FOLLOWUS
a.College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
b.College of Materials Science and Engineering, Huaqiao University, Xiamen 361000, China
c.School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, China
hdcgh@hqu.edu.cn
Published:01 August 2024,
Published Online:07 June 2024,
Received:04 March 2024,
Revised:21 April 2024,
Accepted:28 April 2024
Scan for full text
Luo, F. H.; Dong, Z. T.; Chen, G. H.; Ma, C.; Wang, H. Y. Preparation of PVA/GO/h-BN Janus film with high thermal conductivity and excellent flexibility via a density deposition self-assembly method. Chinese J. Polym. Sci. 2024, 42, 1217–1226
Fang-Hua Luo, Zhi-Tao Dong, Guo-Hua Chen, et al. Preparation of PVA/GO/h-BN Janus Film with High Thermal Conductivity and Excellent Flexibility
Luo, F. H.; Dong, Z. T.; Chen, G. H.; Ma, C.; Wang, H. Y. Preparation of PVA/GO/h-BN Janus film with high thermal conductivity and excellent flexibility via a density deposition self-assembly method. Chinese J. Polym. Sci. 2024, 42, 1217–1226 DOI: 10.1007/s10118-024-3154-0.
Fang-Hua Luo, Zhi-Tao Dong, Guo-Hua Chen, et al. Preparation of PVA/GO/h-BN Janus Film with High Thermal Conductivity and Excellent Flexibility
PVA/GO/h-BN Janus films are fabricated by a simple density deposition self-assembly method without assistance of interface or auxiliary equipment
which just utilize the density difference between GO and h-BN during water evaporation. The acquired Janus films show diverse applications
such as sensing & actuating
electronic skins
soft actuators
flexible sensors.
Janus films with asymmetric physical/chemical properties have attracted considerable attention due to their promising applications in personal thermal management
electronic skins
sensors
actuators
etc
. However
traditional methods for fabricating Janus films conventionally need the assistance of an interface o
r auxiliary equipment
which are usually complex and time-consuming. Herein
flexible poly(vinyl alcohol) (PVA)/graphene oxide (GO)/h-BN (recorded as PVA/GO/h-BN) Janus films with thermally
optically
and electrically anisotropic properties are fabricated by a simple density deposition self-assembly method
which just utilizes the density difference between GO and h-BN during water evaporation. Experimental results show that the two sides of the acquired Janus films have obvious asymmetric characteristics. In the original state of the PVA/GO/h-BN Janus films
the thermal conductivity of the GO side (10.06 W·m
–1
·K
–1
) is generally lower than that of the h-BN side (10.48 W·m
–1
·K
–1
). But after GO is reduced
the thermal conductivity of the rGO side reaches 12.17 W·m
–1
·K
–1
surpassing that of the h-BN side. In addition
the relative reflectance of the h-BN side of Janus film is also significantly higher than that of the rGO side
and the surface resistance difference between the two sides is about 4 orders of magnitude. The prepared PVA/GO/h-BN Janus films show great application potential in human thermal management
light conversion switches
and electronic skins. This study provides a simple and versatile strategy for fabricating Janus films with multifunctional (such as thermal
optical
and electrical) anisotropies.
Janus filmsPVA/GO/h-BNDensity deposition self-assembly method
de Gennes, P. G. Weiche Materie. (Nobel-Vortrag).Angew. Chem. Int. Ed.1992,104, 856−859..
de Gennes, P. G. Soft matter (Nobel Lecture).Angew. Chem. Int. Ed.1992,31, 842−845..
Cho, I.; Lee, K. W. Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene.J. Appl. Polym. Sci.1985,30, 1903−1926..
Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat Lami, E.; Duguet, E. Design and synthesis of Janus micro- and nanoparticles.J. Mater. Chem.2005,15, 3745−3760..
Pang, X.; Wan, C.; Wang, M.; Lin, Z. Strictly biphasic soft and hard Janus structures: synthesis, properties, and applications.Angew. Chem. Int. Ed.2014,53, 5524−5538..
Fujii, S.; Kappl, M.; Butt, H. J.; Sugimoto, T.; Nakamura, Y. Soft Janus colloidal crystal film.Angew. Chem. Int. Ed.2012,51, 9809−9813..
Zhu, W.; Yang, H.; Lan, Y.; Yin, X.; Wang, S.; Wang, C.; Gao, N.; Li, G. Photonic janus films with highly tunable Janus balance.Adv. Mater. Interfaces2016,3, 201600225..
Zhang, P.; Wang, Q.; Guo, R.; Zhang, M.; Wang, S.; Lu, C.; Xue, M.; Fan, J.; He, Z.; Rao, W. Self-assembled ultrathin film of CNC/PVA-liquid metal composite as a multifunctional Janus material.Mater. Horiz.2019,6, 1643−1653..
Zhou, W.; Xiao, P.; Chen, T. Carbon-based janus films toward flexible sensors, soft actuators, and beyond.Acc. Mater. Res.2023,4, 334−347..
Cheng, Q.; Li, M.; Zheng, Y.; Su, B.; Wang, S.; Jiang, L. Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf.Soft Matter2011,7, 5948−5951..
He, J.; Xiao, P.; Shi, J.; Liang, Y.; Lu, W.; Chen, Y.; Wang, W.; Théato, P.; Kuo, S. W.; Chen, T. High performance humidity fluctuation sensor for wearable devicesviaa bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction.Chem. Mater.2018,30, 4343−4354..
Yang, H. C.; Hou, J.; Chen, V.; Xu, Z. K. Janus membranes: exploring duality for advanced separation.Angew. Chem. Int. Ed.2016,55, 13398−13407..
Xiao, P.; Wan, C.; Gu, J.; Liu, Z.; Men, Y.; Huang, Y.; Zhang, J.; Zhu, L.; Chen, T. 2D Janus hybrid materials of polymer-grafted carbon nanotube/graphene oxide thin film as flexible, miniature electric carpet.Adv. Funct. Mater.2015,25, 2428−2435..
Li, S.; Xiao, P.; Yang, W.; Zhang, C.; Gu, J.; Kuo, S. W.; Chen, T. Hierarchically nanostructured Janus membranes toward sustainable and efficient solar-to-thermal management.Adv. Funct. Mater.2023,33, 202209654..
Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics.Adv. Mater.2019,31, e1801072..
Han, B.; Zhang, Y. L.; Chen, Q. D.; Sun, H. B. Carbon-based photothermal actuators.Adv. Funct. Mater.2018,28, 201802235..
Chen, R. Q.; Ma, H.; Ma, X. L.; Ai, T. H.; Chai, Y. Q.; Zhang, H. R.; Li, F. W.; Wang, X. S.; Li, C. H.; Ji, J. H.; Xue, M. Q. Polymer crystallization regulation in liquid phase enables wearable full-featured thermoplastic-based smart Janus film.Chem. Eng. J.2023,457, 2022.141163..
Jiang, J. C.; Pi, Q. M.; Zhou, J. H.; Du, Y. X.; Li, Y. B. A simple preparation of ultrathin AuNWs-PEDOT:PSS bilayer Janus film for high performance chemiresistive ammonia gas sensor.Sensor. Actuat. B-Chem.2023,394, 134370..
Han, J. D.; Zhang, K. X.; Rao, Z. L.; Chen, J. X.; Meng, Y.; Quan, D. P.; Bai, Y. A surface grafting strategy for antifouling/bioadhesive properties on a Janus-type polymeric thin film.Appl. Surf. Sci.2024,649, 159146..
Yang, H. C.; Xie, Y.; Hou, J.; Cheetham, A. K.; Chen, V.; Darling, S. B. Janus membranes: creating asymmetry for energy efficiency.Adv. Mater.2018,30, e1801495..
Liang, Y.; Xiao, P.; Wang, S.; Shi, J.; He, J.; Zhang, J.; Huang, Y.; Chen, T. Scalable fabrication of free-standing, stretchable CNT/TPE ultrathin composite films for skin adhesive epidermal electronics.J. Mater. Chem. C.2018,6, 6666−6671..
Mohata, S.; Dey, K.; Bhunia, S.; Thomas, N.; Gowd, E. B.; Ajithkumar, T. G.; Reddy, C. M.; Banerjee, R. Dual nanomechanics in anisotropic porous covalent organic framework Janus-type thin films.J. Am. Chem. Soc.2021,144, 400−409..
Hong, S.; Schaber, C. F.; Dening, K.; Appel, E.; Gorb, S. N.; Lee, H. Air/water interfacial formation of freestanding, stimuli-responsive, self-healing catecholamine Janus-faced microfilms.Adv. Mater.2014,26, 7581−7587..
He, J.; Xiao, P.; Lu, W.; Shi, J.; Zhang, L.; Liang, Y.; Pan, C.; Kuo, S. W.; Chen, T. A Universal high accuracy wearable pulse monitoring systemviahigh sensitivity and large linearity graphene pressure sensor.Nano Energy2019,59, 422−433..
Chen, T.; Xia, J.; Gu, J.; Lu, G.; Xue, Q.; Liu, C.; Yan, L.; Chen, T. Engineering Janus CNTs/OCS composite membrane at air/water interface for excellent dye molecules screening.Chem. Eng. J.2021,417, 127947..
Xia, J. Y.; Xiao, P.; Gu, J. C.; Chen, T. Y.; Liu, C. H.; Yan, L. K.; Chen, T. Interfacial self-assembled GR/GO ultrathin membranes on a large scale for molecular sieving.J. Mater. Chem. A.2020,8, 18735−18744..
Xiao, P.; Liang, Y.; He, J.; Zhang, L.; Wang, S.;Gu, J.; Zhang, J.; Huang, Y.; Kuo, S. W.; Chen, T. Hydrophilic/hydrophobic interphase-mediated bubble-like stretchable Janus ultrathin films toward self-adaptive and pneumatic multifunctional electronics.ACS Nano2019,13, 4368−4378..
He, J.; Zhou, R. H.; Zhang, Y. F.; Gao, W. C.; Chen, T.; Mai, W. J.; Pan, C. F. Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite.Adv. Funct. Mater.2022,32, 202107281..
Yu, R.; Zhang, H.; Guo, B. Conductive biomaterials as bioactive wound dressing forwound healing and skin tissue engineering.Nano-Micro Lett.2021,14, 1..
Ji, L.; Yan, L.; Chao, M.; Li, M.; Gu, J.; Lei, M.; Zhang, Y.; Wang, X.; Xia, J.; Chen, T.; Nie, Y. J.; Chen, T. Sphagnum inspired g-C3N4nano/microspheres with smaller bandgap in heterojunction membranes for sunlight-driven water purification.Small2021,17, e2007122..
Ren, H.; Zheng, L.; Wang, G.; Gao, X.; Tan, Z.; Shan, J.; Cui, L.; Li, K.; Jian, M.; Zhu,L.; Zhang, Y.; Peng, H.; Wei, D.; Liu, Z. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors.ACS Nano2019,13, 5541−5548..
Zhang, L.; Yu, J.; Yang, M.; Xie, Q.; Peng, H.; Liu, Z. Janus graphene from asymmetric two-dimensional chemistry.Nat. Commun.2013,4, 1443..
Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites.Adv. Funct. Mater.2009,19, 2297−2302..
Luo, F.; Zhang, M.; Chen, S.; Xu, J.; Ma, C.; Chen, G. Sandwich-structured PVA/rGO films from self-construction with high thermal conductivity and electrical insulation.Compos. Sci. Technol.2021,207, 108707..
Yu, C.; Zhang, Q.; Zhang, J.; Geng, R.; Tian, W.; Fan, X.; Yao, Y. One-stepin situball milling synthesis of polymer-functionalized few-layered boron nitride and its application in high thermally conductive cellulose composites.ACS Appl. Nano Mater.2018,1, 4875−4883..
Hu, D.; Ma, W.; Zhang, Z.; Ding, Y.; Wu, L. Dual bio-inspired design of highly thermally conductive and superhydrophobic nanocellulose composite films.ACS Appl. Mater. Interfaces2020,12, 11115−11125..
Tsai, M. H.; Tseng, I. H.; Chiang, J. C.; Li, J. J. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability.ACS Appl. Mater. Interfaces2014,6, 8639−8645..
Lee, D.; Lee, B.; Park, K. H.; Ryu, H. J.; Jeon, S.; Hong, S. H. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling.Nano Lett.2015,15, 1238−1244..
Routh, A. F.; Russel, W. B. Deformation mechanisms during latex film formation: experimental evidence.Ind. Eng. Chem. Res.2001,40, 4302−4308..
Yang, H. S.; Li, Z. L.; Sun, G. Q.; Jin, X. T.; Lu, B.; Zhang, P. P.; Lin, T. Y.; Qu, L. T. Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale.Adv. Funct. Mater.2019,29, 201901917..
Gao, P.; Guo, L.; Sun, J.; Wang, Y.; She, Z.; Gao, M.; Zhao, Y.; Jin, C. Effect of alkyl polyglycosides on the performance of thermophilic bacteria pretreatment for saline waste sludge hydrolysis.Bioresour. Technol.2020,296, 122307..
Peng, Y.; Xiao, D.; Yu, G.; Feng, Y.; Li, J.; Zhao, X.; Tang, Y.; Wang, L.; Zhang, Q. Effect of an eco-friendly o/w emulsion stabilized with amphiphilic sodium alginate derivatives on lambda-cyhalothrin adsorption-desorption on natural soil minerals.J. Environ. Sci.2019,78, 230−238..
Zhao, Y.; Liu, W.; Hu, X.; Li, X.; Wang, C.; Yu, Y.; Zhang, J. Effect of surfactant on urease-producing flora from waste activated sludge using microbially induced calcite precipitation technology to suppress coal dust.Environ. Res.2023,237, 116941..
Yang, H.; Li, Z.; Lu, B.; Gao, J.; Jin, X.; Sun, G.; Zhang, G.; Zhang, P.; Qu, L. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications.ACS Nano2018,12, 11407−11416..
Zhang, X.; Zhang, T.; Wang, Z.; Ren, Z.; Yan, S.; Duan, Y.; Zhang, J. Ultralight, superelastic, and fatigue-resistant graphene aerogel templated by graphene oxide liquid crystal stabilized air bubbles.ACS Appl. Mater. Interfaces2019,11, 1303−1310..
Zhang, X.; Yang, G.; Zong, L.; Jiang, M.; Song, Z.; Ma, C.; Zhang, T.; Duan, Y.; Zhang, J. Tough, ultralight, and water-adhesive graphene/natural rubber latex hybrid aerogel with sandwich like cell wall and biomimetic rose-petal-like surface.ACS Appl. Mater. Interfaces2020,12, 1378−1386..
An, D.; Cheng, S.; Zhang, Z.; Jiang, C.; Fang, H.; Li, J.; Liu, Y.; Wong, C. P. A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections.Carbon2019,155, 258−267..
Zhang, W.; Kong, Q. Q.; Tao, Z.; Wei, J.; Xie, L.; Cui, X.; Chen, C. M. 3D thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material.Adv. Mater. Interfaces2019,6, 201900147..
Zeng, X. L.; Yao, Y. M.; Gong, Z. Y.; Wang, F. F.; Sun, R.; Xu, J. B.; Wong, C. P. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement.Small2015,11, 6205−6213..
Zhang, Y.; Wang, S.; Tang, P.; Zhao, Z.; Xu, Z.; Yu, Z. Z.; Zhang, H. B. Realizing spontaneously regular stacking of pristine graphene oxide by a chemical-structure-engineering strategy for mechanically strong macroscopic films.ACS Nano2022,16, 8869−8880..
An, F.; Li, X.; Min, P.; Li, H.; Dai, Z.; Yu, Z. Z. Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites.Carbon2018,126, 119−127..
Zhao, H. Y.; Yu, M. Y.; Liu, J.; Li, X.; Min, P.; Yu, Z. Z. Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites.Nano-Micro Lett.2022,14, 129..
Li, L.; Li, M.; Zhang, Z.; Qin, Y.; Shui, X.; Xia, J.; Xiong, S.; Wang, B.; Zhang, Z.; Wei, X.; Kong, X. D.; Gong, P.; Cai, T.; Pan, Z. B.; Li, Y.; Fan, J. C.; Lin, C. T.; Jiang, N.; Yu, J. H. Robust composite film with high thermal conductivity and excellent mechanical properties by constructing a long-range ordered sandwich structure.J. Mater. Chem. A.2022,10, 9922−9931..
0
Views
47
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution