FOLLOWUS
a.Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
b.Qingdao Research Academy of Environmental Science, Qingdao 266012, China
sunjij@qust.edu.cn (J.J.S.)
wangqf@qust.edu.cn (Q.F.W.)
Published:1 May 2024,
Published Online:4 March 2024,
Received:22 November 2023,
Revised:2 January 2024,
Accepted:10 January 2024
Scan for full text
Sun, X. F.; Zhang, X.; Song, S. P.; Yao, Y. Q.; Zhang, Y.; Wang, C. L.; Sun, J. J.; Wang, Q. F. Light-responsive self-immolative L-glutamic acid-based polyester nanoparticles for controlled drug release via Passerini three-component polymerization. Chinese J. Polym. Sci. 2024, 42, 570–578
Xiao-Fei Sun, Xu Zhang, Shu-Ping Song, et al. Light-responsive Self-Immolative
Sun, X. F.; Zhang, X.; Song, S. P.; Yao, Y. Q.; Zhang, Y.; Wang, C. L.; Sun, J. J.; Wang, Q. F. Light-responsive self-immolative L-glutamic acid-based polyester nanoparticles for controlled drug release via Passerini three-component polymerization. Chinese J. Polym. Sci. 2024, 42, 570–578 DOI: 10.1007/s10118-024-3093-9.
Xiao-Fei Sun, Xu Zhang, Shu-Ping Song, et al. Light-responsive Self-Immolative
Light-responsive polyesters (PLTDs) based on bio-based
L
-glutamic acid were synthesized by Passerini Three-Component Polymerization with molar masses up to 8500 g/mol and yields exceeding 90%. Doxorubicin-loaded nanoparticles (size = 193 nm
PDI = 0.018) were successfully prepared and the light-controlled drug release kinetic was thoroughly characterized.
L
-glutamic acid (LA) is a bio-based
non-toxic
environmentally friendly material derived from biomass. The present study reports the application of Passerini three-component polymerization (P-3CP) for the straightforward preparation of LA-based light-responsive polyesters (PLTDs) under mild conditions. PLTDs with molar masses up to 8500 g/mol and high yields exceeding 90% are obtained. The chemical structures and light-responsive self-immolative behavior of PLTDs are comprehensively characterized by employing ultraviolet-visible (UV-Vis) spectroscopy
size exclusion chromatography (SEC)
nuclear magnetic resonance (NMR) spectroscopy
and liquid chromatography mass spectrometry (LC-MS). Meanwhile
monodisperse PLTD-based doxorubicin-loaded nanoparticles (PLTD-DOX-NP) (size=193 nm
PDI=0.018) are formulated by nanoprecipitation method. Upon light-induced depolymerization
the PLTD-DOX-NP undergoes rapid decomposition
resulting in a burst release of 80% cargo within 13 s. Furthermore
according to biological toxicity tests
the PLTD-NP possesses adequate biosafety
both before and after irradiation. Overall
the incorporation of P-3CP with biorenewable LA-based monomer adheres to the principles of green chemistry
significantly simplifying the synthetic pathway of light-responsive polymers.
L-glutamic acidPasserini three-component polymerizationLight-responsivePolyesterNanoparticles
Kopeček, J.; Yang, J. Polymer nanomedicines.Adv. Drug Deliv. Rev.2020, 156, 40−64..
Sun, J.; Jung, D.; Schoppa, T.; Anderski, J.; Picker, M. T.; Ren, Y.; Mulac, D.; Stein, N.; Langer, K.; Kuckling, D. Light-responsive serinol-based polycarbonate and polyester as degradable scaffolds.ACS Appl. Bio Mater.2019, 2, 3038−3051..
Sun, J.; Birnbaum, W.; Anderski, J.; Picker, M. T.; Mulac, D.; Langer, K.; Kuckling, D. Use of light-degradable aliphatic polycarbonate nanoparticles as drug carrier for photosensitizer.Biomacromolecules2018, 19, 4677−4690..
Jiang, F.; Chen, S.; Cao, Z.; Wang, G. A photo, temperature, andpH responsive spiropyran-functionalized polymer: synthesis, self-assembly and controlled release.Polymer2016, 83, 85−91..
Juang, V.; Chang, C. H.; Wang, C. S.; Wang, H. E.; Lo, Y. L. pH-responsive PEG-shedding and targeting peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to enhance tumor-specific therapy.Small 2019 ,15, 1903296..
Yang, G.; Chen, C.; Zhu, Y.; Liu, Z.; Xue, Y.; Zhong, S.; Wang, C.; Gao, Y.; Zhang, W. GSH-activatable NIR nanoplatform with mitochondria targeting for enhancing tumor-specific therapy.ACS Appl. Mater. Interfaces2019, 11, 44961−44969..
Wang, P.; Gong, Q.; Hu, J.; Li, X.; Zhang, X. Reactive oxygen species (ROS)-responsive prodrugs, probes, and theranostic prodrugs: applications in the ROS-related diseases.J. Med. Chem.2020, 64, 298−325..
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery.Nat. Mater.2013, 12, 991−1003..
Yang, G.; Sun, X.; Liu, J.; Feng, L.; Liu, Z. Light-responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy.Adv. Funct. Mater.2016, 26, 4722−4732..
Baker, M. S.; Roqe, J.; Burley, K. S.; Phelps, B. J.; Labrie-Cleary, C. F. Development of a photo-degradable polyester resulting from the homopolymerization of o-hydroxycinnamic acid.Mater. Today Commun.2022, 31, 103280..
Schoppa, T.; Jung, D.; Rust, T.; Mulac, D.; Kuckling, D.; Langer, K. Light-responsive polymeric nanoparticles based on a novel nitropiperonal based polyester as drug delivery systems for photosensitizers in PDT.Int. J. Pharm.2021, 597, 120326..
Sun, J.; Anderski, J.; Picker, M. T.; Langer, K.; Kuckling, D. Preparation of light-responsive aliphatic polycarbonate viaversatile polycondensation for controlled degradation.Macromol. Chem. Phys.2019, 220, 1800539..
de Gracia Lux, C.; Almutairi, A. Intramolecular cyclization for stimuli-controlled depolymerization of polycaprolactone particles leading to disassembly and payload release.ACS Macro Lett.2013, 2, 432−435..
Olejniczak, J.; Chan, M.; Almutairi, A. Light-triggered intramolecular cyclization in poly(lactic- co-glycolic acid)-based polymers for controlled degradation.Macromolecules2015, 48, 3166−3172..
Wu, H. M.; Pan, S. R.; Chen, M. W.; Wu, Y.; Wang, C.; Wen, Y. T.; Zeng, X.; Wu, C. B. A serum-resistant polyamidoamine-based polypeptide dendrimer for gene transfection.Biomaterials2011, 32, 1619−1634..
Thompson, M.; Scholz, C. Highly branched polymers based on poly(amino acid)s for biomedical application.Nanomaterials2021, 11, 1119..
Alsaheb, R. A. A.; Othman, N. Z.; Malek, R. A.; Leng, O. M.; Aziz, R.; El Enshasy, H. A. Polyglutamic acid applications in pharmaceutical and biomedical industries.Der Pharm. Lett.2016, 8, 217−215..
Zhang, Y.; Song, W.; Lu, Y.; Xu, Y.; Wang, C.; Yu, D.-G.; Kim, I. Recent advances in poly( α-L-glutamic acid)-based nanomaterials for drug delivery.Biomolecules2022, 12, 636..
Hamburg, M. A. FDA’s approach to regulation of products of nanotechnology.Science2012, 336, 299−300..
Rodríguez-Félix, D. E.; Pérez-Caballero, D.; del Castillo-Castro, T.; Castillo-Ortega, M. M.; Garmendía-Diago, Y.; Alvarado-Ibarra, J.; Plascencia-Jatomea, M.; Ledezma-Pérez, A. S.; Burruel-Ibarra, S. E. Chitosan hydrogels chemically crosslinked with L-glutamic acid and their potentialuse in drug delivery.Polym. Bull.2022, 80, 2617−2636..
Zhang, X.; Zhao, W.; Wang, C. L; Cao, L.; Wang, Q.; Sun, J. L-glutamic acid as a versatile platform for rapid synthesis of functional polyesters viafacile Passerini multicomponent polymerization.J. Polym. Sci.2021, 59, 3111−3121..
Lyu, Z.; Ding, L.; Tintaru, A.; Peng, L. Self-assembling supramolecular dendrimers for biomedical applications: lessons learned from poly(amidoamine) dendrimers.Acc. Chem. Res.2020, 53, 2936−2949..
Strecker, A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper.Justus Liebigs Ann. Chem.1850, 75, 27−45..
Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Multicomponent reactions: advanced tools for sustainable organic synthesis.Green Chem.2014, 16, 2958−2975..
Boukis, A. C.; Meier, M. A. R. Data storage in sequence-defined macromolecules viamulticomponent reactions.Eur. Polym. J.2018, 104, 32−38..
Deng, X. X.; Li, L.; Li, Z. L.; Lv, A.; Du, F. S.; Li, Z. C. Sequence regulated poly(ester-amide)s based on Passerini reaction.ACS Macro Lett.2012, 1, 1300−1303..
Pettignano, A.; Leguy, J.;Heux, L.; Jean, B.; Charlot, A.; Fleury, E. Multifunctionalization of cellulose microfibrils through a cascade pathway entailing the sustainable Passerini multi-component reaction.Green Chem.2020, 22, 7059−7069..
Kreye, O.; Tóth, T.; Meier, M. A. R. Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers.J. Am. Chem. Soc.2011, 133, 1790−1792..
Zhang, T.; Chen, X.; Xiao, C.; Zhuang, X.; Chen, X. Synthesis of a phenylboronic ester-linked PEG-lipid conjugate for ROS-responsive drug delivery.Polym. Chem.2017, 8, 6209−6216..
Bao, C.; Tang, S.; Horton, J. M.; Jiang, X.; Tang, P.; Qiu, F.; Zhu, L.; Zhao, B. Effect of overall grafting density on microphase separation of mixed homopolymer brushes synthesized from Y-initiator-functionalized silica particles.Macromolecules2012, 45, 8027−8036..
Li, S.; Chen, Z.; Du, H.; Zhang, M.; Yin, J.; Zheng, J.; Deng, K.; Zhang, X. Facile preparation of poly(indole/thiophene) for energy storage and sensor applications.Electrochim. Acta2020, 358, 136919..
López, S.; Fernández-Trillo, F.; Midón, P.; Castedo, L.; Saá, C. First stereoselective syntheses of (–)-siphonodiol and (–)-tetrahydrosiphonodiol, bioactive polyacetylenes from marine sponges.J. Org. Chem.2005, 70, 6346−6352..
Kazemizadeh, A. R.; Ramazani, A. Synthetic applications of Passerini reaction.Curr. Org. Chem.2012, 16, 418−450..
Kumar, S.; Arora, A.; Kumar, S.; Kumar, R.; Maity, J.; Singh, B. K. Passerini reaction: synthesis and applications in polymer chemistry.Eur. Polym. J.2023, 190, 112004..
Aubin, M.; Prud'homme, R. E. Preparation and properties of poly(valerolactone).Polymer1981, 22, 1223−1226..
Zhao, W.; Zhao, Y.; Wang, Q.; Liu, T.; Sun, J.; Zhang, R. Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives.Small2019, 15, e1903060..
Anderski, J.; Mahlert, L.; Sun, J.; Birnbaum, W.; Mulac, D.; Schreiber, S.; Herrmann, F.; Kuckling, D.; Langer, K. Light-responsive nanoparticles based on new polycarbonate polymers as innovative drug delivery systems for photosensitizers in PDT.Int. J. Pharm.2019, 557, 182−191..
Fomina, N.; McFearin, C.; Sermsakdi, M.; Edigin, O.; Almutairi, A. UV and near-IR triggered release from polymeric nanoparticles.J. Am. Chem. Soc.2010, 132, 9540−9542..
0
Views
33
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution