FOLLOWUS
a.College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
b.College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
guib09@whu.edu.cn (B.G.)
chengwang@whu.edu.cn (C.W.)
Published:01 August 2024,
Published Online:10 May 2024,
Received:01 March 2024,
Revised:20 March 2024,
Accepted:25 March 2024
Scan for full text
Xiao, L. B.; Wu, Z. H.; Xin, J. J.; Cheng, Y. P.; Gui, B.; Sun, J. L.; Wang, C. A fluorine-functionalized 3D covalent organic framework with entangled 2D layers. Chinese J. Polym. Sci. 2024, 42, 1210–1216
Li-Bang Xiao, Zi-Han Wu, Jun-Jie Xin, et al. A Fluorine-Functionalized 3D Covalent Organic Framework with Entangled 2D Layers. [J]. Chinese Journal of Polymer Science 42(8):1210-1216(2024)
Xiao, L. B.; Wu, Z. H.; Xin, J. J.; Cheng, Y. P.; Gui, B.; Sun, J. L.; Wang, C. A fluorine-functionalized 3D covalent organic framework with entangled 2D layers. Chinese J. Polym. Sci. 2024, 42, 1210–1216 DOI: 10.1007/s10118-024-3133-5.
Li-Bang Xiao, Zi-Han Wu, Jun-Jie Xin, et al. A Fluorine-Functionalized 3D Covalent Organic Framework with Entangled 2D Layers. [J]. Chinese Journal of Polymer Science 42(8):1210-1216(2024) DOI: 10.1007/s10118-024-3133-5.
A fluorine-functionalized 3D COF (3D-An-COF-F) with entangled 2D
sql
nets was designed and synthesized. Based on continuous rotation electron diffraction technique and structure modelling
3D-An-COF-F was isostructural to our reported 3D-An-COF. Interestingly
compared to 3D-An-COF without F atoms
3D-An-COF-F showed an improved CO
2
sorption ability and higher CO
2
/N
2
selectivity.
Constructing three dimensional (3D) covalent organic frameworks (COFs) through the entanglement of two dimensional (2D) nets is a promising but underdeveloped strategy. Herein
we report the design and synthesis of a fluorine functionalized 3D COF (3D-An-COF-F) formed by entangled 2D
sql
nets. The structure of 3D-An-COF-F was determined by the combination of continuous rotation electron diffraction technique and modelling based on the chemical information from real space. Interestingly
compared to the isostructural 3D-An-COF without F atoms
3D-An-COF-F showed an improved CO
2
sorption ability and higher CO
2
/N
2
selectivity. Our study not only demonstrated the generality of constructing 3D COFs with entangled 2D nets by introducing bulky groups vertically in planar building blocks
but also will expand the diversity of 3D COFs for various applications.
3D covalent organic frameworksFluorineEntangled 2D layersElectron diffractionCO2 adsorption
Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications.Chem. Soc. Rev.2013,42, 548−568..
Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework.Science2017,355, eaal1585..
Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent organic frameworks: design, synthesis, and functions.Chem. Rev.2020,120, 8814−8933..
Gui, B.; Ding, H.; Cheng, Y.; Mal, A.; Wang, C. Structural design and determination of 3D covalent organic frameworks.Trends Chem.2022,4, 437−450..
Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. inIntroduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks. John Wiley& Sons, Weinheim, Germany 2019 , pp. 1–494..
Zhi, Q.; Liu, W.; Jiang, R.; Zhan, X.; Jin, Y.; Chen, X.; Yang, X.; Wang, K.; Cao, W.; Qi, D.; Jiang, J. Piperazine-linked metalphthalocyanine frameworks for highly efficient visible-light-driven H2O2photosynthesis.J. Am. Chem. Soc.2022,144, 21328−21336..
Yuan, C.; Fu, S.; Kang, X.; Cheng, C.; Jiang, C.; Liu, Y.; Cui, Y. Mixed-linker chiral 2D covalent organic frameworks with controlled layer stacking for electrochemical asymmetric catalysis.J. Am. Chem. Soc.2024,146, 635−645..
Yang, S.; Hu, W.; Zhang, X.; He, P.; Pattengale, B.; Liu, C.; Cendejas, M.; Hermans, I.; Zhang, X.; Zhang, J.; Huang, J. 2D Covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2reduction.J. Am. Chem. Soc.2018,140, 14614−14618..
Yao, L.; Rodríguez-Camargo, A.; Xia, M.; Mücke, D.; Guntermann, R.; Liu, Y.; Grunenberg, L.; Jiménez-Solano, A.; Emmerling, S. T.; Duppel, V.; Sivula, K.; Bein, T.; Qi, H.; Kaiser, U.; Grätzel, M.; Lotsch, B. V. Covalent organic framework nanoplates enable solution-processed crystalline nanofilms for photoelectrochemical hydrogen evolution.J. Am. Chem. Soc.2022,144, 10291−10300..
Wang, G. B.; Wang, Y. J.; Kan, J. L.; Xie, K. H.; Xu, H. P.; Zhao, F.; Wang, M. C.; Geng, Y.; Dong, Y. B. Construction of covalent organic frameworksviaa visible-light-activated photocatalytic multicomponent reaction.J. Am. Chem. Soc.2023,145, 4951−4956..
Zhang, Z.; Kang, C.; Peh, S. B.; Shi, D.; Yang, F.; Liu, Q.; Zhao, D. Efficient adsorption of acetylene over CO2in bioinspired covalent organic frameworks.J. Am. Chem. Soc.2022,144, 14992−14996..
Fan, H.; Mundstock, A.; Feldhoff, A.; Knebel, A.; Gu, J.; Meng, H.; Caro, J. Covalent organic framework covalent organic framework bilayer membranes for highly selective gas separation.J. Am. Chem. Soc.2018,140, 10094−10098..
Khan, N. A.; Zhang, R.; Wu, H.; Shen, J.; Yuan, J.; Fan, C.; Cao, L.; Olson, M. A.; Jiang, Z. Solid-vapor interface engineered covalent organic framework membranes for molecular separation.J. Am. Chem. Soc.2020,142, 13450−13458..
Li, J.; Cheng, Z.; Wang, Z.; Dong, J.; Jiang, H.; Wang, W.; Zou, X.; Zhu, G. Ultramicroporous covalent organic framework nanosheets with functionality pair for membrane C2H2/C2H4separation.Angew. Chem. Int. Ed.2023,62, e202216675..
Zeng, Y.; Zou, R.; Zhao, Y. Carbon dioxide capture: covalent organic frameworks for CO2capture.Adv. Mater.2016,28, 2855−2873..
Meng, Z.; Mirica, K. A. Covalent organic frameworks as multifunctional materials for chemical detection.Chem. Soc. Rev.2021,50, 13498−13558..
Jhulki, S.; Evans, A. M.; Hao, X. L.; Cooper, M. W.; Feriante, C. H.; Leisen, J.; Li, H.; Lam, D.; Hersam, M. C.; Barlow, S.; Brédas, J. L.; Dichtel, W. R.; Marder, S. R. Humidity sensing through reversible isomerization of a covalent organic framework.J. Am. Chem. Soc.2020,142, 783−791..
Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical sensing in two dimensional porous covalent organic nanosheets.Chem. Sci.2015,6, 3931−3939..
Hamzehpoor, E.; Ruchlin, C.; Tao, Y.; Liu, C. H.; Titi, H. M.; Perepichka, D. F. Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping.Nat. Chem.2023,15, 83−90..
Xing, G.; Zheng, W.; Gao, L.; Zhang, T.; Wu, X.; Fu, S.; Song, X.; Zhao, Z.; Osella, S.; Martínez-Abadía, M.; Wang, H. I.; Cai, J.; Mateo-Alonso, A.; Chen, L. Nonplanar rhombus and kagome 2D covalent organic frameworks from distorted aromatics for electrical conduction.J. Am. Chem. Soc.2022,144, 5042−5050..
Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Two-dimensional sp2carbon-conjugated covalent organic frameworks.Science2017,357, 673−676..
Jakowetz, A. C.; Hinrichsen, T. F.; Ascherl, L.; Sick, T.; Calik, M.; Auras, F.; Medina, D. D.; Friend, R. H.; Rao, A.; Bein, T. Excited-state dynamics in fully conjugated 2D covalent organic fameworks.J. Am. Chem. Soc.2019,141, 11565−11571..
Ding, H.; Li, J.; Xie, G.; Lin, G.; Chen, R.; Peng, Z.; Yang, C.; Wang, B.; Sun, J.; Wang, C. An AIEgen-based 3D covalent oganic framework for white light-emitting diodes.Nat. Commun.2018,9, 5234..
Li, X.; Wang, H.; Chen, H.; Zheng, Q.; Zhang, Q.; Mao, H.; Liu, Y.; Cai, S.; Sun, B.; Dun, C.; Gordon, M. P.; Zheng, H.; Reimer, J. A.; Urban, J. J.; Ciston, J.; Tan, T.; Chan, E. M.; Zhang, J.; Liu, Y. Dynamic covalent synthesis of crystalline porous graphitic frameworks.Chem2020,6, 933−944..
Zhang, Q.; Dong, S.; Shao, P.; Zhu, Y.; Mu, Z.; Sheng, D.; Zhang, T.; Jiang, X.; Shao, R.; Ren, Z.; Xie, J.; Feng, X.; Wang, B. Covalent organic framework-based porous ionomers for high performance fuel cells.Science2022,378, 181−186..
Yang, X.; Hu, Y.; Dunlap, N.; Wang, X.; Huang, S.; Su, Z.; Sharma, S.; Jin, Y.; Huang, F.; Wang, X.; Lee, S. H.; Zhang, W. A truxenone-based covalent organic framework as an all-solid-state lithium-ion battery cathode with high capacity.Angew. Chem. Int. Ed.2020,59, 20385−20389..
Wu, C.; Liu, Y.; Liu, H.; Duan, C.; Pan, Q.; Zhu, J.; Hu, F.; Ma, X.; Jiu, T.; Li, Z.; Zhao, Y. Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement.J. Am. Chem. Soc.2018,140, 10016−10024..
Evans, A. M.; Parent, L. R.; Flanders, N. C.; Bisbey, R. P.; Vitaku, E.; Kirschner, M. S.; Schaller, R. D.; Chen, L. X.; Gianneschi, N. C.; Dichtel, W. R. Seeded growth of single-crystal two-dimensional covalentorganic frameworks.Science2018,361, 52−57..
Zhou, Z. B.; Sun, H. H.; Qi, Q. Y.; Zhao, X. Gradually tuning the flexibility of two-dimensional covalent organic frameworks via stepwise structural transformation and their flexibility-dependent properties.Angew. Chem. Int. Ed.2023,62, e202305131..
Li, L.; Yun, Q.; Zhu, C.; Sheng, G.; Guo, J.; Chen, B.; Zhao, M.; Zhang, Z.; Lai, Z.; Zhang, X.; Peng, Y.; Zhu, Y.; Zhang, H. Isoreticular series of two-dimensional covalent organic frameworks with the kgd topology and controllable micropores.J. Am. Chem. Soc.2022,144, 6475−6482..
Bi, S.; Zhang, Z.; Meng, F.; Wu, D.; Chen, J. S.; Zhang, F. Heteroatom-embedded approach to vinylene-linked covalent organic frameworks with isoelectronic structures for photoredox catalysis.Angew. Chem. Int. Ed.2022,61, e202111627..
Yang, G. H.; Zheng, Z.; Yin, C. C.; Shi, X. S; Wang, Y. Morphology engineering for covalent organic frameworks (COFs) by surfactant mediation and acid adjustment.Chinese J. Polym. Sci.2022,40, 338−344..
Gui, B.; Lin, G.; Ding, H.; Gao, C.; Mal, A.; Wang, C. Three-dimensional covalent organic frameworks: from topology design to applications.Acc. Chem. Res.2020,53, 2225−2234..
Guan, X.; Chen, F.; Fang, Q.; Qiu, S. Design and applications of three dimensional covalent organic frameworks.Chem. Soc. Rev.2020,49, 1357−1384..
El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks.Science2007,316, 268−272..
Gao, C.; Li, J.; Yin, S.; Lin, G.; Ma, T.; Meng, Y.; Sun, J.; Wang, C. Isostructural three-dimensional covalent organic frameworks.Angew. Chem. Int. Ed.2019,58, 9770−9775..
Ma, T.; Kapustin, E. A.; Yin, S. X.; Liang, L.; Zhou, Z.; Niu, J.; Li, L. H.; Wang, Y.; Su, J.; Li, J.; Wang, X.; Wang, W. D.; Wang, W.; Sun, J.; Yaghi, O. M. Single crystal X-ray diffraction structures of covalent organic frameworks.Science2018,361, 48−52..
Liu, Y.; Chen, P.; Wang, Y.; Suo, J.; Ding, J.; Zhu, L.; Valtchev, V.; Yan, Y.; Qiu, S.; Sun, J.; Fang, Q. Design and synthesis of a zeolitic organic framework.Angew. Chem. Int. Ed.2022,61, e202203584..
Xu, H.; Luo, Y.; See, P. Z.; Li, X.; Chen, Z.; Zhou, Y.; Zhao, X.; Leng, K.; Park, I.; Li, R.; Liu, C.; Chen, F.; Xi, S.; Sun, J.; Loh, K. P. Divergent chemistry paths for 3D and 1D metallo-covalent organic frameworks (COFs).Angew. Chem. Int. Ed.2020,59, 11527−11532..
Lin, G.; Ding, H.; Yuan, D.; Wang, B.; Wang, C. A pyrene-based, fluorescent three-dimensional covalent organic framework.J. Am. Chem. Soc.2016,138, 3302−3305..
Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.J. Am. Chem. Soc.2009,131, 8875−8883..
Meng, Y.; Luo, Y.; Shi, J.; Ding, H.; Lang, X.; Chen, W.; Zheng, A.; Sun, J.; Wang, C. 2D and 3D Porphyrinic covalent organic frameworks: the influence of dimensionality on functionality.Angew. Chem. Int. Ed.2020,59, 3624−3629..
Xie, Y.; Li, J.; Lin, C.; Gui, B.; Ji, C.; Yuan, D.; Sun, J.; Wang, C. Tuning the topology of three-dimensional covalent organic frameworksviasteric control: from pts to unprecedented ljh.J. Am. Chem. Soc.2021,143, 7279−7284..
Ma, X.; Scott, T. F. Approaches and challenges in the synthesis of three-dimensional covalent-organic frameworks.Commun. Chem.2018,1, 98..
Guo, Z.; Zhan, Z.; Sun, J. Topological analysis and structural determination of three-dimensional covalent organic frameworks.Adv. Mater. 2024 , DOI: 10.1002/adma.202312889..
Gao, C.; Li, J.; Yin, S.; Sun, J.; Wang, C. Twist building blocks from planar to tetrahedral for the synthesis of covalent organic frameworks.J. Am. Chem. Soc.2020,142, 3718−3723..
Gui, B.; Xin, J.; Cheng, Y.; Zhang, Y.; Lin, G.; Chen, P.; Ma, J. X.; Zhou, X.; Sun, J.; Wang, C. Crystallization of dimensional isomers in covalent organic frameworks.J. Am. Chem. Soc.2023,145, 11276−11281..
Ji, C.; Su, K.; Wang, W.; Chang, J.; El-Sayed, E. M.; Zhang, L.; Yuan, D. Tunable cage-based three-dimensional covalent organic frameworks.CCS Chem.2022,4, 3095−3105..
Zhu, Q.; Wang, X.; Clowes, R.; Cui, P.; Chen, L.; Little, M. A.; Cooper, A. I. 3D Cage COFs: A dynamic three-dimensional covalent organic framework with high-connectivity organic cage nodes.J. Am. Chem. Soc. 2020 ,142, 16842–16848..
Li, H.; Ding, J.; Guan, X.; Chen, F.; Li, C.; Zhu, L.; Xue, M.; Yuan, D.; Valtchev, V.; Yan, Y.; Qiu, S.; Fang, Q. Three-dimensional large-pore covalent organic framework with stp topology.J. Am. Chem. Soc.2020,142, 13334−13338..
Yin, Y.; Zhang, Y.; Zhou, X.; Gui, B.; Cai, G.; Sun, J.; Wang, C. Single-crystal three-dimensional covalent organic framework constructed from 6-connected triangular prism node.J. Am. Chem. Soc.2023,145, 22329−22334..
Liu, W.; Wang, K.; Zhan, X.; Liu, Z.; Yang, X.; Jin, Y.; Yu, B.; Gong, L.; Wang, H.; Qi, D.; Yuan, D.; Jiang, J. Highly connected three-dimensional covalent organic framework with flu topology for high-performance Li-S batteries.J. Am. Chem. Soc.2023,145, 8141−8149..
Gropp, C.; Ma, T.; Hanikel, N.; Yaghi, O. M. Design of higher valency in covalent organic frameworks.Science2020,370, eabd6406..
Carlucci, L.; Ciani, G.; Proserpio, D. M.; Mitina, T. G.; Blatov, V. A. Entangled two-dimensional coordination networks: a general survey.Chem. Rev.2014,114, 7557−7580..
Jin, F.; Nguyen, H. L.; Zhong, Z.; Han, X.; Zhu, C.; Pei, X.; Ma, Y.; Yaghi, O. M. Entanglement of square nets in covalent organic frameworks.J. Am. Chem. Soc.2022,144, 1539−1544..
Cheng, Y.; Xin, J.; Xiao, L.; Wang, X.; Zhou, X.; Li, D.; Gui, B.; Sun, J.; Wang, C. A fluorescent three-dimensional covalent organic famework formed by the entanglement of two-dimensional sheets.J. Am. Chem. Soc.2023,145, 18737−18741..
Xiao, Y.; Ling, Y.; Wang, K.; Ren, S.; Ma, Y.; Li, L. Constructing a 3D covalent organic framework from 2D hcb nets through inclined interpenetration.J. Am. Chem. Soc.2023,145, 13537−13541..
Wan W.; Sun, J.; Su, J.; Hovmoller, S.; Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing.J. Appl. Crystallogr.2013,46, 1863−1873..
Kabsch, W. Integration, scaling, space-group assignment and post-refinement.Acta Crystallogr. D2010,66, 133−144..
0
Views
137
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution