1.Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
eqchen@pku.edu.cn (E.Q.C.)
chemhualu@pku.edu.cn (H.L.)
Scan for full text
Chun-Yan Lyu, Wei Xiong, Er-Qiang Chen, et al. Structure-Property Relationship Analysis of D-Penicillamine-Derived
Chun-Yan Lyu, Wei Xiong, Er-Qiang Chen, et al. Structure-Property Relationship Analysis of D-Penicillamine-Derived
This work successfully synthesized a series of β-thiolactones with β-geminal dimethyl substitution and varied alkyl side groups. By virtue of Thorpe-Ingold effect, the ring-opening polymerization was highly controlled and the obtained polymers were completely depolymerizable. Moreover, a preliminary structure-property relationship between side chain structure and material thermal property was established.
The ring-opening polymerization of heterocyclic monomers and the reversed ring-closing depolymerization of corresponding polymers with neutral thermodynamics are broadly explored to establish a circular economy of next-generation plastics. Polythioesters (PTEs), analogues of polyesters, are emerging materials for this purpose due to their high refractive index, high crystallinity, dynamic property and responsiveness. In this work, we synthesize and polymerize a series of ,D,-penicillamine-derived ,β,-thiolactones (N,R,PenTL) with varied side chain alkyl groups, and study the structure-property relationship of the resulting polymers. The obtained PTEs exhibit tunable glass transition temperature in a wide range of 130−50 °C, and melting temperature of 90−105 °C. In addition, copolymerizations of monomers with different side chains are effective in modulating material properties. The obtained homo and copolymers can be fully depolymerized to recycle monomers. This work provides a robust molecular platform and detailed structure-property relationship of PTEs with potential of achieving sustainable plastics.
β-Polythioesters Geminal dimethylStructure-property relationshipChemical recycling to monomers
Geyer,R.;Jambeck,J.R.;Law,K.L.Production,use,andfateofallplasticsevermade.Sci. Adv.2017,3,e1700782..
MacLeod,M.;Arp,H.P.H.;Tekman,M.B.;Jahnke,A.Theglobalthreatfromplasticpollution.Science2021,373,61−65..
Chen,X.S.;Chen,G.Q.;Tao,Y.H.;Wang,Y.Z.;Lu,X.B.;Zhang,L.Q.;Zhu,J.;Zhang,J.;Wang,X.H.Researchprogressineco-polymers.Acta Polymerica Sinica(inChinese)2019,50,1068−1082..
Law,K.L.;Narayan,R.Reducingenvironmentalplasticpollutionbydesigningpolymermaterialsformanagedend-of-life.Nat. Rev. Mater.2022,7,104−116..
Zhu,Y.;Romain,C.;Williams,C.K.Sustainablepolymersfromrenewableresources.Nature2016,540,354−362..
Zuin,V.G.;Kümmerer,K.Chemistryandmaterialsscienceforasustainablecircularpolymericeconomy.Nat. Rev. Mater.2022,7,76−78..
Yue,T.J.;Wang,L.Y.;Ren,W.M.Thesynthesisofdegradablesulfur-containingpolymers:precisecontrolofstructureandstereochemistry.Polym. Chem.2021,12,6650−6666..
Xu,G.;Wang,Q.Chemicallyrecyclablepolymermaterials:Polymerizationanddepolymerizationcycles.Green Chem.2022,24,2321−2346..
Xiong,W.;Lu,H.Recyclablepolythioestersandpolydisulfideswithnear-equilibriumthermodynamicsanddynamiccovalentbonds.Sci. China Chem.2023,66,725−738..
Cai,Z.;Liu,Y.;Tao,Y.;Zhu,J.B.Recentadvancesinmonomerdesignforrecyclablepolymers.Acta Chim. Sin.2022,80,1165−1182..
Coates,G.W.;Getzler,Y.D.Y.L.Chemicalrecyclingtomonomerforanideal,circularpolymereconomy.Nat. Rev. Mater.2020,5,501−516..
Greer,S.C.Physicalchemistryofequilibriumpolymerization.J. Phys. Chem. B1998,102,5413−5422..
Hocker,H.Thermodynamicrecyclingonring-openingpolymerizationandring-closingdepolymerization.J. Macromol. Sci., Pure Appl. Chem.1993,A30,595−601..
Zhu,J.B.;Watson,E.M.;Tang,J.;Chen,E.Y.X.Asyntheticpolymersystemwithrepeatablechemicalrecyclability.Science2018,360,398−403..
Li,J.;Liu,F.;Liu,Y.;Shen,Y.;Li,Z.Functionalizableandchemicallyrecyclablethermoplasticsfromchemoselectivering-openingpolymerizationofbio-renewablebifunctionalα-methylene-δ-valerolactone.Angew. Chem. Int. Ed.2022,61,e202207105..
Yan,Y.T.;Wu,G.;Chen,S.C.;Wang,Y.Z.Controlledsynthesisandclosed-loopchemicalrecyclingofbiodegradablecopolymerswithcomposition-dependentproperties.Sci. China Chem.2022,65,943−953..
Li,L.G.;Wang,Q.Y.;Zheng,Q.Y.;Du,F.S.;Li,Z.C.Toughandthermallyrecyclablesemiaromaticpolyestersbyring-openingpolymerizationofbenzo-thia-caprolactones.Macromolecules2021,54,6745−6752..
Hong,M.;Chen,E.Y.X.Completelyrecyclablebiopolymerswithlinearandcyclictopologiesviaring-openingpolymerizationofγ-butyrolactone.Nat. Chem.2016,8,42−49..
Shen,Y.;Xiong,W.;Li,Y.;Zhao,Z.;Lu,H.;Li,Z.Chemoselectivepolymerizationoffullybiorenewableα-methylene-γ-butyrolactoneusingorganophosphazene/ureabinarycatalyststowardsustainablepolyesters.CCS Chem.2020,3,620−630..
Yang,X.;Fan,H.Z.;Cai,Z.;Zhang,Q.;Zhu,J.B.Ring-openingpolymerizationofabenzyl-protectedcyclicestertowardsfunctionalaliphaticpolyester.Chin. J. Chem.2022,40,2973−2980..
Yuan,J.;Xiong,W.;Zhou,X.;Zhang,Y.;Shi,D.;Li,Z.;Lu,H.4-hydroxyproline-derivedsustainablepolythioesters:controlledring-openingpolymerization,completerecyclability,andfacilefunctionalization.J. Am. Chem. Soc.2019,141,4928−4935..
Xiong,W.;Chang,W.;Shi,D.;Yang,L.;Tian,Z.;Wang,H.;Zhang,Z.;Zhou,X.;Chen,E.-Q.;Lu,H.Geminaldimethylsubstitutionenablescontrolledpolymerizationofpenicillamine-derivedβ-thiolactonesandreverseddepolymerization.Chem2020,6,1831−1843..
Shi,C.;McGraw,M.L.;Li,Z.C.;Cavallo,L.;Falivene,L.;Chen,E.Y.X.High-performancepan-tacticpolythioesterswithintrinsiccrystallinityandchemicalrecyclability.Sci. Adv.2020,6,eabc0495..
Wang,Y.;Li,M.;Chen,J.;Tao,Y.;Wang,X.O-to-Ssubstitutionenablesdovetailingconflictingcyclizability,polymerizability,andrecyclability:dithiolactonevs.dilactone.Angew. Chem. Int. Ed.2021,60,22547−22553..
Yuan,P.;Sun,Y.;Xu,X.;Luo,Y.;Hong,M.Towardshigh-performancesustainablepolymersviaisomerization-drivenirreversiblering-openingpolymerizationoffive-memberedthionolactones.Nat. Chem.2022,14,294−303..
Wang,Y.;Zhu,Y.;Lv,W.;Wang,X.;Tao,Y.Toughwhilerecyclableplasticsenabledbymonothiodilactonemonomers.J. Am. Chem. Soc.2023,145,1877−1885..
Dai,J.;Xiong,W.;Du,M.-R.;Wu,G.;Cai,Z.;Zhu,J.B.Afacileapproachtowardshigh-performancepoly(thioether-thioester)swithfullrecyclability.Sci. China Chem.2023,66,251−258..
Zhu,Y.;Li,M.;Wang,Y.;Tao,Y.;Wang,X.Performance-advantagedstereoregularrecyclableplasticsenabledbyaluminum-catalyticring-openingpolymerizationofdithiolactone.Angew. Chem. Int. Ed.2023,e202302898..
Zhang,W.;Dai,J.;Wu,Y.C.;Chen,J.X.;Shan,S.Y.;Cai,Z.;Zhu,J.B.Highlyreactivecycliccarbonateswithafusedringtowardfunctionalizableandrecyclablepolycarbonates.ACS Macro Lett.2022,11,173−178..
Saxon,D.J.;Gormong,E.A.;Shah,V.M.;Reineke,T.M.Rapidsynthesisofchemicallyrecyclablepolycarbonatesfromrenewablefeedstocks.ACS Macro Lett.2021,10,98−103..
Ellis,W.C.;Jung,Y.;Mulzer,M.;DiGirolamo,R.;Lobkovsky,E.B.;Coates,G.W.CopolymerizationofCO2andmesoepoxidesusingenantioselectiveβ-diiminatecatalysts:aroutetohighlyisotacticpolycarbonates.Chem. Sci.2014,5,4004−4011..
Keul,H.;Müller,A.J.;Höcker,H.Preparationofpolymerswithpolycarbonatesequencesandtheirdepolymerization:anexampleofthermodynamicrecycling.Makromol. Chem., Macromol. symp.1993,67,289−298..
Singer,F.N.;Deacy,A.C.;McGuire,T.M.;Williams,C.K.;Buchard,A.Chemicalrecyclingofpoly(cyclohexenecarbonate)usingadi-MgIIcatalyst.Angew. Chem. Int. Ed.2022,61,e202201785..
Liao,X.;Cui,F.C.;He,J.H.;Ren,W.M.;Lu,X.B.;Zhang,Y.T.AsustainableapproachforthesynthesisofrecyclablecyclicCO2-basedpolycarbonates.Chem. Sci.2022,13,6283−6290..
Ogata,N.Studiesonpolymerizationanddepolymerizationofε-caprolactampolymer.IX.Reformationreactionofε-caprolactamfrompoly-ε-capramide.Bull. Chem. Soc. Jpn.1961,34,1201−1205..
Kamimura,A.;Yamamoto,S.Anefficientmethodtodepolymerizepolyamideplastics:anewuseofionicliquids.Org. Lett.2007,9,2533−2535..
Abel,B.A.;Snyder,R.L.;Coates,G.W.Chemicallyrecyclablethermoplasticsfromreversible-deactivationpolymerizationofcyclicacetals.Science2021,373,783−789..
Vidal,F.;Williams,C.K.Chemicallyrecyclablepolyacetalstodeliverusefulthermoplastics.Chem2021,7,2857−2859..
Li,H.;Ollivier,J.;Guillaume,S.M.;Carpentier,J.F.Tacticitycontrolofcyclicpoly(3-thiobutyrate)preparedbyring-openingpolymerizationofracemicβ-thiobutyrolactone.Angew. Chem. Int. Ed.2022,61,e202202386..
Cao,X.;Wang,H.;Yang,J.;Wang,R.;Hong,X.;Zhang,X.;Xu,J.;Wang,H.Sulfur-substitution-enhancedcrystallizationandcrystalstructureofpoly(trimethylenemonothiocarbonate).Chin. Chem. Lett.2022,33,1021−1024..
Zhang,Z.;Xiong,Y.;Yang,P.;Li,Y.;Tang,R.;Nie,X.;Chen,G.;Wang,L.H.;Hong,C.Y.;You,Y.Z.Easyaccesstodiversemultiblockcopolymerswithon-demandblocksviathioester-relayedin-chaincascadecopolymerization.Angew. Chem. Int. Ed.2023,62,e202216685..
Ghobril,C.;Charoen,K.;Rodriguez,E.K.;Nazarian,A.;Grinstaff,M.W.Adendriticthioesterhydrogelbasedonthiol-thioesterexchangeasadissolvablesealantsystemforwoundclosure.Angew. Chem. Int. Ed.2013,52,14070−14074..
Soars,S.M.;Kirkpatrick,B.E.;Fairbanks,B.D.;Kamps,J.T.;Anseth,K.S.;Bowman,C.N.Synthesis,selectivedecorationandphotocrosslinkingofself-immolativepoly(thioester)-PEGhydrogels.Polym. Int.2022,71,906−911..
Bongiardina,N.J.;Long,K.F.;Podgórski,M.;Bowman,C.N.Substitutedthiolsindynamicthiol-thioesterreactions.Macromolecules2021,54,8341−8351..
Worrell,B.T.;Mavila,S.;Wang,C.;Kontour,T.M.;Lim,C.H.;McBride,M.K.;Musgrave,C.B.;Shoemaker,R.;Bowman,C.N.Auser'sguidetothethiol-thioesterexchangeinorganicmedia:scope,limitations,andapplicationsinmaterialscience.Polym. Chem.2018,9,4523−4534..
Konieczynska,M.D.;Villa-Camacho,J.C.;Ghobril,C.;Perez-Viloria,M.;Tevis,K.M.;Blessing,W.A.;Nazarian,A.;Rodriguez,E.K.;Grinstaff,M.W.On-demanddissolutionofadendritichydrogel-baseddressingforsecond-degreeburnwoundsthroughthiol-thioesterexchangereaction.Angew. Chem. Int. Ed.2016,55,9984−9987..
Wang,Y.;Li,M.;Wang,S.;Tao,Y.;Wang,X.S-carboxyanhydrides:ultrafastandselectivering-openingpolymerizationstowardswell-definedfunctionalizedpolythioesters.Angew. Chem. Int. Ed.2021,60,10798−10805..
Overberger,C.G.;Weise,J.K.Apolythioesterbyring-openingpolymerization.J. Polym. Sci., Part B: Polym. Phys.1964,2,329−331..
Overberger,C.G.;Weise,J.K.Anionicring-openingpolymerizationofthiolactones.J. Am. Chem. Soc.1968,90,3533−3537..
Sanda,F.;Jirakanjana,D.;Hitomi,M.;Endo,T.Anionicring-openingpolymerizationofε-thionocaprolactone.Macromolecules1999,32,8010−8014..
Bannin,T.J.;Kiesewetter,M.K.Poly(thioester)byorganocatalyticring-openingpolymerization.Macromolecules2015,48,5481−5486..
Suzuki,M.;Makimura,K.;Matsuoka,S.I.Thiol-mediatedcontrolledring-openingpolymerizationofcysteine-derivedβ-thiolactoneanduniquefeaturesofproductpolythioester.Biomacromolecules2016,17,1135−1141..
Mavila,S.;Worrell,B.T.;Culver,H.R.;Goldman,T.M.;Wang,C.;Lim,C.H.;Domaille,D.W.;Pattanayak,S.;McBride,M.K.;Musgrave,C.B.DynamicandresponsiveDNA-likepolymers.J. Am. Chem. Soc.2018,140,13594−13598..
Smith,R.A.;Fu,G.;McAteer,O.;Xu,M.;Gutekunst,W.R.Radicalapproachtothioester-containingpolymers.J. Am. Chem. Soc.2019,141,1446−1451..
Yue,T.J.;Zhang,M.C.;Gu,G.G.;Wang,L.Y.;Ren,W.-M.;Lu,X.B.Precisesynthesisofpoly(thioester)swithdiversestructuresbycopolymerizationofcyclicthioanhydridesandepisulfidesmediatedbyorganicammoniumsalts.Angew. Chem. Int. Ed.2019,58,618−623..
Xia,Y.;Yuan,P.;Zhang,Y.;Sun,Y.;Hong,M.Convertingnon-strainedγ-valerolactoneandderivativesintosustainablepolythioestersviaisomerization-drivencationicring-openingpolymerizationofthionolactoneintermediate.Angew. Chem. Int. Ed.2023,62,e202217812..
Jung,M.E.;Piizzi,G.Gem-disubstituenteffect:theoreticalbasisandsyntheticapplications.Chem. Rev.2005,105,1735−1766..
Bachrach,S.M.Thegem-dimethyleffectrevisited.J. Org. Chem.2008,73,2466−2468..
Mattia,J.;Painter,P.Acomparisonofhydrogenbondingandorderinapolyurethaneandpoly(urethane-urea)andtheirblendswithpoly(ethyleneglycol).Macromolecules2007,40,1546−1554..
Lütke-Eversloh,T.;Bergander,K.;Luftmann,H.;Steinbüchel,A.Identificationofanewclassofbiopolymer:bacterialsynthesisofasulfur-containingpolymerwiththioesterlinkages.Microbiology2001,147,11−19..
Bharmoria,P.;Edhborg,F.;Bildirir,H.;Sasaki,Y.;Ghasemi,S.;Mårtensson,A.;Yanai,N.;Kimizuka,N.;Albinsson,B.;Börjesson,K.Recyclableopticalbioplasticsplatformforsolidstateredlightharvestingviatriplet-tripletannihilationphotonupconversion.J. Mater. Chem. A2022,10,21279−21290..
Sun,Z.;Deng,H.;Mao,Z.;Li,Z.;Nie,K.;Fu,K.;Chen,J.;Zhao,J.;Zhu,P.;Chi,Z.Shape-memorable,self-healable,recyclable,andfull-coloremissiveultralongorganicphosphorescencevitrimerswithexchangeablecovalentbonds.Adv. Opt. Mater.2022,10,2201558..
0
Views
8
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution