014 . 13 (12 ):1157 -1164 . DOI:10.1038/nmat4092http://doi.org/10.1038/nmat4092.
K. Ariga , Y. M. Lvov , K. Kawakami , Q. Ji . Layer-by-layer self-assembled shells for drug delivery . Adv. Drug Deliv. Rev. , 2011 . 63 (9 ):762 -771 . DOI:10.1016/j.addr.2011.03.016http://doi.org/10.1016/j.addr.2011.03.016.
K. Ariga , Y. Yamauchi , G. Rydzek , Q. Ji . Layer-by-layer nanoarchitectonics:Invention, innovation, and evolution . Chem Lett. , 2014 . 43 (1 ):36 -68 . DOI:10.1246/cl.130987http://doi.org/10.1246/cl.130987.
N. Fujii , K. Fujimoto , T. Michinobu , M. Akada . The simplest layer-by-layer assembly structure:Best paired polymer electrolytes with one charge per main chain carbon atom for multi layered thin films . Macromolecules , 2010 . 43 (8 ):3947 -3955 . DOI:10.1021/ma100473jhttp://doi.org/10.1021/ma100473j.
Y. Lvov , M. Onda , K. Ariga , T. Kunitake . Ultrathin films of charged polysaccharides assembled alternately with linear polyions . J. Biomat. Sci. Polym. E , 1998 . 9 (4 ):345 -355 . DOI:10.1080/09205063.1998.9753060http://doi.org/10.1080/09205063.1998.9753060.
K. Katagiri , R. Hamasaki , K. Ariga , J. Kikuchi . Layered paving of vesicular nanoparticles formed with cerasome as a bioinspired organic-inorganic hybrid . J. Am. Chem. Soc. , 2002 . 124 (27 ):7892 -7893 . DOI:10.1021/ja0259281http://doi.org/10.1021/ja0259281.
A. Elbakry , A. Zaky , R. Liebkl , R. Rachel . Layer-by-layer assembled gold nanoparticles for sirna delivery . Nano Lett. , 2009 . 9 (5 ):2059 -2064 . DOI:10.1021/nl9003865http://doi.org/10.1021/nl9003865.
E. M. Saurer , R. M. Flessner , S. P. Sullivan , M. R. Prausnitz . Layer-by-layer assembly of DNA-and protein-containing films on microneedles for drug delivery to the skin . Biomacromolecules , 2010 . 11 (11 ):3136 -3143 . DOI:10.1021/bm1009443http://doi.org/10.1021/bm1009443.
S. W. Morton , N. J. Shah , M. A. Quadir , Z. J. Deng . Osteotropic therapy via targeted layer-by-layer nanoparticles . Adv. Healthc. Mater. , 2014 . 3 (6 ):867 -75 . DOI:10.1002/adhm.201300465http://doi.org/10.1002/adhm.201300465.
T. G. Shutava , S. S. Balkundi , P. Vangala , J. J. Steffan . Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols . ACS Nano , 2009 . 3 (7 ):1877 -1885 . DOI:10.1021/nn900451ahttp://doi.org/10.1021/nn900451a.
A. Agarwal , Y. Lvov , R. Sawant , V. Torchilin . Stable nanocolloids of poorly soluble drugs with high drug content prepared using the combination of sonication and layer-by-layer technology . J. Control. Release , 2008 . 128 (3 ):255 -260 . DOI:10.1016/j.jconrel.2008.03.017http://doi.org/10.1016/j.jconrel.2008.03.017.
N. Pargaonkar , Y. M. Lvov , N. Li , J. H. Steenekamp . Controlled release of dexamethasone from microcapsules produced by polyelectrolyte layer-by-layer nanoassembly . Pharm. Res. , 2005 . 22 (5 ):826 -835 . DOI:10.1007/s11095-005-2600-0http://doi.org/10.1007/s11095-005-2600-0.
Z. J. Deng , S. W. Morton , E. Ben-Akiva , E. C. Dreaden . Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and sirna for potential triple-negative breast cancer treatment . ACS Nano , 2013 . 7 (11 ):9571 -9584 . DOI:10.1021/nn4047925http://doi.org/10.1021/nn4047925.
Z. Poon , D. Chang , X. Zhao , P. T. Hammond . Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia . ACS Nano , 2011 . 5 (6 ):4284 -4292 . DOI:10.1021/nn200876fhttp://doi.org/10.1021/nn200876f.
B. S. Kim , S. W. Park , P. T. Hammond . Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces . ACS Nano , 2008 . 2 (2 ):386 -392 . DOI:10.1021/nn700408zhttp://doi.org/10.1021/nn700408z.
X. Ma , Y. Zhao . Biomedical applications of supramolecular systems based on host-guest interactions . Chem. Rev. , 2015 . 115 (15 ):7794 -7839 . DOI:10.1021/cr500392whttp://doi.org/10.1021/cr500392w.
A. A. Karim , Q. Dou , Z. Li , X. J. Loh . Emerging supramolecular therapeutic carriers based on host-guest interactions . Chem. Asian J. , 2016 . 11 (9 ):1300 -1321 . DOI:10.1002/asia.v11.9http://doi.org/10.1002/asia.v11.9.
J. Hu , S. Liu . Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications . Acc. Chem. Res. , 2014 . 47 (7 ):2084 -2095 . DOI:10.1021/ar5001007http://doi.org/10.1021/ar5001007.
J. Zhang , P. X. Ma . Cyclodextrin-based supramolecular systems for drug delivery:Recent progress and future perspective . Adv. Drug Deliv. Rev. , 2013 . 65 (9 ):1215 -1233 . DOI:10.1016/j.addr.2013.05.001http://doi.org/10.1016/j.addr.2013.05.001.
L. Wang , L. L. Li , Y. S. Fan , H. Wang . Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics . Adv. Mater. , 2013 . 25 (28 ):3888 -3898 . DOI:10.1002/adma.v25.28http://doi.org/10.1002/adma.v25.28.
R. Challa , A. Ahuja , J. Ali , R. K. Khar . Cyclodextrins in drug delivery:An updated review . AAPS PharmSciTech. , 2005 . 6 (2 ):E329 -E357 . DOI:10.1208/pt060243http://doi.org/10.1208/pt060243.
V. J. Stella , R. A. Rajewski . Cyclodextrins:Their future in drug formulation and delivery . Pharm. Res-Dordr. , 1997 . 14 (5 ):556 -567 . DOI:10.1023/A:1012136608249http://doi.org/10.1023/A:1012136608249.
R. Gref , C. Amiel , K. Molinard , S. Daoud-Mahammed . New self-assembled nanogels based on host-guest interactions:Characterization and drug loading . J. Control. Release , 2006 . 111 (3 ):316 -324 . DOI:10.1016/j.jconrel.2005.12.025http://doi.org/10.1016/j.jconrel.2005.12.025.
J. Zhang , P. X. Ma . Polymeric core-shell assemblies mediated by host-guest interactions:versatile nanocarriers for drug delivery . Angew. Chem. Int. Ed. , 2009 . 48 (5 ):964 -968 . DOI:10.1002/anie.v48:5http://doi.org/10.1002/anie.v48:5.
Q. D. Hu , G. P. Tang , P. K. Chu . Cyclodextrin-based host-guest supramolecular nanoparticles for delivery:from design to applications . Acc. Chem. Res. , 2014 . 47 (7 ):2017 -2025 . DOI:10.1021/ar500055shttp://doi.org/10.1021/ar500055s.
H. Wang , S. Wang , H. Su , K. J. Chen . A supramolecular approach for preparation of size-controlled nanoparticles . Angew. Chem. Int. Ed. , 2009 . 48 (24 ):4344 -4318 . DOI:10.1002/anie.v48:24http://doi.org/10.1002/anie.v48:24.
C.Y. Ang , S. Y. Tan , X. Wang , Q. Zhang . Supramolecular nanoparticle carriers self-assembled from cyclodextrin-and adamantane-functionalized polyacrylates for tumor-targeted drug delivery . J. Mater. Chem. B , 2014 . 2 (13 ):1879 -1890 . DOI:10.1039/c3tb21325khttp://doi.org/10.1039/c3tb21325k.
D. H. Qu , Q. C. Wang , Q. W. Zhang , X. Ma . Photoresponsive host-guest functional systems . Chem. Rev. , 2015 . 115 (15 ):7543 -7588 . DOI:10.1021/cr5006342http://doi.org/10.1021/cr5006342.
Z. Dan , H. Cao , X. He , L. Zeng . Biological stimuli-responsive cyclodextrin-based host-guest nanosystems for cancer therapy . Int. J. Pharm. , 2015 . 483 (1-2 ):63 -68 . DOI:10.1016/j.ijpharm.2015.01.035http://doi.org/10.1016/j.ijpharm.2015.01.035.
W. Zhang , Y. Li , J. H. Sun , C. P. Tan . Supramolecular self-assembled nanoparticles for chemo-photodynamic dual therapy against cisplatin resistant cancer cells . Chem. Commun. , 2015 . 51 (10 ):1807 -1810 . DOI:10.1039/C4CC08583Chttp://doi.org/10.1039/C4CC08583C.
Y. Wang , D. Li , Q. Jin , J. Ji . pH-responsive supramolecular prodrug micelles based on cucurbit 8 uril for intracellular drug delivery . J Control. Release , 2015 . 213 (1 ):E134 -E135. .
G. Yu , K. Jie , F. Huang . Supramolecular amphiphiles based on host-guest molecular recognition motifs . Chem. Rev. , 2015 . 115 (15 ):7240 -7303 . DOI:10.1021/cr5005315http://doi.org/10.1021/cr5005315.
B. Yang , X. Dong , Q. Lei , R. Zhuo . Host-guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs . ACS Appl. Mater. Interfaces , 2015 . 7 (39 ):22084 -22094 . DOI:10.1021/acsami.5b07549http://doi.org/10.1021/acsami.5b07549.
Y. Liu , C. Yu , H. Jin , B. Jiang . A supramolecular janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution . J. Am. Chem. Soc. , 2013 . 135 (12 ):4765 -4770 . DOI:10.1021/ja3122608http://doi.org/10.1021/ja3122608.
Y. Li , Y. Liu , R. Ma , Y. Xu . A g-quadruplex hydrogel via multicomponent self-assembly:Formation and zero-order controlled release . ACS Appl. Mater. Interfaces , 2017 . 9 (15 ):13056 -13067 . DOI:10.1021/acsami.7b00957http://doi.org/10.1021/acsami.7b00957.
L. Zhao , R. Qu , A. Li , R. Ma . Cooperative self-assembly of porphyrins with polymers possessing bioactive functions . Chem. Commun. , 2016 . 52 (93 ):13543 -13555 . DOI:10.1039/C6CC05449Hhttp://doi.org/10.1039/C6CC05449H.
Z. Gu , A. Biswas , M. Zhao , Y. Tang . Tailoring nanocarriers for intracellular protein delivery . Chem. Soc. Rev. , 2011 . 40 (7 ):3638 -3655 . DOI:10.1039/c0cs00227ehttp://doi.org/10.1039/c0cs00227e.
M. Yan , J. Ge , Z. Liu , P. Ouyang . Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability . J. Am. Chem. Soc. , 2006 . 128 (34 ):11008 -11009 . DOI:10.1021/ja064126thttp://doi.org/10.1021/ja064126t.
M. Yan , J. Du , Z. Gu , M. Liang . A novel intracellular protein delivery platform based on single-protein nanocapsules . Nat. Nanotechnol. , 2010 . 5 (1 ):48 -53 . DOI:10.1038/nnano.2009.341http://doi.org/10.1038/nnano.2009.341.
Z. Gu , M. Yan , B. Hu , K. I. Joo . Protein nanocapsule weaved with enzymatically degradable polymeric network . Nano Lett. , 2009 . 9 (12 ):4533 -4538 . DOI:10.1021/nl902935bhttp://doi.org/10.1021/nl902935b.
J. Wen , S. M. Anderson , J. Du , M. Yan . Controlled protein delivery based on enzyme-responsive nanocapsules . Adv. Mater. , 2011 . 23 (39 ):4549 -53 . DOI:10.1002/adma.201101771http://doi.org/10.1002/adma.201101771.
S. Liang , Y. Liu , X. Jin , G. Liu . Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins . Nano Res. , 2016 . 9 (4 ):1022 -1031 . DOI:10.1007/s12274-016-0991-3http://doi.org/10.1007/s12274-016-0991-3.
M. Zhao , B. Hu , Z. Gu , K. I. Joo . Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex . Nano Today , 2013 . 8 (1 ):11 -20 . DOI:10.1016/j.nantod.2012.12.003http://doi.org/10.1016/j.nantod.2012.12.003.
H. Tian , J. Du , J. Wen , Y. Liu . Growth-factor nanocapsules that enable tunable controlled release for bone regeneration . ACS Nano , 2016 . 10 (8 ):7362 -7369 . DOI:10.1021/acsnano.5b07950http://doi.org/10.1021/acsnano.5b07950.
C. Liu , J. Wen , Y. Meng , K. Zhang . Efficient delivery of therapeutic mirna nanocapsules for tumor suppression . Adv. Mater. , 2015 . 27 (2 ):292 -297 . DOI:10.1002/adma.v27.2http://doi.org/10.1002/adma.v27.2.
D. Peer , J. M. Karp , S. Hong , O. C. FaroKHzad . Nanocarriers as an emerging platform for cancer therapy . Nat. Nanotechnol. , 2007 . 2 (12 ):751 -760 . DOI:10.1038/nnano.2007.387http://doi.org/10.1038/nnano.2007.387.
M. Wang , M. Thanou . Targeting nanoparticles to cancer . Pharmacol. Res. , 2010 . 62 (2 ):90 -99 . DOI:10.1016/j.phrs.2010.03.005http://doi.org/10.1016/j.phrs.2010.03.005.
C. E. DeSantis , C. C. Lin , A. B. Mariotto , R. L. Siegel . Cancer treatment and survivorship statistics, ,2014 . CA:A Cancer Journal for Clinicians , 2014 . 64 (4 ):252 -271 . DOI:10.3322/caac.v64.4http://doi.org/10.3322/caac.v64.4.
T. M. Sun , Y. S. Zhang , B. Pang , D. C. Hyun . Engineered nanoparticles for drug delivery in cancer therapy . Angew. Chem. Int. Ed. , 2014 . 53 (46 ):12320 -12364 . http://europepmc.org/abstract/med/25294565http://europepmc.org/abstract/med/25294565, .
Y. Liu , J. Li , Y. F. Lu . Enzyme therapeutics for systemic detoxification . Adv. Drug Deliv. Rev. , 2015 . 90 24 -39 . DOI:10.1016/j.addr.2015.05.005http://doi.org/10.1016/j.addr.2015.05.005.
Y. H. Bae , K. Park . Targeted drug delivery to tumors:myths, reality and possibility . J. Control. Release , 2011 . 153 (3 ):198 -205 . DOI:10.1016/j.jconrel.2011.06.001http://doi.org/10.1016/j.jconrel.2011.06.001.
D. A. LaVan , T. McGuire , R. Langer . Small-scale systems for in vivo drug delivery . Nat. Biotechnol. , 2003 . 21 (10 ):1184 -1191 . DOI:10.1038/nbt876http://doi.org/10.1038/nbt876.
S. Ganta , H. Devalapally , A. Shahiwala , M. Amiji . A review of stimuli-responsive nanocarriers for drug and gene delivery . J. Control. Release , 2008 . 126 (3 ):187 -204 . DOI:10.1016/j.jconrel.2007.12.017http://doi.org/10.1016/j.jconrel.2007.12.017.
G. Wang , H. Uludag . Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles . Expert Opin. Drug Deliv. , 2008 . 5 (5 ):499 -515 . DOI:10.1517/17425247.5.5.499http://doi.org/10.1517/17425247.5.5.499.
H. Gao , T. Cheng , J. Liu , J. Liu . Self-regulated multifunctional collaboration of targeted nanocarriers for enhanced tumor therapy . Biomacromolecules , 2014 . 15 (10 ):3634 -3642 . DOI:10.1021/bm5009348http://doi.org/10.1021/bm5009348.
A. J. Shuhendler , P. Prasad , M. Leung , A. M. Rauth . A novel solid lipid nanoparticle formulation for active targeting to tumor alpha(v)beta(3) integrin receptors reveals cyclic rgd as a double-edged sword . Adv. Healthc. Mater. , 2012 . 1 (5 ):600 -608 . DOI:10.1002/adhm.201200006http://doi.org/10.1002/adhm.201200006.
T. J. Cheng , R. J. Ma , Y. M. Zhang , Y. X. Ding . A surface-adaptive nanocarrier to prolong circulation time and enhance cellular uptake . Chem. Commun. , 2015 . 51 (81 ):14985 -14988 . DOI:10.1039/C5CC05854Fhttp://doi.org/10.1039/C5CC05854F.
A. Falamarzian , A. Lavasanifar . Optimization of the hydrophobic domain in poly(ethylene oxide)-poly(epsilon-caprolactone) based nano-carriers for the solubilization and delivery of amphotericin b . Colloids and Surfaces B-Biointerfaces , 2010 . 81 (1 ):313 -320 . DOI:10.1016/j.colsurfb.2010.07.025http://doi.org/10.1016/j.colsurfb.2010.07.025.
H. J. Gao , J. Xiong , T. J. Cheng , J. J. Liu . In vivo biodistribution of mixed shell micelles with tunable hydrophilic/hydrophobic surface . Biomacromolecules , 2013 . 14 (2 ):460 -467 . DOI:10.1021/bm301694thttp://doi.org/10.1021/bm301694t.
H. X. Wang , X. Z. Yang , C. Y. Sun , C. Q. Mao . Matrix metalloproteinase 2-responsive micelle for sirna delivery . Biomaterials , 2014 . 35 (26 ):7622 -7634 . DOI:10.1016/j.biomaterials.2014.05.050http://doi.org/10.1016/j.biomaterials.2014.05.050.
C. Y. Sun , S. Shen , C. F. Xu , H. J. Li . Tumor acidity-sensitive polymeric vector for active targeted sirna delivery . J. Am. Chem. Soc. , 2015 . 137 (48 ):15217 -15224 . DOI:10.1021/jacs.5b09602http://doi.org/10.1021/jacs.5b09602.
X. Guan , Z. Guo , L. Lin , J. Chen . Ultrasensitive pH triggered charge/size dual-rebound gene delivery system . Nano Lett. , 2016 . 16 (11 ):6823 -6831 . DOI:10.1021/acs.nanolett.6b02536http://doi.org/10.1021/acs.nanolett.6b02536.
D. Wakebayashi , N. Nishiyama , Y. Yamasaki , K. Itaka . Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system:Their preparation and gene transfecting efficiency against cultured HEPG2 cells . J. Control. Release , 2004 . 95 (3 ):653 -664 . DOI:10.1016/j.jconrel.2004.01.003http://doi.org/10.1016/j.jconrel.2004.01.003.
A. Harada , K. Kataoka . Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers . J. Control. Release , 2001 . 72 (1-3 ):85 -91 . DOI:10.1016/S0168-3659(01)00264-4http://doi.org/10.1016/S0168-3659(01)00264-4.
M. H. Dufresne , J. C. Leroux . Study of the micellization behavior of different order amino block copolymers with heparin . Pharm. Res. , 2004 . 21 (1 ):160 -169 . DOI:10.1023/B:PHAM.0000012164.60867.c6http://doi.org/10.1023/B:PHAM.0000012164.60867.c6.
A. Biswas , K. I. Joo , J. Liu , M. X. Zhao . Endoprotease-mediated intracellular protein delivery using nanocapsules . ACS Nano , 2011 . 5 (2 ):1385 -1394 . DOI:10.1021/nn1031005http://doi.org/10.1021/nn1031005.
Y. Liu , H. Wang , K. Kamei , M. Yan . Delivery of intact transcription factor by using self-assembled supramolecular nanoparticles . Angew. Chem. Int. Ed. , 2011 . 50 (13 ):3058 -3062 . DOI:10.1002/anie.201005740http://doi.org/10.1002/anie.201005740.
T. Govender , S. Stolnik , C. Xiong , S. Zhang . Drug-polyionic block copolymer interactions for micelle formation:Physicochemical characterisation . J. Control. Release , 2001 . 75 (3 ):249 -258 . DOI:10.1016/S0168-3659(01)00353-4http://doi.org/10.1016/S0168-3659(01)00353-4.
T. Safra , F. Muggia , S. Jeffers , D. D. Tsao-Wei . Pegylated liposomal doxorubicin (doxil):Reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m(2) . Ann Oncol. , 2000 . 11 (8 ):1029 -1033 . DOI:10.1023/A:1008365716693http://doi.org/10.1023/A:1008365716693.
K. J. Cho , X. Wang , S. M. Nie , Z. Chen . Therapeutic nanoparticles for drug delivery in cancer . Clin. Cancer Res. , 2008 . 14 (5 ):1310 -1316 . DOI:10.1158/1078-0432.CCR-07-1441http://doi.org/10.1158/1078-0432.CCR-07-1441.
S. Koudelka , J. Turanek . Liposomal paclitaxel formulations . J. Control. Release , 2012 . 163 (3 ):322 -334 . DOI:10.1016/j.jconrel.2012.09.006http://doi.org/10.1016/j.jconrel.2012.09.006.
W. T. Lim , S. S. Leong , C. K. Toh , C. S. Ang . A phase i pharmacokinetic study of a liposomal formulation of paclitaxel administered weekly to Asian patients with solid malignancies . J. Clin. Oncol. , 2009 . 27 (15 ):2581 .
M. Markman . Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary . Expert Opin. Pharmaco. , 2006 . 7 (11 ):1469 -1474 . DOI:10.1517/14656566.7.11.1469http://doi.org/10.1517/14656566.7.11.1469.
M. M. Gaspar , R. Perez-Soler , M. E. Cruz . Biological characterization of l-asparaginase liposomal formulations . Cancer Chemother. Pharmacol. , 1996 . 38 (4 ):373 -377 . DOI:10.1007/s002800050497http://doi.org/10.1007/s002800050497.
P. L. Felgner , M. Holm , H. Chan . Cationic liposome mediated transfection . Proc. West Pharmacol. Soc. , 1989 . 32 115 -121. .
P. L. Felgner , G. M. Ringold . Cationic liposome-mediated transfection . Nature , 1989 . 337 (6205 ):387 -388 . DOI:10.1038/337387a0http://doi.org/10.1038/337387a0.
K. D. Murray , A. McQuillin , L. Stewart , C. J. Etheridge . Cationic liposome-mediated DNA transfection in organotypic explant cultures of the ventral mesencephalon . Gene Ther. , 1999 . 6 (2 ):190 -197 . DOI:10.1038/sj.gt.3300743http://doi.org/10.1038/sj.gt.3300743.
J. K. Kim , S. H. Choi , C. O. Kim , J. S. Park . Enhancement of polyethylene glycol (PEG)-modified cationic liposomemediated gene deliveries:effects on serum stability and transfection efficiency . J. Pharm. Pharmacol. , 2003 . 55 (4 ):453 -460 . DOI:10.1211/002235702928http://doi.org/10.1211/002235702928.
L. Zhu , P. Kate , V. P. Torchilin . Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting . ACS Nano , 2012 . 6 (4 ):3491 -3498 . DOI:10.1021/nn300524fhttp://doi.org/10.1021/nn300524f.
Anonymous. Classification and diagnosis of diabetes. Diabetes Care 2015, 38(Suppl. 1), S8-S16.
S. Craft . The role of metabolic disorders in alzheimer disease and vascular dementia:Two roads converged . Arch. Neurol. , 2009 . 66 (3 ):300 -305 . http://europepmc.org/articles/PMC2717716/http://europepmc.org/articles/PMC2717716/, .
S. Canivell , R. Gomis . Diagnosis and classification of autoimmune diabetes mellitus . Autoimmun. Rev. , 2014 . 13 (4-5 ):403 -407 . DOI:10.1016/j.autrev.2014.01.020http://doi.org/10.1016/j.autrev.2014.01.020.
H. Abdi , F. Hosseinpanah , F. Azizi , F. Hadaegh . Screening for dysglycemia:a comment on classification and diagnosis of diabetes in american diabetes association standards of medical care in diabetes-, 2016 . Arch. Iran. Med. , 2017 . 20 (6 ):389 -389 . http://europepmc.org/abstract/MED/28646849http://europepmc.org/abstract/MED/28646849, .
H. Yang , C. Zhang , C. Li , Y. Liu . Glucose-responsive polymer vesicles templated by alpha-CD/PEG inclusion complex . Biomacromolecules , 2015 . 16 (4 ):1372 -1381 . DOI:10.1021/acs.biomac.5b00155http://doi.org/10.1021/acs.biomac.5b00155.
H. Yang , R. Ma , J. Yue , C. Li . A facile strategy to fabricate glucose-responsive vesicles via a template of thermo-sensitive micelles . Polym. Chem. , 2015 . 6 (20 ):3837 -3846 . DOI:10.1039/C5PY00170Fhttp://doi.org/10.1039/C5PY00170F.
L. Zhao , C. S. Xiao , L. Y. Wang , G. Q. Gai . Glucose-sensitive polymer nanoparticles for self-regulated drug delivery . Chem. Commun. , 2016 . 52 (49 ):7633 -7652 . DOI:10.1039/C6CC02202Bhttp://doi.org/10.1039/C6CC02202B.
B. L. Wang , R. J. Ma , G. Liu , Y. Li . Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin . Langmuir , 2009 . 25 (21 ):12522 -12528 . DOI:10.1021/la901776ahttp://doi.org/10.1021/la901776a.
J. N. Cambre , B. S. Sumerlin . Biomedical applications of boronic acid polymers . Polymer , 2011 . 52 (21 ):4631 -4643 . DOI:10.1016/j.polymer.2011.07.057http://doi.org/10.1016/j.polymer.2011.07.057.
G. Liu , R. J. Ma , J. Ren , Z. Li . A glucose-responsive complex polymeric micelle enabling repeated on-off release and insulin protection . Soft Matter , 2013 . 9 (5 ):1636 -1644 . DOI:10.1039/C2SM26690Chttp://doi.org/10.1039/C2SM26690C.
D. J. Selkoe , D. Schenk . Alzheimer's disease:Molecular understanding predicts amyloid-based therapeutics . Annu. Rev. Pharmacol. Toxicol , 2003 . 43 545 -84 . DOI:10.1146/annurev.pharmtox.43.100901.140248http://doi.org/10.1146/annurev.pharmtox.43.100901.140248.
D. H. Small , D. Losic , L. L. Martin , B. J. Turner . Alzheimer's disease therapeutics:new approaches to an ageing problem . IUBMB Life. , 2004 . 56 (4 ):203 -208 . DOI:10.1080/15216540410001709211http://doi.org/10.1080/15216540410001709211.
R. Anand , K. D. Gill , A. A. Mahdi . Therapeutics of alzheimer's disease:Past, present and future . Neuropharmacology , 2014 . 76 27 -50 . DOI:10.1016/j.neuropharm.2013.07.004http://doi.org/10.1016/j.neuropharm.2013.07.004.
M. S. Rafii . Preclinical alzheimer's disease therapeutics . J. Alzheimers Dis. , 2014 . 42 (Suppl. 4 ):S545 -S549. .
J. Kelleher-Andersson . Discovery of neurogenic, alzheimer's disease therapeutics . Curr. Alzheimer Res. , 2006 . 3 (1 ):55 -62 . DOI:10.2174/156720506775697179http://doi.org/10.2174/156720506775697179.
M. Boada , P. Ortiz , F. Anaya , I. Hernandez . Amyloid-targeted therapeutics in alzheimer's disease:Use of human albumin in plasma exchange as a novel approach for a beta mobilization . Drug News Perspect. , 2009 . 22 (6 ):325 -339 . DOI:10.1358/dnp.2009.22.6.1395256http://doi.org/10.1358/dnp.2009.22.6.1395256.
A. Shvaloff , E. Neuman , D. Guez . Lines of therapeutics research in alzheimer's disease . Psychopharmacol. Bull. , 1996 . 32 (3 ):343 -352 . http://europepmc.org/abstract/MED/8961777http://europepmc.org/abstract/MED/8961777, .
J. Hardy , D. J. Selkoe . Medicine-he amyloid hypothesis of alzheimer's disease:Progress and problems on the road to therapeutics . Science , 2002 . 297 (5580 ):353 -356 . DOI:10.1126/science.1072994http://doi.org/10.1126/science.1072994.
J. Dennis , M. D. Selkoe . The therapeutics of Alzheimer's disease:Where we stand and where we are heading . Ann. Neurol. , 2013 . 74 (3 ):328 -336 . DOI:10.1002/ana.v74.3http://doi.org/10.1002/ana.v74.3.
A. L. Horwich . Molecular chaperones in cellular protein folding:The birth of a field . Cell , 2014 . 157 (2 ):285 -288 . DOI:10.1016/j.cell.2014.03.029http://doi.org/10.1016/j.cell.2014.03.029.
F. Baneyx , J. G. Thomas . Collaboration of major and minor molecular chaperones in cellular protein folding . Abstracts of Papers of the American Chemical Society. , 2000 . 219 U179 -U180. .
F. Huang , J. Z. Wang , A. T. Qu , L. L. Shen . Maintenance of amyloid beta peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles . Angew. Chem. Int. Ed. , 2014 . 53 (34 ):8985 -8990 . DOI:10.1002/anie.201400735http://doi.org/10.1002/anie.201400735.
J. Wang , Y. Song , P. Sun , Y. An . Reversible interactions of proteins with mixed shell polymeric micelles:Tuning the surface hydrophobic/hydrophilic balance toward efficient artificial chaperones . Langmuir , 2016 . 32 (11 ):2737 -2749 . DOI:10.1021/acs.langmuir.6b00356http://doi.org/10.1021/acs.langmuir.6b00356.
F. Huang , L. Shen , J. Wang , A. Qu . Effect of the surface charge of artificial chaperones on the refolding of thermally denatured lysozymes . ACS Appl. Mater. Interfaces , 2016 . 8 (6 ):3669 -3678 . DOI:10.1021/acsami.5b08843http://doi.org/10.1021/acsami.5b08843.
J. Wang , T. Yin , F. Huang , Y. Song . Artificial chaperones based on mixed shell polymeric micelles:Insight into the mechanism of the interaction of the chaperone with substrate proteins using forster resonance energy transfer . ACS Appl. Mater. Interfaces , 2015 . 7 (19 ):10238 -10249 . DOI:10.1021/acsami.5b00684http://doi.org/10.1021/acsami.5b00684.
K. Watanabe , K. Nakamura , S. Akikusa , T. Okada . Inhibitors of fibril formation and cytotoxicity of beta-amyloid peptide composed of KLVFF recognition element and flexible hydrophilic disrupting element . Biochem. Biophys. Res. Commun. , 2002 . 290 (1 ):121 -124 . DOI:10.1006/bbrc.2001.6191http://doi.org/10.1006/bbrc.2001.6191.
L. O. Tjernberg , J. Naslund , F. Lindqvist , J. Johansson . Arrest of beta-amyloid fibril formation by a pentapeptide ligand . J. Biol. Chem. , 1996 . 271 (15 ):8545 -8 . DOI:10.1074/jbc.271.15.8545http://doi.org/10.1074/jbc.271.15.8545.
F. F. Liu , W. J. Du , Y. Sun , J. Zheng . Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-beta protein . Front. Chem. Sci. Eng. , 2014 . 8 (4 ):433 -444 . DOI:10.1007/s11705-014-1454-6http://doi.org/10.1007/s11705-014-1454-6.
A. T. Qu , F. Huang , A. Li , H. R. Yang . The synergistic effect between KLVFF and self-assembly chaperones on both disaggregation of beta-amyloid fibrils and reducing consequent toxicity . Chem. Commun. , 2017 . 53 (7 ):1289 -1292 . DOI:10.1039/C6CC07803Fhttp://doi.org/10.1039/C6CC07803F.
L. Vonghia , L. Leggio , A. Ferrulli , M. Bertini . Acute alcohol intoxication . Eur. J. Intern. Med. , 2008 . 19 (8 ):561 -567 . DOI:10.1016/j.ejim.2007.06.033http://doi.org/10.1016/j.ejim.2007.06.033.
S. P. Kantrow , Z. Shen , P. Zhang , J. Ramsey . Acute alcohol intoxication, lung permeability and host defense . Alcohol. Clin. Exp. Res. , 2008 . 32 (6 ):172a -172a. .
M. D. Gerstman , A. F. Merry , D. R. McIlroy , J. A. Hannam . Acute alcohol intoxication and bispectral index monitoring . Acta Anaesth. Scand. , 2015 . 59 (8 ):1015 -1021 . DOI:10.1111/aas.2015.59.issue-8http://doi.org/10.1111/aas.2015.59.issue-8.
E. M. Sellers , H. Kalant . Drug-therapy-alcohol intoxication and withdrawal . New Eng. J. of Med. , 1976 . 294 (14 ):757 -762 . DOI:10.1056/NEJM197604012941405http://doi.org/10.1056/NEJM197604012941405.
C. C. Robertson , E. M. Sellers . Alcohol intoxication and alcohol withdrawal syndrome . Postgrad. Med. , 1978 . 64 (6 ):133 -138 . DOI:10.1080/00325481.1978.11715005http://doi.org/10.1080/00325481.1978.11715005.
E. M. Sellers , H. Kalant . Alcohol intoxication and withdrawal . New. Engl. J. Med. , 1976 . 294 (14 ):757 -762 . DOI:10.1056/NEJM197604012941405http://doi.org/10.1056/NEJM197604012941405.
L. S. Shpilenya , A. P. Muzychenko , G. Gasbarrini , G. Addolorato . Metadoxine in acute alcohol intoxication:A double-blind, randomized, placebo-controlled study . Alcohol. Clin. Exp. Res. , 2002 . 26 (3 ):340 -346 . DOI:10.1111/acer.2002.26.issue-3http://doi.org/10.1111/acer.2002.26.issue-3.
Y. Liu , J. J. Du , M. Yan , M. Y. Lau . Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication . Nat. Nanotechnol. , 2013 . 8 (3 ):187 -192 . DOI:10.1038/nnano.2012.264http://doi.org/10.1038/nnano.2012.264.
A. Munoz-Bonilla , M. Fernandez-Garcia . Polymeric materials with antimicrobial activity . Prog. Polym. Sci. , 2012 . 37 (2 ):281 -339 . DOI:10.1016/j.progpolymsci.2011.08.005http://doi.org/10.1016/j.progpolymsci.2011.08.005.
R. Y. Pelgrift , A. J. Friedman . Nanotechnology as a therapeutic tool to combat microbial resistance . Adv. Drug Deliv. Rev. , 2013 . 65 (13-14 ):1803 -1815 . DOI:10.1016/j.addr.2013.07.011http://doi.org/10.1016/j.addr.2013.07.011.
L. Zhang , D. Pornpattananangkul , C. M. J. Hu , C. M. Huang . Development of nanoparticles for antimicrobial drug delivery . Currt. Med. Chem. , 2010 . 17 (6 ):585 -594 . DOI:10.2174/092986710790416290http://doi.org/10.2174/092986710790416290.
Y. Zhang , H. F. Chan , K. W. Leong . Advanced materials and processing for drug delivery:the past and the future . Adv. Drug Deliv. Rev. , 2013 . 65 (1 ):104 -120 . DOI:10.1016/j.addr.2012.10.003http://doi.org/10.1016/j.addr.2012.10.003.
L. I. Peltonen , T. J. Kinnari , A. A. Aarnisalo , P. Kuusela . Comparison of bacterial adherence to polylactides, silicone, and titanium . Acta Oto-Laryngologica , 2007 . 127 (6 ):587 -593 . DOI:10.1080/00016480600987792http://doi.org/10.1080/00016480600987792.
K. S. Kornman . Controlled-release local delivery antimicrobials in periodontics:prospects for the future . J Periodontol. , 1993 . 64 (8 Suppl ):782 -791 . http://www.ncbi.nlm.nih.gov/pubmed/8410618http://www.ncbi.nlm.nih.gov/pubmed/8410618, .
A. W. Smith . Biofilms and antibiotic therapy:Is there a role for combating bacterial resistance by the use of novel drug delivery systems? . Adv. Drug Deliv. Rev. , 2005 . 57 (10 ):1539 -1550 . DOI:10.1016/j.addr.2005.04.007http://doi.org/10.1016/j.addr.2005.04.007.
M. Hittinger , J. Juntke , S. Kletting , N. Schneider-Daum . Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models . Adv. Drug Deliv. Rev. , 2015 . 85 44 -56 . DOI:10.1016/j.addr.2014.10.011http://doi.org/10.1016/j.addr.2014.10.011.
T. D. Arthur , V. L. Cavera , M. L. Chikindas . On bacteriocin delivery systems and potential applications . Future Microbiol. , 2014 . 9 (2 ):235 -248 . DOI:10.2217/fmb.13.148http://doi.org/10.2217/fmb.13.148.
R. Herbrecht , D. W. Denning , T. F. Patterson , J. E. Bennett . Voriconazole versus amphotericin b for primary therapy of invasive aspergillosis . New Engl. J. Med. , 2002 . 347 (6 ):408 -415 . DOI:10.1056/NEJMoa020191http://doi.org/10.1056/NEJMoa020191.
T. J. Walsh , H. Teppler , G. R. Donowitz , J. A. Maertens . Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia . New Engl. J. Med. , 2004 . 351 (14 ):1391 -1402 . DOI:10.1056/NEJMoa040446http://doi.org/10.1056/NEJMoa040446.
H. J. Kim , M. N. Jones . The delivery of benzyl penicillin to staphylococcus aureus biofilms by use of liposomes . J. Liposome Res. , 2004 . 14 (3-4 ):123 -139 . DOI:10.1081/LPR-200029887http://doi.org/10.1081/LPR-200029887.
H. Pinto-Alphandary , A. Andremont , P. Couvreur . Targeted delivery of antibiotics using liposomes and nanoparticles:Research and applications . Int. J. Antimicrob. Agents , 2000 . 13 (3 ):155 -168 . DOI:10.1016/S0924-8579(99)00121-1http://doi.org/10.1016/S0924-8579(99)00121-1.
C. O. Onyeji , C. H. Nightingale , M. N. Marangos . Enhanced killing of methicillin-resistant staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin . Infection , 1994 . 22 (5 ):338 -342 . DOI:10.1007/BF01715542http://doi.org/10.1007/BF01715542.
I. Schumacher , R. Margalit . Liposome-encapsulated ampicillin:Physicochemical and antibacterial properties . J. Pharm. Sci. , 1997 . 86 (5 ):635 -641 . DOI:10.1021/js9503690http://doi.org/10.1021/js9503690.
F. Huang , Y. Gao , Y. Zhang , T. Cheng . Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity . ACS Appl. Mater. Interfaces , 2017 . 9 (20 ):16881 -16890 . http://pubs.acs.org/doi/pdf/10.1021/acsami.7b03347http://pubs.acs.org/doi/pdf/10.1021/acsami.7b03347, .
L. Chu , H. Gao , T. Cheng , Y. Zhang . A charge-adaptive nanosystem for prolonged enhanced in vivo antibiotic delivery . Chem. Commun. , 2016 . 52 (37 ):6265 -6268 . DOI:10.1039/C6CC01269Hhttp://doi.org/10.1039/C6CC01269H.
L. K. Shah , M. M. Amiji . Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS . Pharm. Res. , 2006 . 23 (11 ):2638 -2645 . DOI:10.1007/s11095-006-9101-7http://doi.org/10.1007/s11095-006-9101-7.
V. C. F. Mosqueira , P. M. Loiseau , C. Bories , P. Legrand . Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in plasmodium berghei-infected mice . Antimicrob. Agents Ch. , 2004 . 48 (4 ):1222 -1228 . DOI:10.1128/AAC.48.4.1222-1228.2004http://doi.org/10.1128/AAC.48.4.1222-1228.2004.
Y. Liu , H. J. Busscher , B. R. Zhao , Y. Li . F . Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano , 2016 . 10 (4 ):4779 -4789 . http://www.ncbi.nlm.nih.gov/pubmed/26998731http://www.ncbi.nlm.nih.gov/pubmed/26998731, .
Y. M. Li , G. H. Liu , X. R. Wang , J. M. Hu . Enzyme-responsive polymeric vesicles for bacterial-strainselective delivery of antimicrobial agents . Angew. Chem. Int. Ed. , 2016 . 55 (5 ):1760 -1764 . DOI:10.1002/anie.201509401http://doi.org/10.1002/anie.201509401.
J. Hasan , R. J. Crawford , E. P. Lvanova . Antibacterial surfaces:the quest for a new generation of biomaterials . Trends Biotechnol. , 2013 . 31 (5 ):31 -40 . http://www.sciencedirect.com/science/article/pii/S0167779913000309http://www.sciencedirect.com/science/article/pii/S0167779913000309, .
I. Insua , E. Liamas , Z. Y. Zhang , A. F. A. Peacock . Enzyme-responsive polyion complex (PIC) nanoparticles for the targeted delivery of antimicrobial polymers . Polym. Chem. , 2016 . 7 (15 ):2684 -2690 . DOI:10.1039/C6PY00146Ghttp://doi.org/10.1039/C6PY00146G.
0
Views
4
Downloads
8
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution