Competition of Composition Fluctuation Modes in Weakly Segregated Salt-doped Symmetric Diblock Copolymers
RESEARCH ARTICLE|Updated:2024-08-27
|
Competition of Composition Fluctuation Modes in Weakly Segregated Salt-doped Symmetric Diblock Copolymers
Chinese Journal of Polymer ScienceVol. 42, Issue 9, Pages: 1375-1385(2024)
Affiliations:
a.South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
b.Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
Zhou, Y. X.; Kong, X. Competition of composition fluctuation modes in weakly segregated salt-doped symmetric diblock copolymers. Chinese J. Polym. Sci. 2024, 42, 1375–1385
Yuan-Xin Zhou, Xian Kong. Competition of Composition Fluctuation Modes in Weakly Segregated Salt-doped Symmetric Diblock Copolymers. [J]. Chinese Journal of Polymer Science 42(9):1375-1385(2024)
Zhou, Y. X.; Kong, X. Competition of composition fluctuation modes in weakly segregated salt-doped symmetric diblock copolymers. Chinese J. Polym. Sci. 2024, 42, 1375–1385 DOI: 10.1007/s10118-024-3145-1.
Yuan-Xin Zhou, Xian Kong. Competition of Composition Fluctuation Modes in Weakly Segregated Salt-doped Symmetric Diblock Copolymers. [J]. Chinese Journal of Polymer Science 42(9):1375-1385(2024) DOI: 10.1007/s10118-024-3145-1.
Competition of Composition Fluctuation Modes in Weakly Segregated Salt-doped Symmetric Diblock Copolymers
Investigating the phase separation of salt-doped diblock copolymers
this study reveals the significant role of charged species in modulating phase behavior. Across various wave numbers
the phase separation exhibits a transition between the polymer-modulated and salt-out-modulated modes. These findings provide substantial guidance for precise nanostructure fabrication.
Abstract
Salt-doped block copolymers have widespread applications in batteries
fuel cells
semiconductors
and various industries
where their properties crucially depend on phase separation behavior. Traditionally
investigations into salt-doped diblock copolymers have predominantly focused on microphase separation
overlooking the segregation between ionic and polymeric species. This study employs weak segregation theory to explore the interplay between phase separation dominated by the polymer-modulated mode and the salt-out-modulated mode
corresponding to microscopic and macroscopic phase separations
respectively. By comparing diblock copolymers doped with salts to those doped with neutral solvents
we elucidate the significant role of charged species in modulating phase behavior. The phase separation mode exhibits a transition between the polymer-modulated and salt-out-modulated modes at different wavenumbers. In systems doped with neutral solvents
this transition is stepwise
while in salt-ion-doped systems
it is continuous. With a sufficiently large Flory-Huggins parameter between ions and polymers
the salt-out-modulated mode becomes dominant
promoting macrophase separation. Due to the solvation effect of salt ions
salt-doped systems are more inclined to undergo microphase separation. Furthermore
we explore factors influencing the critical wavenumber of phase separation
including doping level and the Flory-Huggins parameters between two blocks and between ions and polymeric species. Our findings reveal that in a neutral solvent environment
these factors alter only the boundary between micro- and macro-phase separations
leaving the critical wavenumber unchanged in microphase separation cases. However
in a salt-doped environment
the critical wavenumber of microphase separation varies with these parameters. This provides valuable insights into the pivotal role of electrostatics in the phase separation of salt-doped block copolymers.
Bates, C. M.; Bates, F. S. 50thAnniversary perspective: block polymers—pure potential.Macromolecules2017,50, 3−22..
Floudas, G.; Hadjichristidis, N.; Stamm, M.; Likhtman, A. E.; Semenov, A. N. Microphase separation in block copolymer/homopolymer blends: theory and experiment.J. Chem. Phys.1997,106, 3318−3328..
Huang, Y. Y.; Hsu, J. Y.; Chen, H. L.; Hashimoto, T. Existence of fcc-packed spherical micelles in diblock copolymer melt.Macromolecules2007,40, 406−409..
Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Stability of the perforated layer (PL) phase in diblock copolymer melts.Macromolecules1997,30, 3788−3795..
Takenaka, M.; Wakada, T.; Akasaka, S.; Nishitsuji, S.; Saijo, K.; Shimizu, H.; Kim, M. I.; Hasegawa, H. Orthorhombic Fddd network in diblock copolymer melts.Macromolecules2007,40, 4399−4402..
G., A. T. K.; Gotrik, K. W.; Hannon, A. F.; Alexander-Katz, A.; Ross, C. A.; Berggren, K. K. Templating three-dimensional self-assembled structures in bilayer block copolymer films.Science2012,336, 1294−1298..
L iu, C.-C.; Franke, E.; Mignot, Y.; Xie, R.; Yeung, C. W.; Zhang, J.; Chi, C.; Zhang, C.; Farrell, R.; Lai, K.; Tsai, H.; Felix, N.; Corliss, D. Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond.Nat. Electron.2018,1, 562−569..
Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Förster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K. Fluctuations, conformational asymmetry and block copolymer phase behaviour.Faraday Discuss.1994,98, 7−18..
Ohta, T.; Kawasaki, K. Equilibrium morphology of block copolymer melts.Macromolecules1986,19, 2621−2632..
Fredrickson, G. H.; Helfand, E. Fluctuation effects in the theory of microphase separation in block copolymers.J. Chem. Phys.1987,87, 697−705..
Mayes, A. M.; Olvera de la Cruz, M. Microphase separation in multiblock copolymer melts.J. Chem. Phys.1989,91, 7228−7235..
Bates, F. S.; Fredrickson, G. H. Block copolymers—designer soft materials.Phys. Today1999,52, 32−38..
Dobrynin, A. V.; Erukhimovich, I. Y. Computer-aided comparative investigation of architecture influence on block copolymer phase diagrams.Macromolecules1993,26, 276−281..
Matsen, M. W.; Bates, F. S. Unifying weak- and strong-segregation block copolymer theories.Macromolecules1996,29, 1091−1098..
Matsen, M. W. Effect of architecture on the phase behavior of ab-type block copolymer melts.Macromolecules2012,45, 2161−2165..
Zhulina, E. B.; Sheiko, S. S.; Borisov, O. V. Theory of microphase segregation in the melts of copolymers with dendritically branched, bottlebrush, or cycled blocks.ACS Macro Lett.2019,8, 1075−1079..
Soo, P. P.; Huang, B.; Jang, Y.; Chiang, Y.; Sadoway, D. R.; Mayes, A. M. Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries.J. Electrochem. Soc.1999,146, 32..
Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries.Nature2001,414, 359−367..
Armand, M.; Tarascon, J. M. Building better batteries.Nature2008,451, 652−657..
Lodge, T. P. A Unique platform for materials design.Science2008,321, 50−51..
Brown, J. R.; Seo, Y.; Hall, L. M. Ion correlation effects in salt-doped block copolymers.Phys. Rev. Lett.2018,120, 127801..
Gartner, T. E. I.; Morris, M. A.; Shelton, C. K.; Dura, J. A.; Epps, T. H. I. Quantifying lithium salt and polymer density distributionsin nanostructured ion-conducting block polymers.Macromolecules2018,51, 1917−1926..
Teran, A. A.; Balsara, N. P. Thermodynamics of block copolymers with and without salt.J. Phys. Chem. B2014,118, 4−17..
Nakamura, I. Ion solvation in polymer blends and block copolymer melts: effects of chain length and connectivity on the reorganization of dipoles.J. Phys. Chem. B2014,118, 5787−5796..
Wang, Z. G. Effects of ion solvation on the miscibility of binary polymer blends.J. Phys. Chem. B2008,112, 16205−16213..
Wang, J. Y.; Chen, W.; Russell, T. P. Ion-complexation-induced changes in the interaction parameter and the chain conformation of PS-b-PMMA copolymers.Macromolecules2008,41, 4904−4907..
Nakamura, I.; Balsara, N. P.; Wang, Z. G. Thermodynamics of ion-containing polymer blends and block copolymers.Phys. Rev. Lett.2011,107, 198301..
Young, W. S.; Epps, T. H. I. Salt doping in PEO-containing block copolymers: counterion and concentration effects.Macromolecules2009,42, 2672−2678..
Epps, T. H.; Bailey, T. S.; Waletzko, R.; Bates, F. S. Phase behavior and block sequence effects in lithium perchlorate-doped poly(isoprene-b-styrene-b-ethylene oxide) and poly(styrene-b-isoprene-b-ethylene oxide) triblockcopolymers.Macromolecules2003,36, 2873−2881..
Gunkel, I.; Thurn-Albrecht, T. Thermodynamic and structural changes in ion-containing symmetric diblock copolymers: a small-angle X-ray scattering study.Macromolecules2012,45, 283−291..
Sing, C. E.; Zwanikken, J. W.; Olvera de la Cruz, M. Electrostatic control of block copolymer morphology.Nat. Mater.2014,13, 694−698..
Kong, X.; Hou, K. J. Y.; Qin, J. Weakening of solvation-induced ordering by composition fluctuation in salt-doped block polymers.ACS Macro Lett.2021,10, 545−550..
Kong, X.; Qin, J. Microphase separation in neutral homopolymer blends induced by salt-doping.Macromolecules2023,56, 254−262..
Hou, K. J.; Qin, J. Solvation and entropic regimes in ion-containing block copolymers.Macromolecules2018,51, 7463−7475..
Hou, K. J.; Loo, W. S.; Balsara, N. P.; Qin, J. Comparing experimental phase behavior of iondoped block copolymers with theoretical predictions based on selective ion solvation.Macromolecules2020,53, 3956−3966..
Wang, Z. G. Fluctuation in electrolyte solutions: the self energy.Phys. Rev. E2010,81, 021501..
Leibler, L. Theory of microphase separation in block copolymers.Macromolecules1980,13, 1602−1617..
Hamley, I.Block Copolymers in Solution: Fundamentals and Applications; Wiley, 2005 ..
Fredrickson, G. H.; Leibler, L. Theory of block copolymer solutions: nonselective good solvents.Macromolecules1989,22, 1238−1250..
Sinturel, C.; Bates, F. S.; Hillmyer, M. A. High-low N block polymers: how far can we go?ACS Macro Lett.2015,4, 1044−1050..
Doi, M.Soft Matter Physics; Oxford University Press, USA, 2013 ..
Asymmetric Mesoporous Carbon Microparticles by 3D-Confined Self-Assembly of Block Copolymer/Homopolymer Blends and Selective Carbonization
Effect of Phase Separation Size on the Properties of Self-healing Elastomer
Ordered Bicontinuous Network Structures Regulated by Orientational Interactions in a Rod-Coil Block Copolymer
Related Author
Jing-Ye Liu
Hao-Rui Song
Mian Wang
Shao-Hong Jin
Zheng Liang
Xi Mao
Wang Li
Ren-Hua Deng
Related Institution
State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology
School of Chemical Engineering, Qingdao University of Science & Technology
College of Engineering, Yanching institute of Technology
Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology