a.State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
b.State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
wutong@scu.edu.cn (T.W.)
qiangfu@scu.edu.cn (Q.F.)
Scan for full text
Yang, T. H.; Wu, T.; Fu, Q. Preparation of self-limiting heating cables with excellent processability, mechanical properties and PTC effect via thermal and electrical treatments. Chinese J. Polym. Sci. 2024, 42, 511–520
Tian-Hao Yang, Tong Wu, Qiang Fu. Preparation of Self-limiting Heating Cables with Excellent Processability, Mechanical Properties and PTC Effect
Yang, T. H.; Wu, T.; Fu, Q. Preparation of self-limiting heating cables with excellent processability, mechanical properties and PTC effect via thermal and electrical treatments. Chinese J. Polym. Sci. 2024, 42, 511–520 DOI: 10.1007/s10118-024-3074-z.
Tian-Hao Yang, Tong Wu, Qiang Fu. Preparation of Self-limiting Heating Cables with Excellent Processability, Mechanical Properties and PTC Effect
The self-limiting heating cables with high intensity of PTC and mechanical properties are prepared through industrial production lines. By using the structuring processing methods of heat treatment and electrical treatment
the carbon black in PE matrix is uniformly dispersed macroscopically but concentrated microscopically
which maximizes the efficiency of carbon black.
Polymer/conductive filler composites have been widely used for the preparation of self-limiting heating cables with the positive temperature coefficient (PTC) effect. The control of conductive filler distribution and network in polymer matrix is the most critical for performance of PTC materials. In order to compensate for the destruction of the filler network structure caused by strong shearing during processing
an excessive conductive filler content is usually added into the polymer matrix
which in turn sacrifices its processability and mechanical properties. In this work
a facile post-treatment of the as-extruded cable
including thermal and electrical treatment to produce high-density polyethylene (HDPE)/carbon black (CB) cable with excellent PTC effect
is developed. It is found for the as-extruded sample
the strong shearing makes the CB particles disperse uniformly in HDPE matrix
and 25 wt% CB is needed for the formation of conductive paths. For the thermal-treated sample
a gradually aggregated CB filler structure is observed
which leads to the improvement of PTC effect and the notable reduction of CB content to 20 wt%. It is very interesting to see that for the sample with combined thermal and electrical treatment
CB particles are agglomerated and oriented along the electric field direction to create substantial conductive paths
which leads to a further decrease of CB content down to 15 wt%. In this way
self-limiting heating cables with excellent processability
mechanical properties and PTC effect have simultaneously been achieved.
Self-limiting heating cablesPositive temperature coefficientThermal treatmentElectrical treatment
Gras, R.; Luong, J.; Pursch, M.; Shellie, R. A. Positive temperature coefficient compensating heating for analytical devices.Anal. Chem.2018, 90, 6426−6430..
Kang, H. S.; Sim, S.; Shin, Y. H. A numerical study on the light-weight design of PTC heater for an electric vehicle heating system.Energies2018, 11, 1276..
Shin, Y. H.; Ahn, S. K.; Kim, S. C. Performance characteristics of PTC elements for an electric vehicle heating system.Energies2016, 9, 813..
Feng, X. M.; Ai, X. P.; Yang, H. X. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries.Electrochem. Commun.2004, 6, 1021−1024..
Zhong, H.; Kong, C.; Zhan, H.; Zhan, C. M.; Zhou, Y. H. Safe positive temperature coefficient composite cathode for lithium ion battery.J. Power Sources2012, 216, 273−280..
Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Gao, X. G.; Li, J. P. Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires.Appl. Phys. Lett.2004, 84, 3085−3087..
Chu, K.; Lee, S. C.; Lee, S.; Kim, D.; Moon, C.; Park, S. H. Smart conducting polymer composites having zero temperature coefficient of resistance.Nanoscale2015, 7, 471−478..
Xu, H. P.; Wu, Y. H.; Yang, D. D.; Wang, J. R.; Xie, H. Q. Study on theories and influence factors of PTC property in polymer-based conductive composites.Rev. Adv. Mater. Sci.2011, 27, 173−183..
Lee, J. H.; Kim, S. K.; Kim, N. H. Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites.Scripta. Mater.2006, 55, 1119−1122..
Li, Q.; Siddaramaiah; Kim, N. H.; Yoo, G. H.; Lee, J. H. Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites.Compos. Part B-Eng.2009, 40, 218−224..
Zeng, Y.; Lu, G. X.; Wang, H.; Du, J. H.; Ying, Z.; Liu, C. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites.Sci. Rep.2014, 4, 6684..
Ferrara, M.; Neitzert, H. C.; Sarno, M.; Gorrasi, G.; Sannino, D.; Vittoria, V.; Ciambelli, P. Influence of the electrical field applied during thermal cycling on the conductivity of LLDPE/CNT composites.Physica E2007, 37, 66−71..
Tsai, C. S.; Liu, C. I.; Tsao, K. Y.; Chen, K. N.; Yeh, J. T.; Huang, C. Y. Effect of Initiator on the over-voltage positive temperature coefficient of linear low density polyethylene/carbon black nano composites.Macromol. Symp.2009, 286, 125−134..
Bystrov, V. S.; Bdikin, I. K.; Silibin, M. V.; Meng, X. J.; Lin, T.; Wang, J. L.; Karpinsky, D. V.; Bystrova, A. V.; Paramonova, E. V. Pyroelectric properties of ferroelectric composites based on polyvinylidene fluoride (PVDF) with graphene and graphene oxide.Ferroelectrics2019, 541, 17−24..
He, L. X.; Tjong, S. C. Electrical behavior and positive temperature coefficient effect of graphene/polyvinylidene fluoride composites containing silver nanowires.Nanoscale Res. Lett.2014, 9, 375..
Jiang, S. L.; Yu, Y.; Xie, J. J.; Wang, L. P.; Zeng, Y. K.; Fu, M.; Li, T. Positive temperature coefficient properties of multiwall carbon nanotubes/poly(vinylidene fluoride) nanocomposites.J. Appl. Polym. Sci.2010, 116, 838−842..
Liu, Y. W.; Wang, B. M.; Zhan, Q. F.; Tang, Z. H.; Yang, H. L.; Liu, G.; Zuo, Z. H.; Zhang, X. S.; Xie, Y. L.; Zhu, X. J.; Chen, B.; Wang, J. L.; Li, R. W. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites.Sci. Rep.2014, 4, 6615..
Li, G. J.; Hu, C.; Zhai, W.; Zhao, S. G.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Particle size induced tunable positive temperature coefficient characteristics in electrically conductive carbon nanotubes/polypropylene composites.Mater. Lett.2016, 182, 314−317..
Zhao, S. G.; Li, G. J.; Liu, H.; Dai, K.; Zheng, G. Q.; Yan, X. R.; Liu, C. T.; Chen, J. B.; Shen, C. Y.; Guo, Z. H. Positive temperature coefficient (PTC) evolution of segregated structural conductive polypropylene nanocomposites with visually traceable carbon black conductive network.Adv. Mater. Interfaces2017, 4, 1700265..
Li, Q.; Park, O. K.; Lee, J. H. Positive temperature coefficient behavior of HDPE/EVA blends filled with carbon black.Adv. Mater. Res.2009, 79−82, 2267−2270..
Yu, G.; Zhang, Q.; Zeng, H. M.; Hou, Y. H.; Zhang, H. B. Conductive polymer blends filled with carbon black: positive temperature coefficient behavior.Polym. Eng. Sci.1999, 39, 1678−1688..
Ding, X. J.; Wang, J. W.; Zhang, S.; Wang, J.; Li, S. Q. Carbon black-filled polypropylene as a positive temperature coefficient material: effect of filler treatment and heat treatment.Polym. Bull.2016, 73, 369−383..
Zhang, R.; Tang, P.; Shi, R.; Cheng, T. Y.; Bin, Y. Z.; Hu, S. F. Improved electrical heating properties for polymer nanocomposites by electron beam irradiation.Polym. Bull.2018, 75, 2847−2863..
Zhang, X.; Zheng, S. D.; Zou, H. Z.; Zheng, X. F.; Liu, Z. Y.; Yang, W.; Yang, M. B. Two-step positive temperature coefficient effect with favorable reproducibility achieved by specific "island-bridge" electrical conductive networks in HDPE/PVDF/CNF composite.Compos. Part A-Appl. S2017, 94, 21−31..
Bin, Y.; Xu, C.; Agari, Y.; Matsuo, M. Morphology and electrical conductivity of ultrahigh-molecular-weight polyethylene-low-molecular-weight polyethylene-carbon black composites prepared by gelation crystallization from solutions.Colloid Polym. Sci.1999, 277, 452−461..
Jeon, J.; Lee, H. B. R.; Bao, Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites.Adv. Mater.2013, 25, 850−855..
Yin, C. L.; Liu, Z. Y.; Gao, Y. J.; Yang, M. B. Effect of compounding procedure on morphology and crystallization behavior of isotactic polypropylene/high-density polyethylene/carbon black ternary composites.Polym. Adv. Technol.2012, 23, 1112−1120..
Jong, Y. S.; Han, S. H.; Park, E. S. Effects of thermal aging on morphology, resistivity, and thermal properties of extruded high-density polyethylene/carbon black heating elements.Polym. Compos.2011, 32, 1049−1061..
Liang, J. Z.; Yang, Q. Q. Resistivity relaxation behavior of carbon black filled high-density polyethylene conductive composites.J. Appl. Polym. Sci.2013, 129, 1104−1108..
Lee, M. G.; Nho, Y. C. Electrical resistivity of carbon black filled high-density polyethylene composites.J. Appl. Polym. Sci.2002, 83, 2440−2446..
Seo, M. K.; Rhee, K. Y.; Park, S. J. Influence of electro-beam irradiation on PTC/NTC behaviors of carbon blacks/HDPE conducting polymer composites.Curr. Appl. Phys.2011, 11, 428−433..
Ren, D. Q.; Zheng, S. D.; Huang, S. L.; Liu, Z. Y.; Yang, M. B. Effect of the carbon black structure on the stability and efficiency of the conductive network in polyethylene composites.J. Appl. Polym. Sci.2013, 129, 3382−3389..
Song, Y. H.; Zheng, Q. Effect of voltage on the conduction of a high-density polyethylene/carbon black composite at the NTC region.Compos. Sci. Technol.2006, 66, 907−912..
Tai, X. Y.; Wu, G. Z.; Yui, H.; Asai, S.; Sumita, M. Dynamics of electric field induced particle alignment in nonpolar polymer matrix.Appl. Phys. Lett.2003, 83, 3791−3793..
Prasse, T.; Flandin, L.; Schulte, K.; Bauhofer, W. In situobservation of electric field induced agglomeration of carbon black in epoxy resin.Appl. Phys. Lett.1998, 72, 2903−2905..
0
Views
32
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution