a.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.University of Science and Technology of China, Hefei 230026, China
c.Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S4M1, Canada
yylu@ciac.ac.cn(Y.Y.L.)
ljan@ciac.ac.cn(L.J.A.)
Scan for full text
Lu-Wei Lu, Zhen-Hua Wang, An-Chang Shi, et al. Polymer Translocation. [J]. Chinese Journal of Polymer Science 41(5):683-698(2023)
Lu-Wei Lu, Zhen-Hua Wang, An-Chang Shi, et al. Polymer Translocation. [J]. Chinese Journal of Polymer Science 41(5):683-698(2023) DOI: 10.1007/s10118-023-2975-6.
Polymer translocation has been one of challenging research topics in polymer physics. Despite great progresses made in previous studies, many essential problems remain unsolved. This review has expounded some major advances in different aspects of translocation, such as capture process, critical flux, conformational transition, and translocation time.
The translocation of a polymer through a pore that is much smaller than its size is a fundamental and actively researched topic in polymer physics. An understanding of the principles governing polymer translocation provides important guidance for various practical applications, such as the separation and purification of polymers, nanopore-based single-molecule deoxyribonucleic acid/ribonucleic acid(DNA/RNA) sequencing, transmembrane transport of DNA or RNA, and infection of bacterial cells by bacteriophages. The past several decades have seen great progresses on the study of polymer translocation. Here we present an overview of theoretical, experimental, and simulational stduies on polymer translocation, focusing on the roles played by several important factors, including initial polymer conformations, external fields, polymer topology and architectures, and confinement degree. We highlight the physical mechanisms of different types of polymer translocations, and the main controversies about the basic rules of translocation dynamics. We compare and contrast the behaviors of force-induced versus flow-induced translocations and the effects of unknotted versus knotted polymers. Finally, we mention several opportunities and challenges in the study of polymer translocation.
Polymer translocationKnotted polymersTranslocation timeCritical flux
de Gennes, P. G. inScaling Concepts in Polymer Physics, Cornell University Press, Ithaca and London,1979.
Kindt, J.; Tzlil, S.; Ben-Shaul, A.; Gelbart, W. M.DNA packaging and ejection forces in bacteriophage.Proc. Natl. Acad. Sci. U.S.A.,2001,9813671-13674.DOI:10.1073/pnas.241486298http://doi.org/10.1073/pnas.241486298.
Tzlil, S.; Kindt, J. T.; Gelbart, W. M.; Ben-Shaul, A.Forces and pressures in DNA packaging and release from viral capsids.Biophys. J.,2003,841616-1627.DOI:10.1016/S0006-3495(03)74971-6http://doi.org/10.1016/S0006-3495(03)74971-6.
Purohit, P. K.; Inamdar, M. M.; Grayson, P. D.; Squires, T. M.; Kondev, J.; Phillips, R.Forces during bacteriophage DNA packaging and ejection.Biophys. J.,2005,88851-866.DOI:10.1529/biophysj.104.047134http://doi.org/10.1529/biophysj.104.047134.
Simon, S. M.; Peskin, C. S.; Oster, G. F.What drives the translocation of proteins.Proc. Natl. Acad. Sci. U. S. A.,1992,893770-3774.DOI:10.1073/pnas.89.9.3770http://doi.org/10.1073/pnas.89.9.3770.
Muthukumar, M. inPolymer Translocation, CRC Press, New York,2011.
Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; Jovanovich, S. B.; Krstic, P. S.; Lindsay, S.; Ling, X. S.; Mastrangelo, C. H.; Meller, A.; Oliver, J. S.; Pershin, Y. V.; Ramsey, J. M.; Riehn, R.; Soni, G. V.; Tabard-Cossa, V.; Wanunu, M.; Wiggin, M.; Schloss, J. A.The potential and challenges of nanopore sequencing.Nat. Biotechnol.,2008,261146-1153.DOI:10.1038/nbt.1495http://doi.org/10.1038/nbt.1495.
Wanunu, M.Nanopores: a journey towards DNA sequencing.Phys. Life Rev.,2012,9125-158.DOI:10.1016/j.plrev.2012.05.010http://doi.org/10.1016/j.plrev.2012.05.010.
Venkatesan, B. M.; Estrada, D.; Banerjee, S.; Jin, X.; Dorgan, V. E.; Bae, M. H.; Aluru, N. R.; Pop, E.; Bashir, R.Stacked graphene-Al2O3nanopore sensors for sensitive detection of DNA and DNA-protein complexes.ACS Nano,2012,6441-450.DOI:10.1021/nn203769ehttp://doi.org/10.1021/nn203769e.
Venkatesan, B. M.; Dorvel, B.; Yemenicioglu, S.; Watkins, N.; Petrov, I.; Bashir, R.Highly sensitive, mechanically stable nanopore sensors for DNA analysis.Adv. Mater.,2009,212771-2776.DOI:10.1002/adma.200803786http://doi.org/10.1002/adma.200803786.
Ge, H.; Wu, C.Separation of linear and star chains by a nanopore.Macromolecules,2010,438711-8713.DOI:10.1021/ma101849khttp://doi.org/10.1021/ma101849k.
Diamant, H.Hydrodynamic interaction in confined geometries.J. Phys. Soc. Jpn.,2009,78041002DOI:10.1143/JPSJ.78.041002http://doi.org/10.1143/JPSJ.78.041002.
Muthukumar, M.Mechanism of DNA transport through pores.Annu. Rev. Biophys. Biomol. Struct.,2007,36435-450.DOI:10.1146/annurev.biophys.36.040306.132622http://doi.org/10.1146/annurev.biophys.36.040306.132622.
Mangenot, S.; Hochrein, M.; Rädler, J.; Letellier, L.Real-time imaging of DNA ejection from single phage particles.Curr. Biol.,2005,15430-435.DOI:10.1016/j.cub.2004.12.080http://doi.org/10.1016/j.cub.2004.12.080.
de Frutos, M.; Letellier, L.; Raspaud, E.DNA ejection from bacteriophage T5: analysis of the kinetics and energetics.Biophys. J.,2005,881364-1370.DOI:10.1529/biophysj.104.048785http://doi.org/10.1529/biophysj.104.048785.
Löf, D. ; Schillén, K. ; Jönsson, B. ; Evilevitch, A.Forces controlling the rate of DNA ejection from phageλ.J. Mol. Biol.,2007,36855-65.DOI:10.1016/j.jmb.2007.01.076http://doi.org/10.1016/j.jmb.2007.01.076.
Rodriguez-Larrea, D.; Bayley, H.Multistep protein unfolding during nanopore translocation.Nat. Nanotechnol.,2013,8288-295.DOI:10.1038/nnano.2013.22http://doi.org/10.1038/nnano.2013.22.
Yusko, E. C.; Johnson, J. M.; Majd, S.; Prangkio, P.; Rollings, R. C.; Li, J.; Yang, J.; Mayer, M.Controlling protein translocation through nanopores with bio-inspired fluid walls.Nat. Nanotechnol.,2011,6253-260.DOI:10.1038/nnano.2011.12http://doi.org/10.1038/nnano.2011.12.
Lu, L. W.; Zhu, H. Q.; Lu, Y. Y.; An, L. J.; Dai, L.Application of the tube model to explain the unexpected decrease in polymer bending energy induced by knot formation.Macromolecules,2020,539443-9448.DOI:10.1021/acs.macromol.0c01436http://doi.org/10.1021/acs.macromol.0c01436.
Rieger, F. C. ; Virnau, P.A Monte Carlo study of knots in long double-stranded DNA chains.PLoS Comput. Biol.,2016,12e1005029DOI:10.1371/journal.pcbi.1005029http://doi.org/10.1371/journal.pcbi.1005029.
Shaw, S. Y.; Wang, J. C.Knotting of a DNA chain during ring-closure.Science,1993,260533-536.DOI:10.1126/science.8475384http://doi.org/10.1126/science.8475384.
Dai, L.; Renner, C. B.; Doyle, P. S.Metastable tight knots in semiflexible chains.Macromolecules,2014,476135-6140.DOI:10.1021/ma501585xhttp://doi.org/10.1021/ma501585x.
Huang, L.; Makarov, D. E.Translocation of a knotted polypeptide through a pore.J. Chem. Phys.,2008,129121107DOI:10.1063/1.2968554http://doi.org/10.1063/1.2968554.
Matthews, R.; Louis, A. A.; Yeomans, J. M.Knot-controlled ejection of a polymer from a virus capsid.Phys. Rev. Lett.,2009,102088101DOI:10.1103/PhysRevLett.102.088101http://doi.org/10.1103/PhysRevLett.102.088101.
Rosa, A.; Di Ventra, M.; Micheletti, C.Topological jamming of spontaneously knotted polyelectrolyte chains driven through a nanopore.Phys. Rev. Lett.,2012,109118301DOI:10.1103/PhysRevLett.109.118301http://doi.org/10.1103/PhysRevLett.109.118301.
Marenduzzo, D.; Micheletti, C.; Orlandini, E.; Sumners, D.Topological friction strongly affects viral DNA ejection.Proc. Natl. Acad. Sci. U. S. A.,2013,11020081-20086.DOI:10.1073/pnas.1306601110http://doi.org/10.1073/pnas.1306601110.
Szymczak, P.Translocation of knotted proteins through a pore.Eur. Phys. J. -Spec. Top.,2014,2231805-1812.DOI:10.1140/epjst/e2014-02227-6http://doi.org/10.1140/epjst/e2014-02227-6.
Suma, A.; Rosa, A.; Micheletti, C.Pore translocation of knotted polymer chains: How friction depends on knot complexity.ACS Macro Lett.,2015,41420-1424.DOI:10.1021/acsmacrolett.5b00747http://doi.org/10.1021/acsmacrolett.5b00747.
Narsimhan, V.; Renner, C. B.; Doyle, P. S.Translocation dynamics of knotted polymers under a constant or periodic external field.Soft Matter,2016,125041-5049.DOI:10.1039/C6SM00545Dhttp://doi.org/10.1039/C6SM00545D.
Plesa, C.; Verschueren, D.; Pud, S.; van der Torre, J.; Ruitenberg, J. W.; Witteveen, M. J.; Jonsson, M. P.; Grosberg, A. Y.; Rabin, Y.; Dekker, C.Direct observation of DNA knots using a solid-state nanopore.Nat. Nanotechnol.,2016,111093-1097.DOI:10.1038/nnano.2016.153http://doi.org/10.1038/nnano.2016.153.
San Martin, A.; Rodriguez-Aliaga, P.; Molina, J. A.; Martin, A.; Bustamante, C.; Baez, M.Knots can impair protein degradation by ATP-dependent proteases.Proc. Natl. Acad. Sci. U. S. A.,2017,1149864-9869.DOI:10.1073/pnas.1705916114http://doi.org/10.1073/pnas.1705916114.
Suma, A.; Micheletti, C.Pore translocation of knotted DNA rings.Proc. Natl. Acad. Sci. U. S. A.,2017,114E2991-E2997.
Ding, M. M.; Duan, X. Z.; Lu, Y. Y.; Shi, T. F.Flow-induced ring polymer translocation through nanopores.Macromolecules,2015,486002-6007.DOI:10.1021/acs.macromol.5b00857http://doi.org/10.1021/acs.macromol.5b00857.
Wang, Z. H.; Wang, R. S.; Lu, Y. Y.; An, L. J.; Shi, A. C.; Wang, Z. G.Mechanisms of flow-induced polymer translocation.Macromolecules,2022,553602-3612.DOI:10.1021/acs.macromol.2c00288http://doi.org/10.1021/acs.macromol.2c00288.
Lu, Y. Y.; Wang, Z. H.; An, L. J.; Shi, A. C.Polymer translocation time.J. Phys. Chem. Lett.,2021,1211534-11542.DOI:10.1021/acs.jpclett.1c03202http://doi.org/10.1021/acs.jpclett.1c03202.
Sung, W.; Park, P. J.Polymer translocation through a pore in a membrane.Phys. Rev. Lett.,1996,77783-786.DOI:10.1103/PhysRevLett.77.783http://doi.org/10.1103/PhysRevLett.77.783.
Mathews, J. ; Walkers, R. L. inMathematical Methods of Physics, Addison Wesley, Reading, Massachusetts,1970.
Doi, M. ; Edwards, S. F. inThe Theory of Polymer Dynamics, Oxford University Press, New York,1988.
Park, P. J.; Sung, W.Polymer release out of a spherical vesicle through a pore.Phys. Rev. E,1998,57730-734.DOI:10.1103/PhysRevE.57.730http://doi.org/10.1103/PhysRevE.57.730.
Park, P. J.; Sung, W.Polymer translocation induced by adsorption.J. Chem. Phys.,1998,1083013-3018.DOI:10.1063/1.475688http://doi.org/10.1063/1.475688.
Muthukumar, M.Polymer translocation through a hole.J. Chem. Phys.,1999,11110371-10374.DOI:10.1063/1.480386http://doi.org/10.1063/1.480386.
Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W.Characterization of individual polynucleotide molecules using a membrane channel.Proc. Natl. Acad. Sci. U. S. A.,1996,9313770-13773.DOI:10.1073/pnas.93.24.13770http://doi.org/10.1073/pnas.93.24.13770.
Muthukumar, M.Translocation of a confined polymer through a hole.Phys. Rev. Lett.,2001,863188-3191.DOI:10.1103/PhysRevLett.86.3188http://doi.org/10.1103/PhysRevLett.86.3188.
Muthukumar, M.Polymer escape through a nanopore.J. Chem. Phys.,2003,1185174-5184.DOI:10.1063/1.1553753http://doi.org/10.1063/1.1553753.
Chuang, J.; Kantor, Y.; Kardar, M.Anomalous dynamics of translocation.Phys. Rev. E,2001,65011802.
Luo, K.; Ala-Nissila, T.; Ying, S. C.Polymer translocation through a nanopore: a two-dimensional Monte Carlo study.J. Chem. Phys.,2006,124034714DOI:10.1063/1.2161189http://doi.org/10.1063/1.2161189.
Kantor, Y.; Kardar, M.Anomalous dynamics of forced translocation.Phys. Rev. E,2004,69021806DOI:10.1103/PhysRevE.69.021806http://doi.org/10.1103/PhysRevE.69.021806.
Ikonen, T.; Bhattacharya, A.; Ala-Nissila, T.; Sung, W.Influence of non-universal effects on dynamical scaling in driven polymer translocation.J. Chem. Phys.,2012,137085101DOI:10.1063/1.4742188http://doi.org/10.1063/1.4742188.
Saito, T.; Sakaue, T.Dynamical diagram and scaling in polymer driven translocation.Eur. Phys. J. E,2011,34135DOI:10.1140/epje/i2011-11135-3http://doi.org/10.1140/epje/i2011-11135-3.
Saito, T.; Sakaue, T.Erratum to: Dynamical diagram and scaling in polymer driven translocation.Eur. Phys. J. E,2012,35125DOI:10.1140/epje/i2012-12125-7http://doi.org/10.1140/epje/i2012-12125-7.
Rowghanian, P.; Grosberg, A. Y.Force-driven polymer translocation through a nanopore: an old problem revisited.J. Phys. Chem. B,2011,11514127-14135.
Ikonen, T.; Bhattacharya, A.; Ala-Nissila, T.; Sung, W.Unifying model of driven polymer translocation.Phys. Rev. E,2012,85051803.
Sarabadani, J.; Ikonen, T.; Ala-Nissila, T.Iso-flux tension propagation theory of driven polymer translocation: the role of initial configurations.J. Chem. Phys.,2014,141214907DOI:10.1063/1.4903176http://doi.org/10.1063/1.4903176.
Dubbeldam, J. L. A.; Rostiashvili, V. G.; Milchev, A.; Vilgis, T. A.Forced translocation of a polymer: dynamical scaling versus molecular dynamics simulation.Phys. Rev. E,2012,85041801.
Milchev, A.; Binder, K.; Bhattacharya, A.Polymer translocation through a nanopore induced by adsorption: Monte Carlo simulation of a coarse-grained model.J. Chem. Phys.,2004,1216042-6051.DOI:10.1063/1.1785776http://doi.org/10.1063/1.1785776.
Matsuyama, A.Kinetics of polymer translocation through a pore.J. Chem. Phys.,2004,1218098-8103.DOI:10.1063/1.1800933http://doi.org/10.1063/1.1800933.
Luo, K. F.; Huopaniemi, I.; Ala-Nissila, T.; Ying, S. C.Polymer translocation through a nanopore under an applied external field.J. Chem. Phys.,2006,124114704DOI:10.1063/1.2179792http://doi.org/10.1063/1.2179792.
Huopaniemi, I.; Luo, K.; Ala-Nissila, T.Langevin dynamics simulations of polymer translocation through nanopores.J. Chem. Phys.,2006,125124901DOI:10.1063/1.2357118http://doi.org/10.1063/1.2357118.
Dubbeldam, J. L. A.; Milchev, A.; Rostiashvili, V. G.; Vilgis, T. A.Driven polymer translocation through a nanopore: A manifestation of anomalous diffusion.Europhys. Lett.,2007,7918002DOI:10.1209/0295-5075/79/18002http://doi.org/10.1209/0295-5075/79/18002.
Huopaniemi, I.; Luo, K.; Ala-Nissila, T.; Ying, S. C.Polymer translocation through a nanopore under a pulling force.Phys. Rev. E,2007,75061912DOI:10.1103/PhysRevE.75.061912http://doi.org/10.1103/PhysRevE.75.061912.
Tsuchiya, S.; Matsuyama, A.Translocation and insertion of an amphiphilic polymer.Phys. Rev. E,2007,76011801.
Luo, K.; Ollila, S. T. T.; Huopaniemi, I.; Ala-Nissila, T.; Pomorski, P.; Karttunen, M.; Ying, S. C.; Bhattacharya, A.Dynamical scaling exponents for polymer translocation through a nanopore.Phys. Rev. E,2008,78050901DOI:10.1103/PhysRevE.78.050901http://doi.org/10.1103/PhysRevE.78.050901.
Fyta, M.; Melchionna, S.; Succi, S.; Kaxiras, E.Hydrodynamic correlations in the translocation of a biopolymer through a nanopore: theory and multiscale simulations.Phys. Rev. E,2008,78036704DOI:10.1103/PhysRevE.78.036704http://doi.org/10.1103/PhysRevE.78.036704.
Bhattacharya, A.; Morrison, W. H.; Luo, K.; Ala-Nissila, T.; Ying, S. C.; Milchev, A.; Binder, K.Scaling exponents of forced polymer translocation through a nanopore.Eur. Phys. J. E,2009,29423-429.DOI:10.1140/epje/i2009-10495-5http://doi.org/10.1140/epje/i2009-10495-5.
Luo, K.; Ala-Nissila, T.; Ying, S. C.; Metzler, R.Driven polymer translocation through nanopores: slow-vs.-fast dynamics.Europhys. Lett.,2009,8868006DOI:10.1209/0295-5075/88/68006http://doi.org/10.1209/0295-5075/88/68006.
Suhonen, P. M.; Linna, R. P.Dynamics of driven translocation of semiflexible polymers.Phys. Rev. E,2018,97062413DOI:10.1103/PhysRevE.97.062413http://doi.org/10.1103/PhysRevE.97.062413.
Vocks, H.; Panja, D.; Barkema, G. T.; Ball, R. C.Pore-blockade times for field-driven polymer translocation.J. Phys.: Condens. Matter,2008,20095224DOI:10.1088/0953-8984/20/9/095224http://doi.org/10.1088/0953-8984/20/9/095224.
Panja, D.; Barkema, G. T.Passage times for polymer translocation pulled through a narrow pore.Biophys. J.,2008,941630-1637.DOI:10.1529/biophysj.107.116434http://doi.org/10.1529/biophysj.107.116434.
Kwon, S.; Sung, B. J.Effects of solvent quality and non-equilibrium conformations on polymer translocation.J. Chem. Phys.,2018,149244907DOI:10.1063/1.5048059http://doi.org/10.1063/1.5048059.
Lubensky, D. K.; Nelson, D. R.Driven polymer translocation through a narrow pore.Biophys. J.,1999,771824-1838.DOI:10.1016/S0006-3495(99)77027-Xhttp://doi.org/10.1016/S0006-3495(99)77027-X.
Chern, S. S.; Cardenas, A. E.; Coalson, R. D.Three-dimensional dynamic Monte Carlo simulations of driven polymer transport through a hole in a wall.J. Chem. Phys.,2001,1157772-7782.DOI:10.1063/1.1392367http://doi.org/10.1063/1.1392367.
Meller, A.; Branton, D.Single molecule measurements of DNA transport through a nanopore.Electrophoresis,2002,232583-2591.DOI:10.1002/1522-2683(200208)23:16<2583::AID-ELPS2583>3.0.CO;2-Hhttp://doi.org/10.1002/1522-2683(200208)23:16<2583::AID-ELPS2583>3.0.CO;2-H.
Tian, P.; Smith, G. D.Translocation of a polymer chain across a nanopore: a Brownian dynamics simulation study.J. Chem. Phys.,2003,11911475-11483.DOI:10.1063/1.1621614http://doi.org/10.1063/1.1621614.
Panja, D.; Barkema, G. T.; Kolomeisky, A. B.Through the eye of the needle: Recent advances in understanding biopolymer translocation.J. Phys.: Condens. Matter,2013,25413101DOI:10.1088/0953-8984/25/41/413101http://doi.org/10.1088/0953-8984/25/41/413101.
Suhonen, P. M.; Piili, J.; Linna, R. P.Quantification of tension to explain bias dependence of driven polymer translocation dynamics.Phys. Rev. E,2017,96062401DOI:10.1103/PhysRevE.96.062401http://doi.org/10.1103/PhysRevE.96.062401.
Suhonen, P. M.; Kaski, K.; Linna, R. P.Criteria for minimal model of driven polymer translocation.Phys. Rev. E,2014,90042702.
Dubbeldam, J. L. A.; Rostiashvili, V. G.; Vilgis, T. A.Driven translocation of a polymer: role of pore friction and crowding.J. Chem. Phys.,2014,141124112DOI:10.1063/1.4896153http://doi.org/10.1063/1.4896153.
Muthukumar, M.Theory of capture rate in polymer translocation.J. Chem. Phys.,2010,132195101DOI:10.1063/1.3429882http://doi.org/10.1063/1.3429882.
Vollmer, S. C.; de Haan, H. W.Translocation is a nonequilibrium process at all stages: simulating the capture and translocation of a polymer by a nanopore.J. Chem. Phys.,2016,145154902DOI:10.1063/1.4964630http://doi.org/10.1063/1.4964630.
Wolterink, J. K.; Barkema, G. T.; Panja, D.Passage times for unbiased polymer translocation through a narrow pore.Phys. Rev. Lett.,2006,96208301DOI:10.1103/PhysRevLett.96.208301http://doi.org/10.1103/PhysRevLett.96.208301.
Luo, K.; Ala-Nissila, T.; Ying, S. C.; Bhattacharya, A.Influence of polymer-pore interactions on translocation.Phys. Rev. Lett.,2007,99148102DOI:10.1103/PhysRevLett.99.148102http://doi.org/10.1103/PhysRevLett.99.148102.
Cohen, J. A.; Chaudhuri, A.; Golestanian, R.Active polymer translocation through flickering pores.Phys. Rev. Lett.,2011,107238102DOI:10.1103/PhysRevLett.107.238102http://doi.org/10.1103/PhysRevLett.107.238102.
de Haan, H. W.; Slater, G. W.Translocation of "rod-coil" polymers: probing the structure of single molecules within nanopores.Phys. Rev. Lett.,2013,110048101DOI:10.1103/PhysRevLett.110.048101http://doi.org/10.1103/PhysRevLett.110.048101.
Wong, C. T. A.; Muthukumar, M.Polymer capture by electro-osmotic flow of oppositely charged nanopores.J. Chem. Phys.,2007,126164903DOI:10.1063/1.2723088http://doi.org/10.1063/1.2723088.
Mihovilovic, M.; Hagerty, N.; Stein, D.Statistics of DNA capture by a solid-state nanopore.Phys. Rev. Lett.,2013,110028102DOI:10.1103/PhysRevLett.110.028102http://doi.org/10.1103/PhysRevLett.110.028102.
Katkar, H. H.; Muthukumar, M.Role of non-equilibrium conformations on driven polymer translocation.J. Chem. Phys.,2018,148024903DOI:10.1063/1.4994204http://doi.org/10.1063/1.4994204.
Afrasiabian, N.; Denniston, C.The journey of a single polymer chain to a nanopore.Soft Matter,2020,169101-9112.DOI:10.1039/D0SM01045Fhttp://doi.org/10.1039/D0SM01045F.
Ge, H.; Jin, F.; Li, J.; Wu, C.How much force is needed to stretch a coiled chain in solution.Macromolecules,2009,424400-4402.DOI:10.1021/ma9005523http://doi.org/10.1021/ma9005523.
Freed, K. F.; Wu, C.Comparison of calculated and measured critical flow rates for dragging linear polymer chains through a small cylindrical tube.Macromolecules,2011,449863-9866.DOI:10.1021/ma202071bhttp://doi.org/10.1021/ma202071b.
Li, L.; Chen, Q.; Jin, F.; Wu, C.How does a polymer chain pass through a cylindrical pore under an elongational flow field.Polymer,2015,67A1-A13.DOI:10.1016/j.polymer.2015.04.063http://doi.org/10.1016/j.polymer.2015.04.063.
Brochard-Wyart, F.; de Gennes, P. G.Dynamics of confined polymer chains.J. Chem. Phys.,1977,6752-56.DOI:10.1063/1.434540http://doi.org/10.1063/1.434540.
de Gennes, P. G.Flexible polymers in nanopores.Adv. Polym. Sci.,1999,13891-105.
Sakaue, T.; Elie, R.; de Gennes, P. G.; Brochard-Wyart, F.Flow injection of branched polymers inside nanopores.Europhys. Lett.,2005,7283DOI:10.1209/epl/i2005-10190-3http://doi.org/10.1209/epl/i2005-10190-3.
Brochard-Wyart, F.; de Gennes, P. G.Injection threshold for a star polymer inside a nanopore.C. R. Acad Sci. II, Paris,1996,323473-479.
Wu, C.; Li, L.Unified description of transportation of polymer chains with different topologies through a small cylindrical pore.Polymer,2013,541463-1465.DOI:10.1016/j.polymer.2012.12.074http://doi.org/10.1016/j.polymer.2012.12.074.
Ge, H.; Pispas, S.; Wu, C.How does a star chain (nanooctopus) crawl through a nanopore.Polym. Chem.,2011,21071-1076.DOI:10.1039/C0PY00361Ahttp://doi.org/10.1039/C0PY00361A.
Li, L.; He, C.; He, W.; Wu, C.How does a hyperbranched chain pass through a nanopore.Macromolecules,2012,457583-7589.DOI:10.1021/ma301468zhttp://doi.org/10.1021/ma301468z.
Ledesma-Aguilar, R.; Sakaue, T.; Yeomans, J. M.Easier sieving through narrower pores: fluctuations and barrier crossing in flow-driven polymer translocation.Soft Matter,2012,84306-4309.DOI:10.1039/c2sm25201ehttp://doi.org/10.1039/c2sm25201e.
Lu, Y. Y.; Shi, T. F.; An, L. J.; Wang, Z. G.Intrinsic viscosity of polymers: from linear chains to dendrimers.Europhys. Lett.,2012,9764003DOI:10.1209/0295-5075/97/64003http://doi.org/10.1209/0295-5075/97/64003.
Lu, Y. Y.; An, L. J.; Wang, Z. G.Intrinsic viscosity of polymers: general theory based on a partially permeable sphere model.Macromolecules,2013,465731-5740.DOI:10.1021/ma400872shttp://doi.org/10.1021/ma400872s.
Wang, Z. H.; Wang, Z. G.; Shi, A. C.; Lu Y. Y.; An, L. J.Behaviors of a polymer chain in channels: from Zimm to Rouse dynamics.Macromolecules,2023:10.1021/acs.macromol.3c00013DOI:10.1021/acs.macromol.3c00013http://doi.org/10.1021/acs.macromol.3c00013.
de Gennes, P. G.Coil-stretch transition of dilute flexible polymers under ultrahigh velocity-gradients.J. Chem. Phys.,1974,605030-5042.DOI:10.1063/1.1681018http://doi.org/10.1063/1.1681018.
Fan, X.-J.; Byron Bird, R.; Renardy, M.Configuration-dependent friction coefficients and elastic dumbbell rheology.J. Non-Newton. Fluid.,1985,18255-272.DOI:10.1016/0377-0257(85)87002-6http://doi.org/10.1016/0377-0257(85)87002-6.
Wiest, J. M.; Wedgewood, L. E.; Bird, R. B.On coil-stretch transitions in dilute polymer solutions.J. Chem. Phys.,1989,90587-594.DOI:10.1063/1.456457http://doi.org/10.1063/1.456457.
Schroeder, C. M.; Babcock, H. P.; Shaqfeh, E. S. G.; Chu, S.Observation of polymer conformation hysteresis in extensional flow.Science,2003,3011515-1519.DOI:10.1126/science.1086070http://doi.org/10.1126/science.1086070.
Zheng, T.; Yang, J.; He, J.; Li, L.Origin of inconsistency in experimentally observed transition widths and critical flow rates in ultrafiltration studies of flexible linear chains.Macromolecules,2018,516504-6512.DOI:10.1021/acs.macromol.8b01436http://doi.org/10.1021/acs.macromol.8b01436.
Metzler, R.; Klafter, J.The random walk's guide to anomalous diffusion: a fractional dynamics approach.Phys. Rep.,2000,3391-77.DOI:10.1016/S0370-1573(00)00070-3http://doi.org/10.1016/S0370-1573(00)00070-3.
Metzler, R.; Klafter, J.When translocation dynamics becomes anomalous.Biophys. J.,2003,852776-2779.DOI:10.1016/S0006-3495(03)74699-2http://doi.org/10.1016/S0006-3495(03)74699-2.
Dubbeldam, J. L. A.; Milchev, A.; Rostiashvili, V. G.; Vilgis, T. A.Polymer translocation through a nanopore: a showcase of anomalous diffusion.Phys. Rev. E,2007,76010801DOI:10.1103/PhysRevE.76.010801http://doi.org/10.1103/PhysRevE.76.010801.
Sakaue, T.Nonequilibrium dynamics of polymer translocation and straightening.Phys. Rev. E,2007,76021803.
Sakaue, T.Sucking genes into pores: Insight into driven translocation.Phys. Rev. E,2010,81041808DOI:10.1103/PhysRevE.81.041808http://doi.org/10.1103/PhysRevE.81.041808.
Sakaue, T.Dynamics of polymer translocation: a short review with an introduction of weakly-driven regime.Polymers,2016,8424DOI:10.3390/polym8120424http://doi.org/10.3390/polym8120424.
Guo, J.; Li, X.; Liu, Y.; Liang, H.Flow-induced translocation of polymers through a fluidic channel: a dissipative particle dynamics simulation study.J. Chem. Phys.,2011,134134906DOI:10.1063/1.3578180http://doi.org/10.1063/1.3578180.
Li, X.; Pivkin, I. V.; Liang, H.Hydrodynamic effects on flow-induced polymer translocation through a microfluidic channel.Polymer,2013,544309-4317.DOI:10.1016/j.polymer.2013.06.022http://doi.org/10.1016/j.polymer.2013.06.022.
Li, Z.; Guo, H.A molecular dynamics simulation study of sucking a single polymer chain into nanopores: blockage and memory effects.Polym. Int.,2015,641006-1014.DOI:10.1002/pi.4929http://doi.org/10.1002/pi.4929.
Michels, J. P. J.; Wiegel, F. W.On the topology of a polymer ring.Proc. R. Soc. A,1986,403269-284.
Micheletti, C.; Marenduzzo, D.; Orlandini, E.; Summers, D. W.Knotting of random ring polymers in confined spaces.J. Chem. Phys.,2006,124064903DOI:10.1063/1.2162886http://doi.org/10.1063/1.2162886.
Mallam, A. L.; Jackson, S. E.Folding studies on a knotted protein.J. Mol. Biol.,2005,3461409-1421.DOI:10.1016/j.jmb.2004.12.055http://doi.org/10.1016/j.jmb.2004.12.055.
Sulkowska, J. I.; Sulkowski, P.; Szymczak, P.; Cieplak, M.Tightening of knots in proteins.Phys. Rev. Lett.,2008,100058106DOI:10.1103/PhysRevLett.100.058106http://doi.org/10.1103/PhysRevLett.100.058106.
Sauer, R. T. ; Baker, T. A..AAA+ proteases: ATP-fueled machines of protein destruction.Annu. Rev. Biochem.,2011,80587-612.DOI:10.1146/annurev-biochem-060408-172623http://doi.org/10.1146/annurev-biochem-060408-172623.
Szymczak, P.Tight knots in proteins: can they block the mitochondrial pores.Biochem. Soc. Trans.,2013,41620-624.DOI:10.1042/BST20120261http://doi.org/10.1042/BST20120261.
Szymczak, P.Periodic forces trigger knot untying during translocation of knotted proteins.Sci. Rep.,2016,621702DOI:10.1038/srep21702http://doi.org/10.1038/srep21702.
Wojciechowski, M.; Gomez-Sicilia, A.; Carrion-Vazquez, M.; Cieplak, M.Unfolding knots by proteasome-like systems: Simulations of the behaviour of folded and neurotoxic proteins.Mol. Biosyst.,2016,122700-2712.DOI:10.1039/C6MB00214Ehttp://doi.org/10.1039/C6MB00214E.
Virnau, P.; Mirny, L. A.; Kardar, M.Intricate knots in proteins: function and evolution.PLoS Comput. Biol.,2006,21074-1079.
Forster, A. and Hill, C. P.Proteasome degradation: Enter the substrate.Trends Cell Biol.,2003,13550-553.DOI:10.1016/j.tcb.2003.09.001http://doi.org/10.1016/j.tcb.2003.09.001.
Rehling, P.; Brandner, K.; Pfanner, N.Mitochondrial import and the twin-pore translocase.Nat. Rev. Mol. Cell Biol.,2004,5519-530.
Orian, A.; Schwartz, A. L.; Israel, A.; Whiteside, S.; Kahana, C.; Ciechanover, A.Structural motifs involved in ubiquitin-mediated processing of the NF-Kappa B precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain.Mol. Cell Biol.,1999,193664-3673.DOI:10.1128/MCB.19.5.3664http://doi.org/10.1128/MCB.19.5.3664.
Lin, L.; Ghosh, S.A glycine-rich region in NF-kappa B p105 functions as a processing signal for the generation of the p50 subunit.Mol. Cell Biol.,1996,162248-2254.DOI:10.1128/MCB.16.5.2248http://doi.org/10.1128/MCB.16.5.2248.
Rape, M.; Jentsch, M.Taking a bite: proteasomal protein processing.Nat. Cell Biol.,2002,4E113-E116.DOI:10.1038/ncb0502-e113http://doi.org/10.1038/ncb0502-e113.
Zanet, J.; Benrabah, E.; Li, T.; Pelissier-Monier, A.; Chanut-Delalande, H.; Ronsin, B.; Bellen, H. J.; Payre, F.; Plaza, S.Pri sORF peptides induce selective proteasome-mediated protein processing.Science,2015,3491356-1358.DOI:10.1126/science.aac5677http://doi.org/10.1126/science.aac5677.
Palombella, V. J.; Rando, O. J.; Goldberg, A. L.; Maniatis, T.The ubiquitin-proteasome pathway is required for processing the NF-Kappa-B1 precursor protein and the activation of NF-Kappa-B.Cell,1994,78773-785.DOI:10.1016/S0092-8674(94)90482-0http://doi.org/10.1016/S0092-8674(94)90482-0.
Lake, L. W.Enhanced Oil Recovery, Prentice Hall, Englewood Cliffs, NJ,1989.
Smith, M. M.; Silva, J. A. K.; Munakata-Marr, J.; McCray, J. E.Compatibility of polymers and chemical oxidants for enhanced groundwater remediation.Environ. Sci. Technol.,2008,429296-9301.DOI:10.1021/es800757ghttp://doi.org/10.1021/es800757g.
0
Views
16
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution