1.Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
wangwenqiang@ecust.edu.cn (W.Q.W.)
gengchaow@ecust.edu.cn (G.C.W.)
Scan for full text
Ya-Fang Tan, Wen-Qiang Wang, Ling Gao, et al. Emulsion Binders with Multiple Crosslinked Structures for High-Performance Lithium-Sulfur Batteries. [J]. Chinese Journal of Polymer Science 41(7):1027-1036(2023)
Ya-Fang Tan, Wen-Qiang Wang, Ling Gao, et al. Emulsion Binders with Multiple Crosslinked Structures for High-Performance Lithium-Sulfur Batteries. [J]. Chinese Journal of Polymer Science 41(7):1027-1036(2023) DOI: 10.1007/s10118-023-2915-5.
A waterborne emulsion binder with multiple crosslinked structure was prepared by emulsion polymerization, which has rich polar functional groups, high adhesion and excellent resilience. Therefore, the Li-S battery prepared by the binder had high initial capacity and excellent stability.
Lithium-sulfur batteries suffer a lot from the huge volume change and the shuttle effect. However, conventional poly(vinylidene fluoride) binder has intrinsic drawbacks, such as low ion conductivity, weak polysulfide-trapping ability, poor mechanical properties, and requirement of organic solvents. Herein, we designed a functional emulsion binder with multi crosslinked structure. Such a structure was formed by the covalent crosslinking within and between the emulsion particles, which facilitates the adapting of the volume expansion of sulfur cathode, thereby ensuring the integrity of electrodes. Besides, the polar functional groups endow the binder with strong chemisorption of lithium polysulfide and fast lithium-ion migration ability. Thus, the assembled lithium-sulfur battery displayed a high initial discharge capacity of 1246 mAh·g,−1, at 0.1 C, and a capacity fading rate of 0.04% per cycle after 500 cycles at 0.5 C. Even at a high sulfur mass loading of 4.8 mg·cm,–2, a high capacity of 956 mAh·g,−1, was still obtained at 0.2 C.
Acrylate copolymerInternal and external crosslinkingEmulsion bindersLithium-sulfur batteries
Mauler,L.;Duffner,F.;Zeier,W.G.;Leker,J.Batterycostforecasting:areviewofmethodsandresultswithanoutlookto2050.Energ. Environ. Sci.2021,14,4712−4739..
Ma,L.;Lv,Y.;Wu,J.;Chen,Y.;Jin,Z.Recentadvancesinemergingnon-lithiummetal-sulfurbatteries:areview.Adv. Energy Mater.2021,11,2100770..
Thackeray,M.M.;Wolverton,C.;Isaacs,E.D.Electricalenergystoragefortransportation—approachingthelimitsof,andgoingbeyond,lithium-ionbatteries.Energ. Environ. Sci.2012,5,7854−7863..
Zou,F.;Manthiram,A.Areviewofthedesignofadvancedbindersforhigh-performancebatteries.Adv. Energy Mater.2020,10,2002508..
Hagen,M.;Hanselmann,D.;Ahlbrecht,K.;Maça,R.;Gerber,D.;Tübke,J.Lithium-sulfurcells:thegapbetweenthestate-of-the-artandtherequirementsforhighenergybatterycells.Adv. Energy Mater.2015,5,1401986..
Dörfler,S.;Althues,H.;Härtel,P.;Abendroth,T.;Schumm,B.;Kaskel,S.Challengesandkeyparametersoflithium-sulfurbatteriesonpouchcelllevel.Joule2020,4,539−554..
Bruce,P.G.;Freunberger,S.A.;Hardwick,L.J.;Tarascon,J.M.Li-O2andLi-Sbatterieswithhighenergystorage.Nat. Mater.2012,11,19−29..
Manthiram,A.;Fu,Y.;Chung,S.H.;Zu,C.;Su,Y.S.Rechargeablelithium-sulfurbatteries.Chem. Rev.2014,114,11751−11787..
Chen,Y.;Wang,T.;Tian,H.;Su,D.;Zhang,Q.;Wang,G.Advancesinlithium-sulfurbatteries:fromacademicresearchtocommercialviability.Adv. Mater.2021,33,2003666..
Ng,S.F.;Lau,M.Y.L.;Ong,W.J.Lithium-sulfurbatterycathodedesign:tailoringmetal-basednanostructuresforrobustpolysulfideadsorptionandcatalyticconversion.Adv. Mater.2021,33,2008654..
Yang,L.W.;Li,Q.;Wang,Y.;Chen,Y.X.;Guo,X.D.;Wu,Z.G.;Chen,G.;Zhong,B.H.;Xiang,W.;Zhong,Y.J.Areviewofcathodematerialsinlithium-sulfurbatteries.Ionics2020,26,5299−5318..
Li,T.;Bai,X.;Gulzar,U.;Bai,Y.J.;Capiglia,C.;Deng,W.;Zhou,X.F.;Liu,Z.P.;Feng,Z.F.;Zaccaria,R.P.Acomprehensiveunderstandingoflithium-sulfurbatterytechnology.Adv. Funct. Mater.2019,29,1901730..
Fang,R.;Zhao,S.;Sun,Z.;Wang,D.W.;Cheng,H.M.;Li,F.Morereliablelithium-sulfurbatteries:status,solutionsandprospects.Adv. Mater.2017,29,1606823..
Zhao,M.;Li,B.Q.;Peng,H.J.;Yuan,H.;Wei,J.Y.;Huang,J.Q.Lithium-sulfurbatteriesunderleanelectrolyteconditions:challengesandopportunities.Angew. Chem. Int. Ed.2020,59,12636−12652..
Liu,J.;Zhang,Q.;Sun,Y.K.RecentprogressofadvancedbindersforLi-Sbatteries.J. Power Sources2018,396,19−32..
Chu,H.;Noh,H.;Kim,Y.J.;Yuk,S.;Lee,J.H.;Lee,J.;Kwack,H.;Kim,Y.;Yang,D.K.;Kim,H.T.Achievingthree-dimensionallithiumsulfidegrowthinlithium-sulfurbatteriesusinghigh-donor-numberanions.Nat. Commun.2019,10,188..
Zhao,F.L.;Li,Y.;Feng,W.Recentadvancesinapplyingvulcanization/inversevulcanizationmethodstoachievehigh-performancesulfur-containingpolymercathodematerialsforLi-Sbatteries.Small Methods2018,2,1800156..
Zhang,Z.;Kong,L.L.;Liu,S.;Li,G.R.;Gao,X.P.Ahigh-efficiencysulfur/carboncompositebasedon3Dgraphenenanosheet@carbonnanotubematrixascathodeforlithium-sulfurbattery.Adv. Energy Mater.2017,7,1602543..
Gao,Y.;Guo,Q.;Zhang,Q.;Cui,Y.;Zheng,Z.FibrousmaterialsforflexibleLi-Sbattery.Adv. Energy Mater.2021,11,2002580..
Huang,L.;Li,J.J.;Liu,B.;Li,Y.H.;Shen,S.H.;Deng,S.J.;Lu,C.W.;Zhang,W.K.;Xia,Y.;Pan,G.X.;Wang,X.L.;Xiong,Q.Q.;Xia,X.H.;Tu,J.P.Electrodedesignforlithium-sulfurbatteries:problemsandsolutions.Adv. Funct. Mater.2020,30,1910375..
Pei,F.;Lin,L.;Ou,D.;Zheng,Z.;Mo,S.;Fang,X.;Zheng,N.Self-supportingsulfurcathodesenabledbytwo-dimensionalcarbonyolk-shellnanosheetsforhigh-energy-densitylithium-sulfurbatteries.Nat. Commun.2017,8,482..
Wei,Z.;Ren,Y.;Sokolowski,J.;Zhu,X.;Wu,G.Mechanisticunderstandingoftheroleseparatorsplayinginadvancedlithium-sulfurbatteries.Infomat2020,2,483−508..
Hao,Z.;Zhao,Q.;Tang,J.;Zhang,Q.;Liu,J.;Jin,Y.;Wang,H.Functionalseparatorstowardsthesuppressionoflithiumdendritesforrechargeablehigh-energybatteries.Mater. Horiz.2021,8,12−32..
Wang,C.;Liang,J.;Zhao,Y.;Zheng,M.;Li,X.;Sun,X.All-solid-statelithiumbatteriesenabledbysulfideelectrolytes:fromfundamentalresearchtopracticalengineeringdesign.Energ. Environ. Sci.2021,14,2577−2619..
Lu,H.;Zhu,Y.;Yuan,Y.;He,L.;Zheng,B.;Zheng,X.;Liu,C.;Du,H.LiFSIasafunctionaladditiveofthefluorinatedelectrolyteforrechargeableLi-Sbatteries.J. Mater. Sci-Mater. El.2021,32,5898−5906..
Zhang,S.S.Liquidelectrolytelithium/sulfurbattery:fundamentalchemistry,problems,andsolutions.J. Power Sources2013,231,153−162..
Yuan,H.;Huang,J.Q.;Peng,H.J.;Titirici,M.M.;Xiang,R.;Chen,R.;Liu,Q.;Zhang,Q.Areviewoffunctionalbindersinlithium-sulfurbatteries.Adv. Energy Mater.2018,8,1802107..
Guo,Q.;Zheng,Z.RationaldesignofbindersforstableLi-SandNa-Sbatteries.Adv. Funct. Mater.2020,30,1907931..
Wang,H.;Zheng,P.;Yi,H.;Wang,Y.;Yang,Z.;Lei,Z.;Chen,Y.;Deng,Y.;Wang,C.;Yang,Y.Low-costandenvironmentallyfriendlybiopolymerbindersforLi-Sbatteries.Macromolecules2020,53,8539−8547..
Liu,B.;Fang,R.;Xie,D.;Zhang,W.;Huang,H.;Xia,Y.;Wang,X.;Xia,X.;Tu,J.Revisitingscientificissuesforindustrialapplicationsoflithium-sulfurbatteries.Energy Environ. Mater.2018,1,196−208..
Li,J.T.;Wu,Z.Y.;Lu,Y.Q.;Zhou,Y.;Huang,Q.S.;Huang,L.;Sun,S.G.Watersolublebinder,anelectrochemicalperformanceboosterforelectrodematerialswithhighenergydensity.Adv. Energy Mater.2017,7,203−211..
Feng,K.;Li,M.;Liu,W.;Kashkooli,A.G.;Xiao,X.;Cai,M.;Chen,Z.Silicon-basedanodesforlithium-ionbatteries:fromfundamentalstopracticalapplications.Small2018,14,1702737..
Hwang,J.Y.;Myung,S.T.;Sun,Y.K.Sodium-ionbatteries:presentandfuture.Chem. Soc. Rev.2017,46,3529−3614..
Zhang,Z.A.;Bao,W.Z.;Lu,H.;Jia,M.;Xie,K.Y.;Lai,Y.Q.;Li,J.Water-Solublepolyacrylicacidasabinderforsulfurcathodeinlithium-sulfurbattery.ECS Electrochem. Lett.2012,1,A34−A37..
Zhang,S.S.;Tran,D.T.;Zhang,Z.Poly(acrylicacid)gelasapolysulphideblockinglayerforhigh-performancelithium/sulphurbattery.J. Mater. Chem. A.2014,2,18288−18292..
Waluś,S.;Robba,A.;Bouchet,R.;Barchasz,C.;Alloin,F.InfluenceofthebinderandpreparationprocessonthepositiveelectrodeelectrochemicalresponseandLi/Ssystemperformances.Electrochim. Acta2016,210,492−501..
Hu,J.K.;Yuan,H.;Yang,S.J.;Lu,Y.;Sun,S.;Liu,J.;Liao,Y.L.;Li,S.;Zhao,C.Z.;Huang,J.Q.Dryelectrodetechnologyforscalableandflexiblehigh-energysulfurcathodesinall-solid-statelithium-sulfurbatteries.J. Energy Chem.2022,71,612−618..
Salini,P.S.;Gopinadh,S.V.;Kalpakasseri,A.;John,B.;ThelakkattuDevassy,M.Towardgreenerandsustainableli-ioncells:anoverviewofaqueous-basedbindersystems.ACS Sustain. Chem. Eng.2020,8,4003−4025..
Kim,N.I.;Lee,C.B.;Seo,J.M.;Lee,W.J.;Roh,Y.B.Correlationbetweenpositive-electrodemorphologyandsulfurutilizationinlithium-sulfurbattery.J. Power Sources2004,132,209−212..
Wang,H.;Sencadas,V.;Gao,G.;Gao,H.;Du,A.;Liu,H.;Guo,Z.Strongaffinityofpolysulfideintermediatestomulti-functionalbinderforpracticalapplicationinlithium-sulfurbatteries.Nano Energy2016,26,722−728..
Schneider,H.;Garsuch,A.;Panchenko,A.;Gronwald,O.;Janssen,N.;Novak,P.Influenceofdifferentelectrodecompositionsandbindermaterialsontheperformanceoflithium-sulfurbatteries.J. Power Sources2012,205,420−425..
Zhou,W.;Chen,H.;Yu,Y.;Wang,D.;Cui,Z.;DiSalvo,F.J.;Abruna,H.D.Amylopectinwrappedgrapheneoxide/sulfurforimprovedcyclabilityoflithium-sulfurbattery.ACS Nano2013,7,8801−8808..
Yang,Z.;Li,R.;Deng,Z.Polyelectrolytebinderforsulfurcathodetoimprovethecycleperformanceanddischargepropertyoflithium-sulfurbattery.ACS Appl. Mater. Interfaces2018,10,13519−13527..
Lovell,P.A.;Schork,F.J.Fundamentalsofemulsionpolymerization.Biomacromolecules2020,21,4396−4441..
Jin,B.Y.;Li,Y.;Qian,J.;Zhan,X.L.;Zhang,Q.H.Environmentallyfriendlybindersforlithium-sulfurbatteries.Chemelectrochem2020,7,4158−4176..
Zetterlund,P.B.;Thickett,S.C.;Perrier,S.;Bourgeat-Lami,E.;Lansalot,M.Controlled/livingradicalpolymerizationindispersedsystems:anupdate.Chem. Rev.2015,115,9745−9800..
Koukiotis,C.;Sideridou,I.D.SynthesisandcharacterizationoflatexesbasedoncopolymersBA\MMA\DAAMandBA\MMA\VEOVA-10\DAAMandthecorresponding1Kcrosslinkablebinderusingtheadipicaciddihydrazideascrosslinkingagent.Prog. Org. Coat.2010,69,504−509..
Butler,L.N.;Fellows,C.M.;Gilbert,R.G.Effectofsurfactantsusedforbindersynthesisonthepropertiesoflatexpaints.Prog. Org. Coat.2005,53,112−118..
Rao,M.M.;Song,X.Y.;Liao,H.G.;Cairns,E.J.Carbonnanofiber-sulfurcompositecathodematerialswithdifferentbindersforsecondaryLi/Scells.Electrochim. Acta2012,65,228−233..
Bhattacharya,P.;Nandasiri,M.I.;Lv,D.;Schwarz,A.M.;Darsell,J.T.;Henderson,W.A.;Tomalia,D.A.;Liu,J.;Zhang,J.G.;Xiao,J.Polyamidoaminedendrimer-basedbindersforhigh-loadinglithium-sulfurbatterycathodes.Nano Energy2016,19,176−186..
Lacey,M.J.;Jeschull,F.;Edström,K.;Brandell,D.Functional,water-solublebindersforimprovedcapacityandstabilityoflithium-sulfurbatteries.J. Power Sources2014,264,8−14..
Xu,N.;Qian,T.;Liu,X.;Liu,J.;Chen,Y.;Yan,C.Greatlysuppressedshuttleeffectforimprovedlithiumsulfurbatteryperformancethroughshortchainintermediates.Nano Lett.2017,17,538−543..
Huang,Y.;Shaibani,M.;Gamot,T.D.;Wang,M.;Jovanović,P.;DilushaCooray,M.C.;Mirshekarloo,M.S.;Mulder,R.J.;Medhekar,N.V.;Hill,M.R.;Majumder,M.Asaccharide-basedbinderforefficientpolysulfideregulationsinLi-Sbatteries.Nat. Commun.2021,12,5375..
Ling,M.;Zhang,L.;Zheng,T.;Feng,J.;Guo,J.;Mai,L.;Liu,G.Nucleophilicsubstitutionbetweenpolysulfidesandbindersunexpectedlystabilizinglithiumsulfurbattery.Nano Energy2017,38,82−90..
Seh,Z.W.;Sun,Y.;Zhang,Q.;Cui,Y.Designinghigh-energylithium-sulfurbatteries.Chem. Soc. Rev.2016,45,5605−5634..
Chen,X.;Bai,Y.K.;Zhao,C.Z.;Shen,X.;Zhang,Q.LithiumBondsinLithiumBatteries.Angew. Chem. Int. Ed.2020,59,11192−11195..
Zhang,J.;Li,M.;Younus,H.A.;Wang,B.;Weng,Q.;Zhang,Y.;Zhang,S.Anoverviewofthecharacteristicsofadvancedbindersforhigh-performanceLi-Sbatteries.Nano Mater. Sci.2020,3,124−139..
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution