a.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
guoyunlong@iccas.ac.cn(Y.L.G.)
liuyq@iccas.ac.cn(Y.Q.L.)
Scan for full text
Yi-Fan Li, Yun-Long Guo, Yun-Qi Liu. Recent Progress in Donor-Acceptor Type Conjugated Polymers for Organic Field-effect Transistors. [J]. Chinese Journal of Polymer Science 41(5):652-670(2023)
Yi-Fan Li, Yun-Long Guo, Yun-Qi Liu. Recent Progress in Donor-Acceptor Type Conjugated Polymers for Organic Field-effect Transistors. [J]. Chinese Journal of Polymer Science 41(5):652-670(2023) DOI: 10.1007/s10118-023-2952-0.
We describe the recent progress in D-A conjugated polymers for OFETs from three aspects: (1) the modification of π-conjugated backbone, (2) the evolution of the polymerization methods and (3) the regulation of aggregate-state structure.
The recent progress in the design and synthesis of high-performance donor-acceptor conjugated polymeric semiconducting materials is reviewed from the perspective of multiscale structures. The multiscale of conjugated polymers is from the primary one-dimensional polymer molecular scale to the secondary polymer-chains interaction scale, and then to the tertiary polymer aggregate scale. This review focuses on the design and synthesis of polymer molecules, proposes new classification rules, and rationally summarizes the design strategies and modulation methods of polymers. We describe the recent progress from these three aspects: (1) the modification of,π,-conjugated backbone, (2) the evolution of the polymerization methods, and (3) the regulation of aggregate-state structure.
Conjugated polymersDonor-acceptorOrganic field-effect transistorsMultiscale optimization
Zhao, Y.; Guo, Y.; Liu, Y.25thAnniversary article: recent advances in n-type and ambipolar organic field-effect transistors.Adv. Mater.,2013,255372-5391.DOI:10.1002/adma.201302315http://doi.org/10.1002/adma.201302315.
Yang, Y.; Liu, Z.; Zhang, G.; Zhang, X.; Zhang, D.The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities.Adv. Mater.,2019,311903104DOI:10.1002/adma.201903104http://doi.org/10.1002/adma.201903104.
Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A.Organic thermoelectric materials for energy harvesting and temperature control.Nat. Rev. Mater.,2016,116050DOI:10.1038/natrevmats.2016.50http://doi.org/10.1038/natrevmats.2016.50.
Yuvaraja, S.; Nawaz, A.; Liu, Q.; Dubal, D.; Surya, S. G.; Salama, K. N.; Sonar, P.Organic field-effect transistor-based flexible sensors.Chem. Soc. Rev.,2020,493423-3460.DOI:10.1039/C9CS00811Jhttp://doi.org/10.1039/C9CS00811J.
Brédas, J. L.; Li, Y.; Sun, H.; Zhong, C.Why can high charge-carrier mobilities be achieved alongπ-conjugated polymer chains with alternating donor-acceptor moieties.Adv. Theory Simul.,2018,11800016DOI:10.1002/adts.201800016http://doi.org/10.1002/adts.201800016.
Lei, T.; Wang, J. Y.; Pei, J.Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.Acc. Chem. Res.,2014,471117-1126.DOI:10.1021/ar400254jhttp://doi.org/10.1021/ar400254j.
Li, J.; Zhao, Y.; Tan, H. S.; Guo, Y.; Di, C. A.; Yu, G.; Liu, Y.; Lin, M.; Lim, S. H.; Zhou, Y.A stable solution-processed polymer semiconductor with record high-mobility for printed transistors.Sci. Rep.,2012,2754DOI:10.1038/srep00754http://doi.org/10.1038/srep00754.
Yang, J.; Zhao, Z.; Wang, S.; Guo, Y.; Liu, Y.Insight into high-performance conjugated polymers for organic field-effect transistors.Chem,2018,42748-2785.DOI:10.1016/j.chempr.2018.08.005http://doi.org/10.1016/j.chempr.2018.08.005.
Sun, H.; Guo, X.; Facchetti, A.High-performance n-type polymer semiconductors: applications, recent development, and challenges.Chem,2020,61310-1326.DOI:10.1016/j.chempr.2020.05.012http://doi.org/10.1016/j.chempr.2020.05.012.
Guo, X.; Facchetti, A.; Marks, T. J.Imide- and amide-functionalized polymer semiconductors.Chem. Rev.,2014,1148943-9021.DOI:10.1021/cr500225dhttp://doi.org/10.1021/cr500225d.
Meager, I.; Nikolka, M.; Schroeder, B. C.; Nielsen, C. B.; Planells, M.; Bronstein, H.; Rumer, J. W.; James, D. I.; Ashraf, R. S.; Sadhanala, A.Thieno[3,2-b]thiophene flanked isoindigo polymers for high performance ambipolar OFET applications.Adv. Funct. Mater.,2014,247109-7115.DOI:10.1002/adfm.201402307http://doi.org/10.1002/adfm.201402307.
Song, E.; Ha, Y. H.; Kang, B.; Yun, H. J.; Kwon, S. K.; Kim, Y. H.; Cho, K.Effects of varying the lengths of the donor units inπ-extended thienothiophene isoindigo-based polymer semiconductors.J. Mater. Chem. C,2018,69972-9980.DOI:10.1039/C8TC02705Fhttp://doi.org/10.1039/C8TC02705F.
Zhao, N.; Ai, N.; Cai, M.; Wang, X.; Wan, X.; Pei, J.Thiophene-fused isoindigo based conjugated polymers for ambipolar organic field-effect transistors.Polym. Chem.,2016,7235-243.DOI:10.1039/C5PY01488Chttp://doi.org/10.1039/C5PY01488C.
Zhao, N.; Qiu, L.; Wang, X.; An, Z.; Wan, X.Synthesis of a thiophene-fused isoindigo derivative: a potential building block for organic semiconductors.Tetrahedr. Lett.,2014,551040-1044.DOI:10.1016/j.tetlet.2013.12.076http://doi.org/10.1016/j.tetlet.2013.12.076.
Chen, B.; Yang, Y.; Cheng, P.; Chen, X.; Zhan, X.; Qin, J.Designing a thiophene-fused DPP unit to build an A-D-A molecule for solution-processed solar cells.J. Mater. Chem. A,2015,36894-6900.DOI:10.1039/C5TA00294Jhttp://doi.org/10.1039/C5TA00294J.
Zhuang, W.; Wang, S.; Tao, Q.; Ma, W.; Wang, E.Synthesis and electronic properties of diketopyrrolopyrrole-based polymers with and without ring-fusion.Macromolecules,2021,54970-980.DOI:10.1021/acs.macromol.0c02326http://doi.org/10.1021/acs.macromol.0c02326.
Jiang, W.; Liu, Z.; Zhu, D.; Zheng, W.; Chen, L.; Zhang, X.; Zhang, G.; Yi, Y.; Jiang, L.; Zhang, D.New synthetic approaches toN-aryl andπ-expanded diketopyrrolopyrroles as new building blocks for organic optoelectronic materials.Angew. Chem. Int. Ed.,2021,6010700-10708.DOI:10.1002/anie.202102131http://doi.org/10.1002/anie.202102131.
Ni, Z.; Dong, H.; Wang, H.; Ding, S.; Zou, Y.; Zhao, Q.; Zhen, Y.; Liu, F.; Jiang, L.; Hu, W.Quinoline-flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm2V–1s–1in flexible thin film devices.Adv. Mater.,2018,301704843DOI:10.1002/adma.201704843http://doi.org/10.1002/adma.201704843.
Chen, H.; Wadsworth, A.; Ma, C.; Nanni, A.; Zhang, W.; Nikolka, M.; Luci, A. M. T.; Perdigao, L. M. A.; Thorley, K. J.; Cendra, C.; Larson, B.; Rumbles, G.; Anthopoulos, T. D.; Salleo, A.; Costantini, G.; Sirringhaus, H.; McCulloch, I.The effect of ring expansion in thienobenzo[b]indacenodithiophene polymers for organic field-effect transistors.J. Am. Chem. Soc.,2019,14118806-18813.DOI:10.1021/jacs.9b09367http://doi.org/10.1021/jacs.9b09367.
Fu, X.; Zhen, Y.; Ni, Z.; Li, Y.; Dong, H.; Siegel, J. S.; Hu, W.One-pot domino carbonylation protocol for aromatic diimides toward n-type organic semiconductors.Angew. Chem. Int. Ed.,2020,5914024DOI:10.1002/anie.202003179http://doi.org/10.1002/anie.202003179.
Hwang, H.; Khim, D.; Yun, J. M.; Jung, E.; Jang, S. Y.; Jang, Y. H.; Noh, Y. Y.; Kim, D. Y.Quinoidal molecules as a new class of ambipolar semiconductor originating from amphoteric redox behavior.Adv. Funct. Mater.,2015,251146-1156.DOI:10.1002/adfm.201402758http://doi.org/10.1002/adfm.201402758.
Deng, Y.; Sun, B.; He, Y.; Quinn, J.; Guo, C.; Li, Y.Thiophene-S,S-dioxidized indophenine: a quinoid-type building block with high electron affinity for constructing n-type polymer semiconductors with narrow band gaps.Angew. Chem. Int. Ed.,2016,553459-3462.DOI:10.1002/anie.201508781http://doi.org/10.1002/anie.201508781.
Tormos, G. V.; Belmore, K. A.; Cava, M. P.The indophenine reaction revisited. Properties of a soluble dialkyl derivative.J. Am. Chem. Soc.,1993,11511512-11515.DOI:10.1021/ja00077a057http://doi.org/10.1021/ja00077a057.
Huang, J.; Lu, S.; Chen, P.-A.; Wang, K.; Hu, Y.; Liang, Y.; Wang, M.; Reichmanis, E.Rational design of a narrow-bandgap conjugated polymer using the quinoidal thieno[3,2-b]thiophene-based building block for organic field-effect transistor applications.Macromolecules,2019,524749-4756.DOI:10.1021/acs.macromol.9b00370http://doi.org/10.1021/acs.macromol.9b00370.
Deng, Y.; Sun, B.; Quinn, J.; He, Y.; Ellard, J.; Guo, C.; Li, Y.Thiophene-S,S-dioxidized indophenines as high performance n-type organic semiconductors for thin film transistors.RSC Adv.,2016,645410-45418.DOI:10.1039/C6RA06316Khttp://doi.org/10.1039/C6RA06316K.
Song, H.; Deng, Y.; Gao, Y.; Jiang, Y.; Tian, H.; Yan, D.; Geng, Y.; Wang, F.Donor-acceptor conjugated polymers based on indacenodithiophene derivative bridged diketopyrrolopyrroles: synthesis and semiconducting properties.Macromolecules,2017,502344-2353.DOI:10.1021/acs.macromol.6b02781http://doi.org/10.1021/acs.macromol.6b02781.
Gao, R.; Wu, B.; Liang, Z.; Zhao, X.; Deng, Y.; Tian, H.; Geng, Y.Electronic properties modulation of tetraoxidothieno [3,2-b] thiophene-based quinoidal compounds by terminal fluorination.Mater. Chem. Front.,2020,4891-898.DOI:10.1039/C9QM00690Ghttp://doi.org/10.1039/C9QM00690G.
Ren, L.; Fan, H.; Huang, D.; Yuan, D.; Di, C; Zhu, X.Dithienoindophenines: p-type semiconductors designed by quinoid stabilization for solar-cell applications.Chem. Eur. J.,2016,2217136-17140.DOI:10.1002/chem.201603112http://doi.org/10.1002/chem.201603112.
Hwang, K.; Lee, M. H.; Kim, J.; Kim, Y.; Kim, Y.; Hwang, H.; Kim, I. B.; Kim, D. Y..3,4-Ethylenedioxythiophene-based isomer-free quinoidal building block and conjugated polymers for organic field-effect transistors.Macromolecules,2020,531977-1987.DOI:10.1021/acs.macromol.9b02237http://doi.org/10.1021/acs.macromol.9b02237.
Turbiez, M.; Frère, P.; Allain, M.; Videlot, C.; Ackermann, J.; Roncali, J.Design of organic semiconductors: tuning the electronic properties ofπ-conjugated oligothiophenes with the 3,4-ethylenedioxythiophene (EDOT) building block.Chem. Eur. J.,2005,113742-3752.DOI:10.1002/chem.200401058http://doi.org/10.1002/chem.200401058.
Sun, Y.; Zhang, Y.; Ran, Y.; Shi, L.; Zhang, Q.; Chen, J.; Li, Q.; Guo, Y.; Liu, Y.Methoxylation of quinoidal bithiophene as a single regioisomer building block for narrow-bandgap conjugated polymers and high-performance organic field-effect transistors.J. Mater. Chem. C,2020,815168-15174.DOI:10.1039/D0TC02199Ghttp://doi.org/10.1039/D0TC02199G.
Zhao, X.; Cai, H.; Deng, Y.; Jiang, Y.; Wang, Z.; Shi, Y.; Han, Y.; Geng, Y.Low-band gap conjugated polymers with strong absorption in the second near-infrared region based on diketopyrrolopyrrole-containing quinoidal units.Macromolecules,2021,543498-3506.DOI:10.1021/acs.macromol.1c00124http://doi.org/10.1021/acs.macromol.1c00124.
Lu, S.; Drees, M.; Yao, Y.; Boudinet, D.; Yan, H.; Pan, H.; Wang, J.; Li, Y.; Usta, H.; Facchetti, A..3,6-Dithiophen-2-yl-diketopyrrolo[3,2-b]pyrrole (isoDPPT) as an acceptor building block for organic opto-electronics.Macromolecules,2013.390646(3895):DOI:10.1021/ma400568bhttp://doi.org/10.1021/ma400568b.
Li, B.; Zou, X.; Xiong, M.; Li, Q.; Kang, X.; Mu, Y.; Wang, J.; Pei, J.; Yang, C.; Lan, Z.; Wan, X.Thiazoloisoindigo-based ambipolar polymers for excellent balanced hole and electron mobility.Mater. Chem. Front.,2022,63369-3381.DOI:10.1039/D2QM00612Jhttp://doi.org/10.1039/D2QM00612J.
Zhang, W.; Mao, Z.; Chen, Z.; Huang, J.; Wei, C.; Gao, D.; Lin, Z.; Li, H.; Wang, L.; Yu, G.Ambipolar tetrafluorodiphenylethene-based donor-acceptor copolymers: synthesis, properties, backbone conformation and fluorine-induced conformational locks.Polym. Chem.,2017,8879-889.DOI:10.1039/C6PY01922Fhttp://doi.org/10.1039/C6PY01922F.
Yu, S.; Peng, A.; Zhang, S.; Huang, H.Noncovalent conformational locks in organic semiconductors.Sci. China Chem.,2018,611359-1367.DOI:10.1007/s11426-018-9315-2http://doi.org/10.1007/s11426-018-9315-2.
Yang, L.; Gu, W.; Yang, Y.; Hong, L.; Zhang, X.; Xiao, Y.; Wu, X.; Peng, A.; Huang, H.A highly planar nonfullerene acceptor with multiple noncovalent conformational locks for efficient organic solar cells.Small Methods,2018,21700330DOI:10.1002/smtd.201700330http://doi.org/10.1002/smtd.201700330.
Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J.Organic and polymeric semiconductors enhanced by noncovalent conformational locks.Chem. Rev.,2017,11710291-10318.DOI:10.1021/acs.chemrev.7b00084http://doi.org/10.1021/acs.chemrev.7b00084.
.25th Anniversary article: progress in chemistry and applications of functional indigos fororganic electronics..Adv. Mater.,2013,256783-6800.DOI:10.1002/adma.201302652http://doi.org/10.1002/adma.201302652.
Kolaczkowski, M. A.; Liu, Y.Functional organic semiconductors based on bay-annulated indigo (BAI).Chem. Rec.,2019,191062-1077.DOI:10.1002/tcr.201800159http://doi.org/10.1002/tcr.201800159.
Seixas de Melo, J.; Rondão, R.; Burrows, H.; Melo, M.; Navaratnam, S.; Edge, R.; Voss, G.Photophysics of an indigo derivative (keto and leuco structures) with singular properties.J. Phys. Chem. A,2006,11013653-13661.DOI:10.1021/jp057451whttp://doi.org/10.1021/jp057451w.
He, B.; Pun, A. B.; Zherebetskyy, D.; Liu, Y.; Liu, F.; Klivansky, L. M.; McGough, A. M.; Zhang, B. A.; Lo, K.; Russell, T. P.New form of an old natural dye: bay-annulated indigo (BAI) as an excellent electron accepting unit for high performance organic semiconductors.J. Am. Chem. Soc.,2014,13615093-15101.DOI:10.1021/ja508807mhttp://doi.org/10.1021/ja508807m.
Kolaczkowski, M. A.; He, B.; Liu, Y.Stepwise bay annulation of indigo for the synthesis of desymmetrized electron acceptors and donor-acceptor constructs.Org. lett.,2016,185224-5227.DOI:10.1021/acs.orglett.6b02504http://doi.org/10.1021/acs.orglett.6b02504.
Yang, J.; Jiang, Y.; Tu, Z.; Zhao, Z.; Chen, J.; Yi, Z.; Li, Y.; Wang, S.; Yi, Y.; Guo, Y.; Liu, Y.High-performance ambipolar polymers based on electron-withdrawing group substituted bay-annulated indigo.Adv. Funct. Mater.,2019,291804839DOI:10.1002/adfm.201804839http://doi.org/10.1002/adfm.201804839.
Yang, J.; Yang, X.; Chen, J.; Zhao, Z.; Jiang, Y.; Zhu, M.; Li, J.; Chi, K.; Wang, S.; Guo, Y.; Liu, Y.A multihalogenation strategy for ambipolar transistors and high-gain inverters with good noise margin.Sci. Bull.,2022,671849-1853.DOI:10.1016/j.scib.2022.08.032http://doi.org/10.1016/j.scib.2022.08.032.
Fallon, K. J.; Wijeyasinghe, N.; Yaacobi-Gross, N.; Ashraf, R. S.; Freeman, D. M.; Palgrave, R. G.; Al-Hashimi, M.; Marks, T. J.; McCulloch, I.; Anthopoulos, T. D.A nature-inspired conjugated polymer for high performance transistors and solar cells.Macromolecules,2015,485148-5154.DOI:10.1021/acs.macromol.5b00542http://doi.org/10.1021/acs.macromol.5b00542.
Fallon, K. J.; Wijeyasinghe, N.; Manley, E. F.; Dimitrov, S. D.; Yousaf, S. A.; Ashraf, R. S.; Duffy, W.; Guilbert, A. A.; Freeman, D. M.; Al-Hashimi, M.Indolo-naphthyridine-6,13-dione thiophene building block for conjugated polymer electronics: molecular origin of ultrahigh n-type mobility.Chem. Mater.,2016,288366-8378.DOI:10.1021/acs.chemmater.6b03671http://doi.org/10.1021/acs.chemmater.6b03671.
Park, H.; Kim, Y.; Kim, D.; Lee, S.; Kim, F. S.; Kim, B. J.Disintegrable n-type electroactive terpolymers for high-performance, transient organic electronics.Adv. Funct. Mater.,2022,322106977DOI:10.1002/adfm.202106977http://doi.org/10.1002/adfm.202106977.
Tran, H.; Nikzad, S.; Chiong, J. A.; Schuster, N. J.; Peña-Alcántara, A. E.; Feig, V. R.; Zheng, Y. Q.; Bao, Z.Modular synthesis of fully degradable imine-based semiconducting p-type and n-type polymers.Chem. Mater.,2021,337465-7474.DOI:10.1021/acs.chemmater.1c02258http://doi.org/10.1021/acs.chemmater.1c02258.
Liao, X.; Zhang, Z.; Liao, Q.; Liang, Q.; Ou, Y.; Xu, M.; Li, M.; Zhang, G.; Zhang, Y.Flexible and printable paper-based strain sensors for wearable and large-area green electronics.Nanoscale,2016,813025-13032.DOI:10.1039/C6NR02172Ghttp://doi.org/10.1039/C6NR02172G.
Lei, T.; Guan, M.; Liu, J.; Lin, H. C.; Pfattner, R.; Shaw, L.; McGuire, A. F.; Huang, T. C.; Shao, L.; Cheng, K. T.; Tok, J. B.; Bao, Z.Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.Proc. Natl. Acad. Sci. U. S. A.,2017,1145107-5112.DOI:10.1073/pnas.1701478114http://doi.org/10.1073/pnas.1701478114.
Tran, H.; Feig, V. R.; Liu, K.; Wu, H. C.; Chen, R.; Xu, J.; Deisseroth, K.; Bao, Z.Stretchable and fully degradable semiconductors for transient electronics.ACS Cent. Sci.,2019,51884-1891.DOI:10.1021/acscentsci.9b00850http://doi.org/10.1021/acscentsci.9b00850.
Lei, T.; Dou, J.; Ma, Z.; Yao, C.; Liu, C.; Wang, J.; Pei, J.Ambipolar polymer field-effect transistors based on fluorinated isoindigo: high performance and improved ambient stability.J. Am. Chem. Soc.,2012,13420025-20028.DOI:10.1021/ja310283fhttp://doi.org/10.1021/ja310283f.
Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y.Record high electron mobility of 6.3 cm2V−1s−1achieved for polymer semiconductors using a new building block.Adv. Mater.,2014,262636-2642.DOI:10.1002/adma.201305981http://doi.org/10.1002/adma.201305981.
Chen, H.; Guo, Y.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H.; Liu, Y.Highlyπ-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors.Adv. Mater.,2012,244618-4622.DOI:10.1002/adma.201201318http://doi.org/10.1002/adma.201201318.
Ma, B.; Shi, Q.; Ma, X.; Li, Y.; Chen, H.; Wen, K.; Zhao, R.; Zhang, F.; Lin, Y.; Wang, Z.; Huang, H.Defect-free alternating conjugated polymers enabled by room-temperature stille polymerization.Angew. Chem. Int. Ed.,2022,61e202115969DOI:10.1002/anie.202115969http://doi.org/10.1002/anie.202115969.
Ni, Z.; Wang, H.; Dong, H.; Dang, Y.; Zhao, Q.; Zhang, X.; Hu, W.Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems.Nat. Chem.,2019,11271-277.DOI:10.1038/s41557-018-0200-yhttp://doi.org/10.1038/s41557-018-0200-y.
Zhang, G.; Dai, Y.; Liu, Y.; Liu, J.; Lu, H.; Qiu, L.; Cho, K..Facile green synthesis of isoindigo-based conjugated polymers using aldol polycondensation.Polym. Chem.,2017,83448-3456.DOI:10.1039/c7py00484bhttp://doi.org/10.1039/c7py00484b.
Wang, G. J. N.; Molina-Lopez, F.; Zhang, H.; Xu, J.; Wu, H. C.; Lopez, J.; Shaw, L.; Mun, J.; Zhang, Q.; Wang, S.; Ehrlich, A.; Bao, Z.Nonhalogenated solvent processable and printable high-performance polymer semiconductor enabled by isomeric nonconjugated flexible linkers.Macromolecules,2018,514976-4985.DOI:10.1021/acs.macromol.8b00971http://doi.org/10.1021/acs.macromol.8b00971.
Wang, G. J. N.; Zheng, Y.; Zhang, S.; Kang, J.; Wu, H. C.; Gasperini, A.; Zhang, H.; Gu, X.; Bao, Z.Tuning the cross-linker crystallinity of a stretchable polymer semiconductor.Chem. Mater.,2018,316465-6475.DOI:10.1021/acs.chemmater.8b04314http://doi.org/10.1021/acs.chemmater.8b04314.
Chen, Z.; Zhang, W.; Wei, C.; Zhou, Y.; Pan, Y.; Wei, X.; Huang, J.; Wang, L.; Yu, G.High-electron mobility tetrafluoroethylene-containing semiconducting polymers.Chem. Mater.,2020,322330-2340.DOI:10.1021/acs.chemmater.9b04425http://doi.org/10.1021/acs.chemmater.9b04425.
Li, M.; An, C.; Marszalek, T.; Baumgarten, M.; Yan, H.; Müllen, K.; Pisula, W.Controlling the surface organization of conjugated donor-acceptor polymers by their aggregation in solution.Adv. Mater.,2016,289430-9438.DOI:10.1002/adma.201602660http://doi.org/10.1002/adma.201602660.
Zheng, Y.; Yao, Z.; Lei, T.; Dou, J.; Yang, C.; Zou, L.; Meng, X.; Ma, W.; Wang, J.; Pei, J.Unraveling the solution-state supramolecular structures of donor-acceptor polymers and their influence on solid-state morphology and charge-transport properties.Adv. Mater.,2017,291701072DOI:10.1002/adma.201701072http://doi.org/10.1002/adma.201701072.
Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A.A general relationship between disorder, aggregation and charge transport in conjugated polymers.Nat. Mater.,2013,121038-1044.DOI:10.1038/nmat3722http://doi.org/10.1038/nmat3722.
Li, M.; Balawi, A. H.; Leenaers, P. J.; Ning, L.; Heintges, G. H. L.; Marszalek, T.; Pisula, W.; Wienk, M. M.; Meskers, S. C. J.; Yi, Y.; Laquai, F.; Janssen, R. A. J.Impact of polymorphism on the optoelectronic properties of a low-bandgap semiconducting polymer.Nat. Commun.,2019,102867DOI:10.1038/s41467-019-10519-zhttp://doi.org/10.1038/s41467-019-10519-z.
Yao, Z. F.; Wang, Z. Y.; Wu, H. T.; Lu, Y.; Li, Q. Y.; Zou, L.; Wang, J. Y.; Pei, J.Ordered solid-state microstructures of conjugated polymers arising from solution-state aggregation.Angew. Chem. Int. Ed.,2020,5917467-17471.DOI:10.1002/anie.202007589http://doi.org/10.1002/anie.202007589.
Wu, H. T.; Yao, Z. F.; Xu, Z.; Kong, H. K.; Wang, X. Y.; Li, Q. Y.; Wang, J. Y.; Pei, J.Controlling solution-state aggregation and solid-state microstructures of conjugated polymers by tuning backbone conformation.Macromol. Rapid Commun.,2022,432200069DOI:10.1002/marc.202200069http://doi.org/10.1002/marc.202200069.
Ding, L.; Wang, Z. Y.; Yao, Z. F.; Liu, N. F.; Wang, X. Y.; Zhou, Y. Y.; Luo, L.; Shen, Z.; Wang, J. Y.; Pei, J.Controllable transformation between the kinetically and thermodynamically stable aggregates in a solution of conjugated polymers.Macromolecules,2021,545815-5824.DOI:10.1021/acs.macromol.1c00391http://doi.org/10.1021/acs.macromol.1c00391.
Zheng, Y. Q.; Yao, Z. F.; Dou, J. H.; Wang, Y.; Ma, W.; Zou, L.; Nikzad, S.; Li, Q. Y.; Sun, Z. H.; Yu, Z. A.; Zhang, W. B.; Wang, J. Y.; Pei, J.Influence of solution-state aggregation on conjugated polymer crystallization in thin films and microwire crystals.Giant,2021,7100064DOI:10.1016/j.giant.2021.100064http://doi.org/10.1016/j.giant.2021.100064.
Wang, Z.; Gao, M.; He, C.; Shi, W.; Deng, Y.; Han, Y.; Ye, L.; Geng, Y.Unraveling the molar mass dependence of shearing-induced aggregation structure of a high-mobility polymer semiconductor.Adv. Mater.,2022,342108255DOI:10.1002/adma.202108255http://doi.org/10.1002/adma.202108255.
Wang, Z.; Song, X.; Jiang, Y.; Zhang, J.; Yu, X.; Deng, Y.; Han, Y.; Hu, W.; Geng, Y.A simple structure conjugated polymer for high mobility organic thin film transistors processed from nonchlorinated solvent.Adv. Sci.,2019,61902412DOI:10.1002/advs.201902412http://doi.org/10.1002/advs.201902412.
Xu, C.; Wang, Z.; Dong, W.; He, C.; Shi, Y.; Bai, J.; Zhang, C.; Gao, M.; Jiang, H.; Deng, Y.; Ye, L.; Han, Y.; Geng, Y.Aggregation behavior and electrical performance control of isoindigo-based conjugated polymersviacarbosilane side chain engineering.Macromolecules,2022,5510385-10394.DOI:10.1021/acs.macromol.2c01770http://doi.org/10.1021/acs.macromol.2c01770.
Wang, Z. Y.; Di Virgilio, L.; Yao, Z. F.; Yu, Z. D.; Wang, X. Y.; Zhou, Y. Y.; Li, Q. Y.; Lu, Y.; Zou, L.; Wang, H. I.; Wang, X. Y.; Wang, J. Y.; Pei, J.Correlating charge transport properties of conjugated polymers in solution aggregates and thin-film aggregates.Angew. Chem. Int. Ed.,2021,6020483-20488.DOI:10.1002/anie.202107395http://doi.org/10.1002/anie.202107395.
Lei, Y.; Deng, P.; Lin, M.; Zheng, X.; Zhu, F.; Ong, B. S.Enhancing crystalline structural orders of polymer semiconductors for efficient charge transportviapolymer-matrix-mediated molecular self-assembly.Adv. Mater.,2016,286687-6694.DOI:10.1002/adma.201600580http://doi.org/10.1002/adma.201600580.
Um, H. A.; Lee, D. H.; Heo, D. U.; Yang, D. S.; Shin, J.; Baik, H.; Cho, M. J.; Choi, D. H.High aspect ratio conjugated polymer nanowires for high performance field-effect transistors and phototransistors.ACS Nano,2015,95264-5274.DOI:10.1021/acsnano.5b01982http://doi.org/10.1021/acsnano.5b01982.
Xiao, C.; Zhao, G.; Zhang, A.; Jiang, W.; Janssen, R. A. J.; Li, W.; Hu, W.; Wang, Z.High performance polymer nanowire field-effect transistors with distinct molecular orientations.Adv. Mater.,2015,274963-4968.DOI:10.1002/adma.201502617http://doi.org/10.1002/adma.201502617.
Yao, Z. F.; Zheng, Y. Q.; Dou, J. H.; Lu, Y.; Ding, Y. F.; Ding, L.; Wang, J. Y.; Pei, J.Approaching crystal structure and high electron mobility in conjugated polymer crystals.Adv. Mater.,2021,33e2006794DOI:10.1002/adma.202006794http://doi.org/10.1002/adma.202006794.
Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer.Nat. Commun.,2013,42238DOI:10.1038/ncomms3238http://doi.org/10.1038/ncomms3238.
Zhang, W.; Smith, J.; Watkins, S. E.; Gysel, R.; McGehee, M.; Salleo, A.; Kirkpatrick, J.; Ashraf, S.; Anthopoulos, T.; Heeney, M.; McCulloch, I.Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors.J. Am. Chem. Soc.,2010,13211437-11439.DOI:10.1021/ja1049324http://doi.org/10.1021/ja1049324.
Venkateshvaran, D.; Nikolka, M.; Sadhanala, A.; Lemaur, V.; Zelazny, M.; Kepa, M.; Hurhangee, M.; Kronemeijer, A. J.; Pecunia, V.; Nasrallah, I.; Romanov, I.; Broch, K.; McCulloch, I.; Emin, D.; Olivier, Y.; Cornil, J.; Beljonne, D.; Sirringhaus, H.Approaching disorder-free transport in high-mobility conjugated polymers.Nature,2014,515384-388.DOI:10.1038/nature13854http://doi.org/10.1038/nature13854.
0
Views
23
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution