FOLLOWUS
Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
nieyijing@ujs.edu.cn
Published:01 December 2024,
Published Online:07 November 2024,
Received:16 July 2024,
Revised:13 August 2024,
Accepted:02 September 2024
Scan QR Code
Wen, J. L.; Ming, Y. Q.; Zhang, A. F.; Li, J. L.; Du, X. Y.; Shuai, L.; Nie, Y. J. Interplay between hydrogen bond network and entangled network in polymers during stretching based on molecular simulations. Chinese J. Polym. Sci. 2024, 42, 2069–2080
JIAN-LONG WEN, YONG-QIANG MING, AO-FEI ZHANG, et al. Interplay between Hydrogen Bond Network and Entangled Network in Polymers During Stretching Based on Molecular Simulations. [J]. Chinese journal of polymer science, 2024, 42(12): 2069-2080.
Wen, J. L.; Ming, Y. Q.; Zhang, A. F.; Li, J. L.; Du, X. Y.; Shuai, L.; Nie, Y. J. Interplay between hydrogen bond network and entangled network in polymers during stretching based on molecular simulations. Chinese J. Polym. Sci. 2024, 42, 2069–2080 DOI: 10.1007/s10118-024-3227-0.
JIAN-LONG WEN, YONG-QIANG MING, AO-FEI ZHANG, et al. Interplay between Hydrogen Bond Network and Entangled Network in Polymers During Stretching Based on Molecular Simulations. [J]. Chinese journal of polymer science, 2024, 42(12): 2069-2080. DOI: 10.1007/s10118-024-3227-0.
Molecular dynamics simulations were used to investigate the changes of hydrogen bonds and entanglements during stretching. In addition
the interplay between hydrogen bond network and entangled network during stretching was also revealed.
Mechanical properties of polymers can be regulated by changing the numbers of hydrogen bonds and entanglement points. However
the interplay between hydrogen bond network and entangled network during stretching has not been fully studied. We performed molecular dynamics simulations to investigate the changes of hydrogen bonds and entanglements during stretching. The stretching causes the orientation of local segments
leading to the entanglement sliding and disentanglements at different strain regions. Then
the number of entanglement points keeps constant at first and then decreases with increasing strain. Differently
the orientation of local segments can cause the change of chain conformation
which leads to the breakage of hydrogen bonds. Thus
the number of hydrogen bonds decreases with the increase of strain. Simulation results also demonstrated that the number of hydrogen bonds decreases faster during stretching in systems containing more entanglements. In systems with different hydrogen bond site contents
the initial number of entanglement nodes and its decline range during stretching increase firstly and then decrease with the increase of hydrogen bond site content.
Molecular dynamics simulationsHydrogen bondsEntanglements
Dao, K. C.; Dicken, D. J. Fatigue failure mechanisms in polymers.Polym. Eng. Sci.1987,27, 271−276..
Nie, Y.; Wang, B.; Huang, G.; Qu, L.; Zhang, P.; Weng, G.; Wu, J. Relationship between material properties and fatigue crack growth characteristic of natural rubber filled with different carbon blacks.J. Appl. Polym. Sci.2010,117, 3441−3447..
Wang, K.; Chen, F.; Li, Z.; Fu, Q. Control of the hierarchical structure of polymer articlesvia“structuring” processing.Prog. Polym. Sci.2014,39, 891−920..
Zhong, G. J.; Yang, S. G.; Lei, J.; Li, Z. M. Flow-induced polymer crystallization under pressure and its engineering application in “structuring” polymer processing.Macromolecules2024,57, 789−809..
Cui, K.; Ma, Z.; Tian, N.; Su, F.; Liu, D.; Li, L. Multiscale and multistep ordering of flow-induced nucleation of polymers.Chem. Rev.2018,118, 1840−1886..
Guo, Z.; Lu, X.; Wang, X.; Li, X.; Li, J.; Sun, J. Engineering of chain rigidity and hydrogen bond cross-linking toward ultra-strong, healable, recyclable, and water-resistant elastomers.Adv. Mater.2023,35, 2300286..
Nie, Y.; Huang, G.; Qu, L.; Wang, X.; Weng, G.; Wu, J. New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model.Polymer2011,52, 3234−3242..
Zhang, A.; Huang, Q.; Du, X.; Wang, Y.; Yang, J.; Li, S.; Zhu, M.; Nie, Y. Regulation of mechanical properties and self-healing performance of polyurethane nanocomposites by tuning the contents of free and associated hydrogen bonds.Polym. Chem.2024,15, 384−396..
Huang, Q.; Liu, Y.; Li, S.; Zhu, M.; Hao, T.; Zhou, Z.; Nie, Y. Blending polar rubber with polyurethane to construct self-healing rubber with multiple hydrogen bond networks.Polymer2022,246, 124768..
Cao, J.; Lu, C.; Zhuang, J.; Liu, M.; Zhang, X.; Yu, Y.; Tao, Q. Multiple hydrogen bonding enables the self-healing of sensors for human–machine interactions.Angew. Chem. Int. Ed.2017,129, 8921−8926..
Wen, J.; Xu, G.; Liang, Z.; Li, S.; Wang, Y.; Yang, J.; Nie, Y. Combing experimental methods and molecular simulations to study self-healing behaviors of polyurethane elastomers containing multiple hydrogen bond networks and flexible blocks.Phys. Chem. Chem. Phys.2023,25, 28162−28179..
Liang, Z.; Huang, D.; Zhao, L.; Nie, Y.; Zhou, Z.; Hao, T.; Li, S. Self-healing polyurethane elastomer based on molecular design: combination of reversible hydrogen bonds and high segment mobility.J. Inorg. Organomet. Polym Mater.2021,31, 683−694..
Yue, D. W.; Wang, H. Q.; Tao, H. Q.; Zheng, P.; Li, C. H.; Zuo, J. L. A fast and room-temperature self-healing thermal conductive polymer composite.Chinese J. Polym. Sci.2021,39, 1328−1336..
Wang, J. J.; Zhang, Q.; Ji, X. X.; Liu,L. B. Highly stretchable, compressible, adhesive, conductive self-healing composite hydrogels with sensor capacity.Chinese J. Polym. Sci.2020,38, 1221−1229..
Xu, J.; Zhu, L.; Feng, X. Q; Sui, C.; Zhao, W. P.; Yan, S. K. Effect of phase separation size on the properties of self-healing elastomer.Chinese J. Polym. Sci.2024,42, 798−804..
Luo, M. C.; Zeng, J.; Fu, X.; Huang, G.; Wu, J. Toughening diene elastomers by strong hydrogen bond interactions.Polymer2016,106, 21−28..
Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y.Adv. Mater. 2003 ,15, 1155-1158..
Wu, J.; Cai, L. H.; Weitz, D. A. Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks.Adv. Mater.2017,29, 1702616..
Zhou, X.; Guo, B.; Zhang, L.; Hu, G. H. Progress in bio-inspired sacrificial bonds in artificial polymeric materials.Chem. Soc. Rev.2017,46, 6301−6329..
Zhang, Z.; Liu, J.; Li, S.; Gao, K.; Ganesan, V.; Zhang, L. Constructing sacrificial multiple networks to toughen elastomer.Macromolecules2019,52, 4154−4168..
Shen, Y.; Wang, B.; Li, D.; Xu, X.; Liu, Y.; Huang, Y.; Hu, Z. Toughening shape-memory epoxy resinsviasacrificial hydrogen bonds.Polym. Chem.2022,13, 1130−1139..
Yokochi, H.; O'Neill, R. T.; Abe, T.; Aoki, D.; Boulatov, R.; Otsuka, H. Sacrificial mechanical bond is as effective as a sacrificial covalent bond in increasing cross-linked polymer toughness.J. Am. Chem. Soc.2023,145, 23794−23801..
Zhang, Z.; Luo, J.; Zhao, S.; Ge, S.; Carrillo, J. M. Y.; Keum, J. K.; Do, C.; Cheng, S.; Wang, Y.; Sokolov, A. P.; Cao, P. F. Surpassing the stiffness-extensibility trade-off of elastomersviamastering the hydrogen-bonding clusters.Matter2022,5, 237−252..
Chen, Y.; Sanoja, G.; Creton, C. Mechanochemistry unveils stress transfer during sacrificial bond fracture of tough multiple network elastomers.Chem. Sci.2021,12, 11098−11108..
Kong, D. C.; Yang, M. H.; Zhang, X. S.; Du, Z. C.; Fu, Q.; Gao, X. Q.; Gong, J. W. Control of polymer properties by entanglement: a review.Macromol. Mater. Eng.2021,306, 2100536..
Edwards, S. F.; Vilgis, T. The effect of entanglements in rubber elasticity.Polymer1986,27, 483−492..
Lian, Q.; Chen, H.; Luo, Y.; Li, Y.; Cheng, J.; Liu, Y. Toughening mechanism based on the physical entanglement of branched epoxy resin in the non-phase-separated inhomogeneous crosslinking network: an experimental and molecular dynamics simulation study.Polymer2022,247, 124754..
Ball, R. C.; Doi, M.; Edwards, S. F.; Warner, M. Elasticity of entangled networks.Polymer 1981 ,22, 1010..
Puza, F.; Zheng, Y.; Han, L.; Xue, L.; Cui, J. Physical entanglement hydrogels: ultrahigh water content but good toughness and stretchability.Polym. Chem.2020,11, 2339−2345..
Kamiyama, Y.; Tamate, R.; Hiroi, T.; Samitsu, S.; Fujii, K.; Ueki, T. Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers.Sci. Adv.2022,8, eadd0226..
Kim, J.; Zhang, G.; Shi, M.; Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links.Science 2021 ,374, 212−216..
Doi, M.; Edwards, S. F.The theory of polymer dynamics, Oxford University Press, 1988 ..
Shabbir, A.; Goldansaz, H.; Hassager, O.; van Ruymbeke, E.; Alvarez, N. J. Effect of hydrogen bonding on linear and nonlinear rheology of entangled polymer melts.Macromolecules2015,48, 5988−5996..
Jangizehi, A.; Ghaffarian, S. R.; Schmolke, W.; Seiffert, S. Dominance of chain entanglement over transient sticking on chain dynamics in hydrogen-bonded supramolecular polymer networks in the melt.Macromolecules2018,51, 2859−2871..
Ahmadi, M.; Jangizehi, A.; Seiffert, S. Backbone polarity tunes sticker clustering in hydrogen-bonded supramolecular polymer networks.Macromolecules2022,55, 5514−5526..
Li, W.; Liu, H.; Wang, H.; Chen, Y.; Peng, Y.; Wu, H.; Hou, Y.; Huang, Y.; Yuan, Z.; Ye, B.; Zhang, H.; Wu, J. Biomimetic hybrid networks with excellent toughness and self-healing ability in the glassy state.Chem. Mater.2023,35, 682−691..
Du, C.; Zhang, X. N.; Sun, T. L.; Du, M.; Zheng, Q.; Wu, Z. L. Hydrogen-bond association-mediated dynamics and viscoelastic properties of tough supramolecular hydrogels.Macromolecules2021,54, 4313−4325..
Nie, Y.; Wen, J.; Ming, Y.; Zhou, Y. Mechanisms of flow-induced multistep structure evolution in semi-crystalline polymers revealed by molecular simulations.Cryst. Growth Des.2024,24, 6531−6547..
Zhou, Y.; Wen, J.; Nie, Y. Microscopic mechanisms of self-healing in polymers revealed by molecular simulations and machine learning.Macromolecules2024,57, 3258−3270..
Wen, J.; Yang, J.; Kröger, M.; Ma, M.; Hao, T.; Zhou, Z.; Nie, Y. Molecular details of the "catalytic effect" of long chains on short chains in stretch-induced polymer crystallization.Macromolecules2024,57, 1612−1624..
Huang, X.; Zhang, A.; Tan, Q.; Gou, K.; Chen, Y.; Nie, Y.; Weng, G. Highly stretchable and self-healable tough polymer elastomer through Dy3+and Cu2+coordination cross-linking.Macromolecules2024,57, 963−975..
Zhou, Y. H.; Yang, J.; Zhou, Z. P.; Hao, T. F.; Nie, Y. J. Molecular dynamics simulations of stretch-induced crystal changes in crystallized polyethylene/carbon nanotubes nanocomposites.Chinese J. Polym. Sci.2023,41, 1425−1438..
Yang, J.; Liu, Z.; Zhou, Z.; Ming, Y.; Li, S.; Hao, T.; Nie, Y. Studying the effects of carbon nanotube contents on stretch-induced crystallization behavior of polyethylene/carbon nanotube nanocomposites using molecular dynamics simulations.Phys. Chem. Chem. Phys.2022,24, 16021..
Nie, Y.; Yang, J.; Liu, Z.; Zhou, Z.; Ming, Y.; Hao, T. Precursor formation and crystal nucleation in stretched polyethylene/carbon nanotube nanocomposites.Polymer2022,239, 124438..
Liu, Z.; Zhou, Z.; Ming, Y.; Zhang, S.; Hao, T.; Nie, Y. Molecular dynamics simulations of nucleation details in stretched polyethylene.Polymer2020,195, 122442..
Nie, Y.; Gao, H.; Yu, M.; Hu, Z.; Reiter, G.; Hu, W. Competition of crystal nucleation to fabricate the oriented semi-crystalline polymers.Polymer2013,54, 3402−3407..
Nie, Y.; Zhao, Y.; Matsuba, G.; Hu, W. Shish-kebab crystallites initiated by shear fracture in bulk polymers: 2. Crystallization on shearing.Polymer2023,274, 125909..
Nie, Y.; Zhao, Y.; Matsuba, G.; Hu, W. Shish-kebab crystallites initiated by shear fracture in bulk polymers.Macromolecules2018,51, 480−487..
Wang, Y.; Zhang, Y.; Su, L.; Hu, S.; Xiang, P.; Zhao, X.; Liu, L.; Zhang, L.; Gao, Y. Viscoelasticity and self-healing property of dynamic covalent polymers: A molecular dynamics simulation.Polymer2024,295, 126775..
Li, H.; Wang, Y.; Zhang, W.; Ma, R.; Zhao, X.; Liu, X.; Zhang, L.; Gao, Y. Structure, dynamics, and rheological behavior of associative polymers formed by hydrogen bonds.Macromolecules2024,57, 1106−1117..
Fang, Y.; Yue, T.; Li, S.; Zhang, Z.; Liu, J.; Zhang, L. Molecular dynamics simulations of self-healing topological copolymers with a comblike structure.Macromolecules2021,54, 1095−1105..
Shang, W.; Hou, G.; Ren, R.; Li, X.; Weng, Y.; Liu, J. Molecular dynamics simulation insight into topological structure dependence of self-healing polymer nanocomposites.Phys. Chem. Chem. Phys.2023,25, 19046−19057..
Grest, G. S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath.Phys. Rev. A1986,33, 3628..
Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation.J. Chem. Phys.1990,92, 5057−5086..
Zhang, Z.; Liu, J.; Zhang, L. Tuning the structure and mechanical properties of double-network elastomer: Molecular dynamics simulation.Chin. Sci. Bull.2018,63, 3631−3641..
Plimpton S. Fast parallel algorithms for short-range molecular dynamics.J. Comp. Phys.1995,117, 1−19..
Kröger, M.; Dietz, J. D.; Hoy, R. S.; Luap, C. The Z1+ package: Shortest multiple disconnected path for the analysis of entanglements in macromolecular systems.Comput. Phys. Commun.2023,283, 108567..
Rubinstein, M.; Helfand, E. Statistics of the entanglement of polymers: Concentration effects.J. Chem. Phys.1985,82, 2477−2483..
Edwards, S. F. The theory of rubber elasticity.Br. Polym. J.1977,9, 140−143..
Kröger, M. Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems.Comput. Phys. Commun.2005,168, 209−232..
Shanbhag, S.; Kröger, M. Primitive path networks generated by annealing and geometrical methods: insights into differences.Macromolecules2007,40, 2897−2903..
Tzoumanekas, C.; Theodorou, D. N. Topological analysis of linear polymer melts: A statistical approach.Macromolecules2006,39, 4592−4604..
Ubertini, M. A.; Rosa, A. Topological analysis and recovery of entanglements in polymer melts.Macromolecules2023,56, 3354−3362..
Song, J.; Li, J.; Li, Z. Molecular dynamics simulations of uniaxial deformation of bimodal polyethylene melts.Polymer2021,213, 123210..
Furuichi, K.; Nonomura, C.; Masubuchi, Y.; Watanabe, H.; Ianniruberto, G.; Greco, F.; Marrucci, G. Entangled polymer orientation and stretch under large step shear deformations in primitive chain network simulations.Rheol. Acta2008,47, 591−599..
He, Y.; Zhu, B.; Inoue, Y. Hydrogen bonds in polymer blends.Prog. Polym. Sci.2004,29, 1021−1051..
Chen, Y.; Lan, Q. Experimental evidence for immiscibility of enantiomeric polymers: Phase separation of high-molecular-weight poly(L-lactide)/poly(D-lactide) blends and its impact on hindering stereocomplex crystallization.Inter. J. Biol. Macromol.2024,260, 129459..
Chen, Q.; Huang, W.; Zhang, L.; Xi, L.; Liu, J. Fully atomistic molecular dynamics simulation of chemically modified natural rubber with hydrogen-bonding network.Polymer2023,284, 126284..
Duan, P.; Zhao, H.; Chen, Q.; Liu, M.; Wu, X.; Ganesan, V.; Wei, Y.; Liu, J. Insights into uniaxial tension and relaxation of nanorod-filled polymer vitrimer nanocomposites: a molecular dynamics simulation.Macromolecules2023,56, 4468−4481..
Naito, K.; Ochiai, Y.; Tsuboi, R.; Nimura, K.; Yashiro, K. Study by molecular dynamics and first-principles calculation on the influence of length of molecular chain and entanglement of molecular chains on the strength of amorphous polyethylene.J. Fiber Sci. Technol.2020,76, 267−274..
Xie, M.; Li, H. Viscosity reduction and disentanglement in ultrahigh molecular weight polyethylene melt: Effect of blending with polypropylene and poly(ethylene glycol).Eur. Polym. J.2007,43, 3480−3487..
Kang, F.; Yang, Y.; Wang, W.; Li, Z. Self-healing polyester elastomer with tuning toughness and elasticity through intermolecular quadruple hydrogen bonding.Eur. Polym. J.2023,184, 111794..
0
Views
18
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution