FOLLOWUS
a.College of Medical, Linyi University, Linyi 276000, China
b.Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
zqlu@mail.nankai.edu.cn (Z.Q. L.)
weiwang@nankai.edu.cn (W.W.)
Published:01 September 2024,
Published Online:20 April 2024,
Received:25 January 2024,
Revised:02 March 2024,
Accepted:18 March 2024
Scan for full text
Wang, D. Y.; Lu, Z. Q.; Wang, W. Polyelectrolytes of inorganic polyoxometalates: prospecting new charged polymers for advanced applications. Chinese J. Polym. Sci. 2024, 42, 1254–1269
De-Yin Wang, Zhuo-Qun Lu, Wei Wang. Polyelectrolytes of Inorganic Polyoxometalates: Prospecting New Charged Polymers for Advanced Applications. [J]. Chinese Journal of Polymer Science 42(9):1254-1269(2024)
Wang, D. Y.; Lu, Z. Q.; Wang, W. Polyelectrolytes of inorganic polyoxometalates: prospecting new charged polymers for advanced applications. Chinese J. Polym. Sci. 2024, 42, 1254–1269 DOI: 10.1007/s10118-024-3126-4.
De-Yin Wang, Zhuo-Qun Lu, Wei Wang. Polyelectrolytes of Inorganic Polyoxometalates: Prospecting New Charged Polymers for Advanced Applications. [J]. Chinese Journal of Polymer Science 42(9):1254-1269(2024) DOI: 10.1007/s10118-024-3126-4.
This perspective summarizes the synthesis methods of poly(polyoxometalate)s as a kind of new charged polymers/polyelectrolytes
as well as their properties and functions
while also focusing on their advanced application areas.
Polyelectrolytes are charged polymers comprising macromolecules in which substantial portions of the constituent units contain cationic (
e.g.
pyridinium
ammonium) or anionic (
e.g.
sulfonate
carboxylate) groups
which possess special functions from the features of counterions
such as dissociation to charged species
mechanical stability
phase behavior
etc
. Therefore
functional polyelectrolytes have been widely applied in many fields. In this perspective
we present some progresses in the studies of poly(polyoxometalate)s
denoted as poly(POM)s
as a kind of new charged polymers/polyelectrolytes
by covalent bonding between the inorganic polyoxometalate (POM) clusters and the organic polymer chains. According to the distinct positions of POMs in polymer chain and functions of poly(POM)s
they are divided into the following four categories: crosslinked poly(POM); side-chain poly(POM); backbon
e poly(POM)
including poly(POM)-conjugated polymer hybrid and block poly(POM)-polymer; and POM-based covalent organic framework (PCOF). This perspective introduces the synthesis methods of poly(POM) polyelectrolytes and their macromolecular and aggregate structural characteristics
while also focusing on their properties and functions. Their application areas include catalysis
thermal resistance
optical functions
fuel cells and batteries
etc
.
Charged polymerPolyelectrolytePolyoxometalatePoly(polyoxometalate)Covalent organic framework
Wang, W. Novel functional materials based on polymer-polyoxometalate hybrids.Chinese Polym. Bull. (in Chinese) 2013 , 87−100..
Hess, M.; Jones, R. G.; Kahovec, J.; Kitayama, T.; Kratochvíl, P.; Kubisa, P.; Mormann, W.; Stepto, R. F. T.; Tabak, D.; Vohlídal, J.; Wilks, E. S. Terminology of polymers containing ionizable or ionic groups and of polymers containing ions.Pure Appl. Chem.2006,78, 2067−2074..
Chollakup, R.; Beck, J. B.; Dirnberger, K.; Tirrell, M.; Eisenbach, C. D. Polyelectrolyte molecular weight and salt effects on the phase behavior and coacervation of aqueous solutions of poly(acrylic acid) sodium salt and poly(allylamine) hydrochloride.Macromolecules2013,46, 2376−2390..
Wu, J. K.; Wang, N. X.; Hung, W. S.; Zhao, Q.; Lee, K. R.; An, Q. F. Self-assembled soft nanoparticle membranes with programmed free volume hierarchy.J. Mater. Chem. A2018,6, 22925−22930..
Mecerreyes, D. Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes.Prog. Polym. Sci.2011,36, 1629−1648..
Xu, W.; Ledin, P. A.; Shevchenko, V. V.; Tsukruk, V. V. Architecture, assembly, and emerging applications of branched functional polyelectrolytes and poly(ionic liquid)s.ACS Appl. Mater. Interfaces2015,7, 12570−12596..
Li, X.; Liu, C.; Van der Bruggen, B. Polyelectrolytes self-assembly: versatile membrane fabrication strategy.J. Mater. Chem. A2020,8, 20870−20896..
Dobrynin, A.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces.Prog. Polym. Sci.2005,30, 1049−1118..
Whittell, G. R.; Hager, M. D.; Schubert, U. S.; Manners, I. Functional soft materials from metallopolymers and metallosupramolecular polymers.Nat. Mater.2011,10, 176−188..
Yang, W.; Liu, S.; Yan, J.; Zhong, F.; Jia, N.; Yan, Y.; Zhang, Q. Metallo-polyelectrolyte-based robust anion exchange membranesviaacetalation of a commodity polymer.Macromolecules2021,54, 9145−9154..
Yan, Y.; Zhang, J.; Ren, L.; Tang, C. Metal-containing and related polymers for biomedical applications.Chem. Soc. Rev.2016,45, 5232−5263..
Ding, D.; Wang, G.; Liu, J.; Li, K.; Pu, K. Y.; Hu, Y.; Ng, J. C. Y.; Tang, B. Z.; Liu, B. Hyperbranched conjugated polyelectrolyte for dual-modality fluorescence and magnetic resonance cancer imaging.Small2012,8, 3523−3530..
Ma, Y.; Dong, W. F.; Hempenius, M. A.; Möhwald, H.; Julius Vancso, G. Redox-controlled molecular permeability of composite-wall microcapsules.Nat. Mater.2006,5, 724−729..
Bernards, D. A.; Desai, T. A. Nanoscale porosity in polymer films: fabrication and therapeutic applications.Soft Matter2010,6, 1621−1631..
Luzinov, I.; Minko, S.; Tsukruk, V. V. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers.Prog. Polym. Sci.2004,29, 635−698..
Nazir, N. A.; Kyu, T.; Reinsel, A. M.; Espe, M.; Nosaka, M.; Kudo, H.; Nishikubo, T. Incorporation of hyperbranched supramolecules into Nafion ionic domainsviaimpregnation andin-situphotopolymerization.Polymers2011,3, 2018−2038..
Cho, B. K. Nanostructured organic electrolytes.RSC Adv.2014,4, 395−405..
Wang, M.; Zhao, J.; Wang, X.; Liu, A.; Gleason, K. K. Recent progress on submicron gas-selective polymeric membranes.J. Mater. Chem. A2017,5, 8860−8886..
Zhu, T.; Sha, Y.; Yan, J.; Pageni, P.; Rahman, M. A.; Yan, Y.; Tang, C. Metallo-polyelectrolytes as a class of ionic macromolecules for functional materials.Nat. Commun.2018,9, 4329..
Pope, M. T.; Müller, A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines.Angew. Chem. Int. Ed.1991,30, 34−48..
Timofeeva, M. N. Acid catalysis by heteropoly acids.Appl. Catal. A2003,256, 19−35..
Miras, H. N.; Yan, J.; Long, D.-L.; Cronin, L. Engineering polyoxometalates with emergent properties.Chem. Soc. Rev.2012,41, 7403−7430..
Qi, W.; Wu, L. Polyoxometalate/polymer hybrid materials: fabrication and properties.Polym. Int.2009,58, 1217−1225..
Santoni, M.-P.; Hanan, G. S.; Hasenknopf, B. Covalent multicomponent systems of polyoxometalates and metal complexes: toward multi-functional organic-inorganic hybrids in molecular and material sciences.Coord. Chem. Rev.2014,281, 64−85..
Zheng, Z.; Zhou, Q.; Li, M.; Yin, P. Poly(ethylene glycol) nanocomposites of subnanometer metal oxide clusters for dynamic semisolid proton conductive electrolytes.Chem. Sci.2019,10, 7333−7339..
Carraro, M.; Gross, S. Hybrid materials based on the embedding of organically modified transition metal oxoclusters or polyoxometalates into polymers for functional applications: a review.Materials2014,7, 3956−3989..
Wu, H.; Yang, H. K.; Wang, W. Covalently-linked polyoxometalate-polymer hybrids: optimizing synthesis, appealing structures and prospective applications.New J. Chem.2016,40, 886−897..
Hill,C. L.; Prosser-McCartha, C. M. Homogeneous catalysis by transition metal oxygen anion clusters.Coord. Chem. Rev.1995,143, 407−455..
Proust, A.; Thouvenot, R.; Gouzerh, P. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science.Chem. Commun. 2008 , 1837−1852..
Judeinstein, P. Synthesis and properties of polyoxometalates based inorganic-organic polymers.Chem. Mater.1992,4, 4−7..
Mayer, C. R.; Cabuil, V.; Lalot, T.; Thouvenot, R. Incorporation of magnetic nanoparticles in new hybrid networks based on heteropolyanions and polyacrylamide.Angew. Chem. Int. Ed.1999,38, 3672−3675..
Mayer, C. R.; Thouvenot, R.; Lalot, T. New hybrid covalent networks based on polyoxometalates: part 1. Hybrid networks based on poly(ethyl methacrylate) chains covalently cross-linked by heteropolyanions: synthesis and swelling properties.Chem. Mater.2000,12, 257−260..
Mayer, C. R.; Thouvenot, R.; Lalot, T. Hybrid hydrogels obtained by the copolymerization of acrylamide with aggregates of methacryloyl derivatives of polyoxotungstates. A comparison with polyacrylamide hydrogels with trapped aggregates.Macromolecules2000,33, 4433−4437..
Horan, J. L.; Kuo, M. C.; Ren, H.; Jessop, J. D.; Frey, M. H.; Herring, A. M. PolyPOM hybrid membranes from practical chemistries with very high proton conductivities.ECS Trans.2011,41, 1595−1601..
Moore, A. R.; Kwen, H.; Beatty A. M.; Maatta, E. A. Organoimido-polyoxometalates as polymer pendants.Chem. Commun. 2000 , 1793−1794..
Wei, Y.; Xu, B.; Barnes, C. L.; Peng, Z. An efficient and convenient reaction protocol to organoimido derivatives of polyoxometalates.J. Am. Chem. Soc.2001,123, 4083−4084..
Xu, B.; Wei, Y.; Barnes, C. L.; Peng, Z. Hybrid molecular materials based on covalently linked inorganic polyoxometalates and organic conjugated systems.Angew. Chem. Int. Ed.2001,40, 2290−2292..
Xu, L.; Lu, M.; Xu, B.; Wei, Y.; Peng, Z.; Powell, D. R. Towards main-chain-polyoxometalate-containing hybrid polymers: a highly efficient approach to bifunctionalized organoimido derivatives of hexamolybdates.Angew. Chem. Int. Ed.2002,41, 4129−4132..
Han, Y.; Xiao, Y.; Zhang, Z.; Liu, B.; Zheng, P.; He, S.; Wang, W. Synthesis of polyoxometalate-polymer hybrid polymers and their hybrid vesicular assembly.Macromolecules2009,42, 6543−6548..
Miao, W. K.; Yan, Y. K.; Wang, X. L.; Xiao, Y.; Ren, L. J.; Zheng, P.; Wang, C. H.; Ren, L. X.; Wang, W. Incorporation of polyoxometalates into polymers to create linear poly(polyoxometalate)s with catalytic function.ACS Macro Lett.2014,3, 211−215..
Lesage de la Haye, J.; Beaunier, P.; Ruhlmann, L.; Hasenknopf, B.; Lacôte, E.; Rieger, J. Synthesis of well-defined Dawson-type poly(N,N-diethylacrylamide) organopolyoxometalates.ChemPlusChem2014,79, 250−256..
Hasegawa, T.; Shimizu, K.; Seki, H.; Murakami,H.; Yoshida, S.; Yoza, K.; Nomiya, K. Polymerizable inorganic–organic hybrid: syntheses and structures of mono-lacunary Dawson polyoxometalate-based olefin-containing organosilyl derivatives.Inorg. Chem. Commun.2007,10, 1140−1144..
Hasegawa, T.; Murakami, H.; Shimizu, K.; Kasahara, Y.; Yoshida, S.; Kurashina, T.; Seki, H.; Nomiya, K. Formation of inorganic protonic-acid polymerviainorganic-organic hybridization: synthesis and characterization of polymerizable olefinic organosilyl derivatives of mono-lacunary Dawson polyoxometalate.Inorg. Chim. Acta2008,361, 1385−1394..
Kalyani, V.; Satyanarayana, V. S. V.; Singh, V.; Pradeep, C. P.; Ghosh, S.; Sharma, S. K.; Gonsalves, K. E. New polyoxometalates containing hybrid polymers and their potential for nano-patterning.Chem. Eur. J.2015,21, 2250−2258..
Hu, M.-B.; Xia, N.; Yu, W.; Ma, C.; Tang, J.; Hou, Z. Y.; Zheng, P.; Wang, W. A click chemistry approach to the efficient synthesis of polyoxometalate-polymer hybrids with well-defined structures.Polym. Chem.2012,3, 617−620..
Macdonell, A.; Johnson, N. A. B.; Surman, A. J.; Cronin, L. Configurable nanosized metal oxide oligomersviaprecise “click” coupling control of hybrid polyoxometalates.J. Am. Chem. Soc.2015,137, 5662−5665..
Guan, W.; Wang, G.; Ding, J.; Li, B.; Wu, L. A supramolecular approach of modified polyoxometalate polymerization and visualization of a single polymer chain.Chem. Commun.2019,55, 10788−10791..
Chen, X.; Wu, H.; Shi, X.; Wu, L. Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis.Nanoscale2023,15, 9242−9255..
Ren, Y.; Wang, M.; Chen, X.; Yue, B.; He, H. Heterogeneous catalysis of polyoxometalate based organic-inorganic hybrids.Materials2015,8, 1545−1567..
Xiao, Y.; Chen, D.; Ma, N.; Hou, Z.; Hu, M.; Wang, C.; Wang, W. Covalent immobilization of a polyoxometalate in a porous polymer matrix: a heterogeneous catalyst towards sustainability.RSC Adv.2013,3, 21544−21551..
Motz, A. R.; Kuo, M.-C.; Horan, J. L.; Yadav, R.; Seifert, S.; Pandey, T. P.; Galioto, S.; Yang, Y.; Dale, N. V.; Hamrock, S. J.; Herring, A. M. Heteropoly acid functionalized fluoroelastomer with outstanding chemical durability and performance for vehicular fuel cells.Energy Environ. Sci.2018,11, 1499−1509..
Miao, W. K.; Yi, A.; Yan, Y. K.; Ren, L. J.; Chen, D.; Wang, C. H.; Wang, W. A poly(polyoxometalate)-b-poly(hexanoic acid) block copolymer: synthesis, self-assembled micelles and catalytic activity.Polym. Chem.2015,6, 7418−7426..
Zhang, L. L.; Miao, W. K.; Ren, L. J.; Yan, Y. K.; Lin, Y.; Wang, W. Twining poly(polyoxometalate) chains into nanoropes.Chem. Eur. J.2019,25, 13396−13401..
Zhang, L. L.; Miao, W. K.; Ren, L. J.; Yan, Y. K.; Wang, W. Visualization of two-dimensional single chains of hybrid polyelectrolytes on solid surface.Chinese J. Polym. Sci.2021,39, 716−724..
Cheng, Q.; Miao, W. K.; Yan, Y. K.; Wang, W. Synthesis of solution-processable block and random copolymers of poly(polyoxometalate norbornene) and poly(hexanoic acid norbornene) and study on their catalytic activity.Acta Polymerica Sinica(in Chinese) 2017 , 1159−1168..
Yin, Y.; Li, H.; Wu, H.; Wang, W.; Jiang, Z. Enhancement in proton conductivity by blending poly(polyoxometalate)-b-poly(hexanoic acid) block copolymers with sulfonated polysulfone.Int. J. Hydrogen Energy2020,45, 15495−15506..
Lu, Z. Q.; Zhang, L. L.; Yan, Y.; Wang, W. Polyelectrolytes of inorganic polyoxometalates: acids, salts, and complexes.Macromolecules2021,54, 6891−6900..
Lu, Z. Q.; Yin, Z.; Zhang, L. L.; Yan, Y.; Jiang, Z.; Wu, H.; Wang, W. Synthesis of proton conductive copolymers of inorganic polyacid cluster polyelectrolytes and PEO bottlebrush polymers.Macromolecules2022,55, 3301−3310..
Ito, T.; Otobe, S.; Oda, T.; Kojima, T.; Ono, S.; Watanabe, M.; Kiyota, Y.; Misawa, T.; Koguchi, S.; Higuchi, M.; Kawano, M.; Nagase, Y. Polymerizable ionic liquid crystals comprising polyoxometalate clusters toward inorganic-organic hybrid solid electrolytes.Polymers2017,9, 290−303..
Taylor, J. M.; Dawson, K. W.; Shimizu, G. K. H. A water-stable metal-organic framework with highly acidic pores for proton-conducting applications.J. Am. Chem. Soc.2013,135, 1193−1196..
Gao, Q.; Wang, X. L.; Xu, J.; Bu, X. H. The first demonstration of the gyroid in a polyoxometalate-based open framework with high proton conductivity.Chem. Eur. J.2016,22, 9082−9086..
Yan, T. T.; Xuan, Z. X.; Wang, S.; Zhang, X.; Luo, F. Facile one-pot construction of polyoxometalate-based lanthanide-amino acid coordination polymers for proton conduction.Inorg. Chem. Commun.2019,105, 147−150..
Iwano, T.; Miyazawa, S.; Osuga, R.; Kondo, J. N.; Honjo, K.; Kitao, T.; Uemura, T.; Uchida, S. Confinement of poly(allylamine) in Preyssler-type polyoxometalate and potassium ion framework for enhanced proton conductivity.Commun. Chem.2019,2, 9..
Iwano, T.; Shitamatsu, K.; Ogiwara, N.; Okuno, M.; Kikukawa, Y.; Ikemoto, S.; Shirai, S.; Muratsugu, S.; Waddell, P. G.; Errington, R. J.; Sadakane, M.; Uchida, S. Ultrahigh proton conductionviaextended hydrogen-bonding network in a Preyssler-type polyoxometalate-based framework functionalized with a lanthanide ion.ACS Appl. Mater. Interfaces2021,13, 19138−19147..
Horan, J. L.; Lingutla, A.; Ren, H.; Kuo, M. C.; Sachdeva, S.; Yang, Y.; Seifert, S.; Greenlee, L. F.; Yandrasits, M. A.; Hamrock, S. J.; Frey, M. H.; Herring, A. M. Fast proton conduction facilitated by minimum water in a series of divinylsilyl-11-silicotungstic acid-co-butyl acrylate-co-hexanediol diacrylate polymers.J. Phys. Chem. C2014,118, 135−144..
Sun, S.; Zhu, L. J.; Li, K.; Cheng, D. M.; Li, B.; Wang, Y. H.; Zang, H. Y.; Li, Y. G. A Preyssler-type polyoxometalate-based coordination supramolecule with proton conducting property.Polyhedron2019,169, 84−88..
Lu, M.; Wei, Y.; Xu, B.; Cheung, C. F. C.; Peng, Z.; Powell, D. Hybrid molecular dumbbells: bridging polyoxometalate clusters with an organicπ-conjugated rod.Angew. Chem. Int. Ed.2002,41, 1566−1568..
Lu, M.; Xie, B.; Kang, J.; Chen, F. C.; Yang, Y.; Peng, Z. Synthesis of main-chain polyoxometalate-containing hybrid polymers and their applications in photovoltaic cells.Chem. Mater.2005,17, 402−408..
Xu, B.; Lu, M.; Kang, J.; Wang, D.; Brown, J.; Peng, Z. Synthesis and optical properties of conjugated polymers containing polyoxometalate clusters as side-chain pendants.Chem. Mater. 2005 ,17, 2841−2851..
Kang, J.; Xu, B.; Peng, Z.; Zhu, X.; Wei, Y.; Powell, D. R. Molecular and polymeric hybrids based on covalently linked polyoxometalates and transition-metal complexesAngew. Chem. Int. Ed. 2005 ,44, 6902−6905..
Chakraborty, S.; Keightley, A.; Dusevich, V.; Wang, Y.; Peng, Z. Synthesis and optical properties of a rod-coil diblock copolymer with polyoxometalate clusters covalently attached to the coil block.Chem. Mater.2010,22, 3995−4006..
Li, Y.; Jin, L.; Chakraborty, S.; Li, S.; Lu, P.; Zhu, D. M.; Yan, X.; Peng, Z. Photovoltaic properties and femtosecond time-resolved fluorescence study of polyoxometalate-containing rod-coil diblock copolymers.J. Polym. Sci., Part B: Polym. Phys.2014,52, 122−133..
Wang, R.; Li, Y.; Shetye, K.; Dutta, T.; Jin, L.; Li, S.; Peng, Z. Luminescent polythiophene-based main-chain polyoxometalate-containing conjugated polymers with improved solar-cell performance.Eur. J. Inorg. Chem. 2015 , 656−663..
Li, Y.; Shetye, K.; Baral, K.; Jin, L.; Oster, J. D.; Zhu, D. M.; Peng, Z. Main-chain polyoxometalate-containing donor–acceptor conjugated copolymers: synthesis, characterization, morphological studies and applications in single-component photovoltaic cells.RSC Adv.2016,6, 29909−29919..
Yin, P.; Jin, L.; Li, D.; Cheng, P.; Vezenov,D. V.; Bitterlich, E.; Wu, X.; Peng, Z.; Liu, T. Supramolecular assembly of conjugated polymers containing polyoxometalate terminal side chains in polar and nonpolar solvents.Chem. Eur. J.2012,18, 6754−6758..
Haso, F.; Wang, R.; Yin, P.; Zhou, J.; Jin, L.; Peng, Z.; Liu, T. Supramolecular assemblies of polyoxometalate-tethered diblock copolymers with tunable sizes inN-methyl-2-pyrrolidone/toluene mixed solvents.Eur. J. Inorg. Chem. 2014 , 4589−4592..
Haso, F.; Wang, R.; He, J.; Luo, J.; Eghtesadi, S. A.; Peng, Z.; Liu, T.New J. Chem. 2016 ,40, 910−913..
Han, Y. K.; Zhang, Z. J.; Wang, Y. L.; Xia, N.; Liu, B.; Xiao, Y.; Jin, L. X.; Zheng, P.; Wang, W. An intriguing morphology evolution of polyoxometalate-polystyrene hybrid amphiphiles from vesicles to tubular aggregates.Macromol. Chem. Phys.2011,212, 81−87..
Xiao, Y.; Han, Y. K.; Xia, N.; Hu, M. B.; Zheng, P.; Wang, W. Macromolecule-to-amphiphile conversion process of a polyoxometalate-polymer hybrid and assembled hybrid vesicles.Chem. Eur. J.2012,18, 11325−11333..
Yu, S.-J.; Han, Y. K.; Wang, W. Unravelling concentration-regulated self-assembly of a protonated polyoxometalate-polystyrene hybrid.Polymer2019,162, 73−79..
Tang, J.; Yu, W.; Hu, M. B.; Xiao, Y.; Wang, X. G.; Ren, L. J.; Zheng, P.; Zhu, W.; Chen, Y.; Wang, W. Bottom-up hybridization: a strategy for the preparation of a thermostable polyoxometalate-polymer hybrid with hierarchical hybrid structures.ChemPlusChem2014,79, 1455−1462..
Tang, J.; Ma, C.; Li, X. Y.; Ren, L. J.; Wu, H.; Zheng, P.; Wang, W. Self-assembling a polyoxometalate-PEG hybrid into a nanoenhancer to tailor PEG properties.Macromolecules2015,48, 2723−2730..
Tang, J.; Li, X. Y.; Wu, H.; Ren, L. J.; Zhang, Y. Q.; Yao, H. X.; Hu, M. B.; Wang, W. Tube-graft-sheet nano-objects created by a stepwise self-assembly of polymer-polyoxometalate hybrids.Langmuir2016,32, 460−467..
Li, X.; Wang, Z.; Hong, C.; Feng, F.; Yu, K.; Liu, H. Geometry-modulated self-assembly structures of covalent polyoxometalate-polymer hybrid in bulk and thin-film states.Macromolecules2022,55, 9583−9593..
Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Recent advances in porous polyoxometalate-based metal-organic framework materials.Chem. Soc. Rev.2014,43, 4615−4632..
Huang, Q.; Wei, T.; Zhang, M.; Dong, L. Z.; Zhang, A. M.; Li, S. L.; Liu, W. J.; Liu, J.; Lan, Y. Q. A highly stable polyoxometalate-based metal-organic framework withπ-πstacking for enhancing lithium ion battery performanceJ. Mater. Chem. A 2017 ,5, 8477−8483..
Zhang, M.; Zhang, A. M.; Wang, X. X.; Huang, Q.; Zhu, X.; Wang, X. L.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. Encapsulating ionic liquids into POM-based MOFs to improve their conductivity for superior lithium storage.J. Mater. Chem. A2018,6, 8735−8741..
Dey, C.; Kundu, T.; Banerjee, R. Reversible phase transformation in proton conducting Strandberg-type POM based metal organic material.Chem. Commun.2012,48, 266−268..
Xu, W.; Pei, X.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte.J. Am. Chem. Soc.2019,141, 17522−17526..
0
Views
145
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution