FOLLOWUS
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
jiangh@bit.edu.cn (H.J.)
zoums@bit.edu.cn (M.S.Z.)
Published:01 August 2024,
Published Online:17 May 2024,
Received:18 December 2023,
Revised:18 March 2024,
Accepted:01 April 2024
Scan for full text
Zhao, Z. Y.; Jiang, H.; Li, X. D.; Zhang, X. D.; Su, X.; Zou, M. S. Research on the dynamic compressibility of polyurethane microcellular elastomer and its application for impact resistance. Chinese J. Polym. Sci. 2024, 42, 1185–1197
Zhi-Ying Zhao, Hao Jiang, Xiao-Dong Li, et al. Research on the Dynamic Compressibility of Polyurethane Microcellular Elastomer and its Application for Impact Resistance. [J]. Chinese Journal of Polymer Science 42(8):1185-1197(2024)
Zhao, Z. Y.; Jiang, H.; Li, X. D.; Zhang, X. D.; Su, X.; Zou, M. S. Research on the dynamic compressibility of polyurethane microcellular elastomer and its application for impact resistance. Chinese J. Polym. Sci. 2024, 42, 1185–1197 DOI: 10.1007/s10118-024-3134-4.
Zhi-Ying Zhao, Hao Jiang, Xiao-Dong Li, et al. Research on the Dynamic Compressibility of Polyurethane Microcellular Elastomer and its Application for Impact Resistance. [J]. Chinese Journal of Polymer Science 42(8):1185-1197(2024) DOI: 10.1007/s10118-024-3134-4.
The packaging materials with cushioning performance are used to prevent the internal contents from being damaged by the impact and vibration of external forces. The polyurethane microcellular elastomers (PUMEs) can absorb energy through cell collapse and molecular chain creep. In this study
PUMEs with different densiti
es were investigated by scanning electron microscopy
dynamic mechanical analysis and dynamic compression tests. PUMEs exhibited significant impact resistance and the maximum peak stress attenuation ratio reached 73.33%. The protective equipment was made by PUME with the optimal density of 600 kg/m
3
and then the acceleration sensing device installed with the same protective equipment fell from a height of 3
5 and 10 m to evaluate the energy-absorbing property and reusability of PUMEs. The results showed that PUMEs equipment reduced the peak acceleration of the device by 93.84%
with a maximum deviation of 9% between actual test and simulation
and shortened the impact time of first landing by 57.39%. In addition
the equipment PUMEs equipment could effectively reduce the stress on the protected items.
Polyurethane microcellular elastomerImpact velocityStress attenuation ratioImpact resistance
Li, P.; Guo, Y. B.; Zhou, M. W.; Shim, V. P. W. Response of anisotropic polyurethane foam to compression at different loading angles and strain rates.Int. J. Impact. Eng.2019,127, 154−168..
Hwang, B. K.; Kim, S. K.; Kim, J. H.; Kim, J. D.; Lee, J. M. Dynamic compressive behavior of rigid polyurethane foam with various densities under different temperatures.Int. J. Mech. Sci.2020,180..
Linul, E.; Serban, D. A.; Voiconi, T.; Marsavina, L.; Sadowski, T. Energy-absorption and efficiency diagrams of rigid PUR foams.Key Eng. Mater.2014,601, 246−249..
Avalle, M.; Belingardi, G.; Montanini, R. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram.Int. J. Impact. Eng.2001,25, 455−472..
Gibson, L. J. Modelling the mechanical behavior of cellular materials.Mat. Sci. Eng.1989,110, 1−36..
Fan, J. T.; Weerheijm, J.; Sluys, L. J. High-strain-rate tensile mechanical response of a polyurethane elastomeric material.Polymer2015,65, 72−80..
Zhao, Z.; Li, X.; Jiang, H.; Su, X.; Zhang, X.; Zou, M. Study on the mechanical properties and energy absorbing capability of polyurethane microcellular elastomers under different compressive strain rates.Polymers2023,15, 778..
Yi, J.; Boyce, M. C.; Lee, G. F.; Balizer, E. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes.Polymer2006,47, 319−329..
Cho, H.; Mayer, S.; Poselt, E.; Susoff, M.; Veld, P. J.; Rutledge, G. C.; Boyce, M. C. Deformation mechanisms of thermoplastic elastomers: stress-strain behavior and constitutive modeling.Polymer2017,128, 87−99..
Doman, D. A.; Cronin, D. S.; Salisbury, C. P. Characterization of polyurethane rubber at high deformation rates.Exp. Mech.2006,46, 367−376..
Zhang, L.; Yao, X.; Zang, S.; Gu, Y. Temperature- and strain rate-dependent constitutive modeling of the large deformation behavior of a transparent polyurethane interlayer.Polym. Eng. Sci.2015,55, 1864−1872..
Wang, Y.; Luo, W.; Huang, J.; Peng, C.; Wang, H.; Yuan, C.; Chen, G.; Zeng, B.; Dai, L. Simplification of hyperelastic constitutive model and finite element analysis of thermoplastic polyurethane elastomers.Macromol. Theory Simul.2020,29, 2000009..
Xiao, Y.; Yin, J.; Zhang, X.; An, X.; Xiong, Y.; Sun, Y. Mechanical performance and cushioning energy absorption characteristics of rigid polyurethane foam at low and high strain rates.Polym. Test.2022,109, 107531..
Fan, Z.; Zhang, B.; Liu, Y.; Suo, T.; Xu, P.; Zhang, J. Interpenetrating phase composite foam based on porous aluminum skeleton for high energy absorption.Polym. Test.2021,93, 106917..
AbdulLatif, A.; Menouer, A.; Baleh, R.; Deiab, I. M. Plastic response of open cell aluminum foams of highly uniform architecture under different quasi-static combined biaxial compression-torsion loading paths.Mat. Sci. Eng. B- Solid.2021,266, 115051..
Iqbal, N.; Mubashar, A.; Ahmed, S.; Arif, N.; Din, E. U. Investigating relative density effects on quasi-static response of high-density rigid polyurethane foam (RPUF).Mater. Today Commun.2022,31, 103320..
Haifeng, L.; Jianguo, N. Mechanical behavior of reinforced concrete subjected to impact loading.Mech. Mater.2009,41, 1298−1308..
Enfedaque, A.; Cendón, D.; Gálvez, F.; Sánchez-Gálvez, V. Failure and impact behavior of facade panels made of glass fiber reinforced cement (GRC).Eng. Failure Anal.2011,18, 1652−1663..
Tang, E.; Wang, L.; Wang, R.; Han, Y. Relationships between shock stress and electrical output characteristics for PZT-5H under high-velocity impact loading.Mech. Adv. Mater. Struct.2020,27, 2035–2042..
Tong, X.; Hoo Fatt, M. S.; Vedire, A. R. A new crushable foam model for polymer-foam core sandwich structures.Int. J. Crashworthines.2021,27, 1460−1480..
Fatt, M. S. H.; Zhong, C.; Gadepalli, P. C.; Tong, X. Crushable multiaxial behavior of sandwich foam cores: Pressure vessel experiments.J. Sandwich Struct. Mater.2020,23, 2028−2063..
Tong, X.; Hoo Fatt, M. S.; Zhong, C.; Alkhtany, M. Predicting anisotropic crushable polymer foam behavior in sandwich structures.Multiscale Multi. Mod.2020,3, 245−264..
Wang, S.; Gong, M. Numerical simulation study on blasting demolition of 84 m tall building.IOP Conference Series: Earth and Environmental Science2019,252, 022145..
Chen, Y. F.; Yi, G. X. Dynamic response analysis of the reinforced concrete column under the effect of explosive impact load.Adv. Mater. Res.2013,681, 99−104..
Luo, N.; Wang, D. N.; Ying S. K. Hydrogen-bonding properties of segmented polyether poly(urethane urea) copolymer.Macromolecules1997,30, 4405−4409..
Yilgör, I.; Yilgör, E.; Wilkes, G. L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review.Polymer2015,58, A1−A36..
Parcheta, P.; Głowińska, E.; Datta, J. Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers.Eur. Polym. J.2020,123, 109422..
Zhao, Z.; Jiang, H.; Li, X.; Su, X.; Wu, X.; Zhang, X.; Zou, M. Effects of closed porosity and density on mechanical properties and energy absorption of polyurethane elastomer foam.Polym. Mater. Sci. Eng.2023,39, 35−44..
0
Views
68
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution