a.School of Materials Science and Engineering, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
b.College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, China
msweiyong@swust.edu.cn (Y.W.)
chensong@scut.edu.cn (S.C.)
Scan for full text
Yong Wei, Yang Mei, Min Wu, et al. Electrically Detaching Behavior and Mechanism of Ionic Conductive Adhesives. [J]. Chinese Journal of Polymer Science 41(7):1142-1154(2023)
Yong Wei, Yang Mei, Min Wu, et al. Electrically Detaching Behavior and Mechanism of Ionic Conductive Adhesives. [J]. Chinese Journal of Polymer Science 41(7):1142-1154(2023) DOI: 10.1007/s10118-023-2913-7.
In this work, the fast electrically detaching behavior (100% detaching efficiency in just 1 min) of epoxy-based ionic conductive adhesives (ICAs) with ultra-high initial bonding strength (>12 MPa) is represented and the electrically detaching mechanism is clarified.
Design of rapidly detachable adhesives with high initial bonding strength is of great significance but it is full of great challenge. Here, we report the fast electrically detaching behavior (100% detaching efficiency in just 1 min under dozens of DC voltage) and high initial bonding strength (,>,12 MPa) of epoxy-based ionic conductive adhesives (ICAs). The epoxy-based ICAs are fabricated by introducing polyethylene glycol dimethyl ether (PEGDE) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]OTF) into epoxy. The combination of PEGDE and [EMIM],OTF enables the free ions to migrate directively in electric field, and the anchoring of PEG chains onto epoxy chains ensures the long-term reliability of ICAs. The investigation on the electrically detaching mechanism suggests that the enrichment and following rapid interfacial electrochemical reactions of [EMIM]OTF lead to formation of metal hydroxide (Me(OH),n,) nanoparticles at the bonding interfaces, thus the strong interactions containing interlocked forces, van de Waals’ forces and hydrogen bonding interactions between ICAs and bonding substrates are destroyed. This work provides a promising direction for detachable adhesives with both high initial bonding strength and high detaching efficiency in short time.
Ionic conductive adhesivesElectrically detaching behaviorEpoxyIonic liquids
Dong,J.T.;Zou,W.K.;Chen,F.;Zhao,Q.Asoftshapememoryreversibledryadhesive.Chinese J. Polym. Sci.2018,36,953−959..
Cui,C.;Liu,W.Recentadvancesinwetadhesives:Adhesionmechanism,designprincipleandapplications.Prog. Polym. Sci.2021,116,101388..
Awaja,F.;Gilbert,M.;Kelly,G.;Fox,B.;Pigram,P.J.Adhesionofpolymers.Prog. Polym. Sci.2009,34,948−968..
Liu,W.;Zhang,C.;Bai,Y.Reversibleadhesivebasedonself-repairbehavior.J. Adhes. Sci. Technol.2021,35,111−132..
Bandl,C.;Kern,W.;Schlögl,S.Adhesivesfor“debonding-on-demand”:triggeredreleasemechanismsandtypicalapplications.Int. J. Adhes. Adhes.2020,99,102585..
Zhang,S.J.;Chen,X.X.;Cui,C.H.;Ma,L.;Zhong,Q.Y.;Shen,K.X.;Yu,J.;Li,Z.;Wu,Y.S.;Zhang,Q.;Cheng,Y.L.;He,L.;Zhang,Y.F.Strong,removable,andphotoluminescenthyperbranchedpolyamide-aminehotmeltadhesive.Chinese J. Polym. Sci.2021,39,1319−1327..
Wang,C.;Li,P.;Zhang,S.;Zhang,G.;Tan,S.;Wu,Y.;Watanabe,M.AzobenzenemoleculartriggercontrollingphasetransitionsofPNIPAminionicliquidsandlight-controlledadhesiveness.Macromolecules2020,53,4901−4907..
Ito,S.;Yamashita,A.;Akiyama,H.;Kihara,H.;Yoshida,M.Azobenzene-based(meth)acrylates:controlledradicalpolymerization,photoresponsivesolid-liquidphasetransitionbehavior,andapplicationtoreworkableadhesives.Macromolecules2018,51,3243−3253..
Asadirad,A.M.;Boutault,S.;Erno,Z.;Branda,N.R.Controllingapolymeradhesiveusinglightandamolecularswitch.J. Am. Chem. Soc.2014,136,3024−3027..
Zhao,R.;Mu,J.;Bai,J.;Zhao,W.;Gong,P.;Chen,L.;Zhang,N.;Shang,X.;Liu,F.;Yan,S.Smartresponsiveazo-copolymerwithphotoliquefactionforswitchableadhesiveapplication.ACS Appl. Mater. Interfaces2022,14,16678−16686..
Zhou,Y.;Chen,M.;Ban,Q.;Zhang,Z.;Shuang,S.;Koynov,K.;Butt,H.J.;Kong,J.;Wu,S.Light-switchablepolymeradhesivebasedonphotoinducedreversiblesolid-to-liquidtransitions.ACS Macro Lett.2019,8,968−972..
Lee,T.H.;Han,G.Y.;Yi,M.B.;Kim,H.J.;Lee,J.H.;Kim,S.Rapidphotoresponsiveswitchablepressure-sensitiveadhesivecontainingazobenzeneforthemini-lightemittingdiodetransferprocess.ACS Appl. Mater. Interfaces2021,13,43364−43373..
Shen,L.;Cheng,J.;Zhang,J.Reworkableadhesives:healableandfastresponseatambientenvironmentbasedonanthracene-basedthiol-enenetworks.Eur. Polym. J.2020,137,109927..
Zhou,Y.;Zhang,C.;Gao,S.;Li,W.;Kai,J.;Wang,Z.Pressure-sensitiveadhesivewithenhancedandphototunableunderwateradhesion.ACS Appl. Mater. Interfaces2021,13,50451−50460..
delPrado,A.;Hohl,D.K.;Balog,S.;deEspinosa,L.M.;Weder,C.Plantoil-basedsupramolecularpolymernetworksandcompositesfordebonding-on-demandadhesives.ACS Appl. Polym. Mater.2019,1,1399−1409..
Kim,M.;Chung,H.Photo-responsivebio-inspiredadhesives:facilecontrolofadhesionstrengthviaaphotocleavablecrosslinker.Polym. Chem.2017,8,6300−6308..
Shafiq,Z.;Cui,J.;Pastor-Pérez,L.;Miguel,V.S.;Gropeanu,R.A.;Serrano,C.;delCampo,A.Bioinspiredunderwaterbondinganddebondingondemand.Angew. Chem. Int. Ed.2012,124,4408−4411..
Wang,Z.;Guo,L.;Xiao,H.;Cong,H.;Wang,S.Areversibleunderwatergluebasedonphoto-andthermo-responsivedynamiccovalentbonds.Mater. Horiz.2020,7,282−288..
Oh,Y.;Park,J.;Park,J.J.;Jeong,S.;Kim,H.Dualcross-linked,polymerthermosets:modulardesign,reversibletransformation,andtriggereddebonding.Chem. Mater.2020,32,6384−6391..
Wang,S.;Liu,Z.;Zhang,L.;Guo,Y.;Song,J.;Lou,J.;Guan,Q.;He,C.;You,Z.Strong,detachable,andself-healingdynamiccrosslinkedhotmeltpolyurethaneadhesive.Mater. Chem. Front.2019,3,1833−1839..
Wu,M.;Liu,Y.;Du,P.;Wang,X.;Yang,B.Polyurethanehotmeltadhesivebasedondiels-alderreaction.Int. J. Adhes. Adhes2020,100,102597..
Schenzel,A.M.;Klein,C.O.;Rist,K.;Moszne,N.;Kowollik,C.B.Reversingadhesion:Atriggeredreleaseself-reportingadhesive.Adv. Sci.2016,3,1500361..
Zhong,K.;Guan,Q.;Sun,W.;Qin,M.;Liu,Z.;Zhang,L.;Xu,J.;Zhang,F.;You,Z.Hot-meltadhesivebasedondynamicoxime-carbamatebonds.Ind. Eng. Chem. Res.2021,60,6925−6931..
Liu,L.;Liu,Z.;Ren,Y.;Zou,X.;Peng,W.;Li,W.;Wu,Y.;Zheng,S.;Wang,X.;Yan,F.Asuperstrongandreversibleioniccrystal-basedadhesiveinspiredbyiceadhesion.Angew. Chem. Int. Ed.2021,60,8948−8959..
Xi,S.;Tian,F.;Wei,G.;He,X.;Shang,Y.;Ju,Y.;Li,W.;Lu,Q.;Wang,Q.Reversibledendritic-crystal-reinforcedpolymergelforbioinspiredadaptableadhesive.Adv. Mater.2021,2103174..
Vattathurvalappil,S.H.;Hassan,S.F.;Haq,M.Healingpotentialofreversibleadhesivesinbondedjoints.Compos. Part B-Eng.2020,200,108360..
Ciardiello,R.;Belingardi,G.;Martorana,B.;Brunella,V.Effectofacceleratedageingcyclesonthephysicalandmechanicalpropertiesofareversiblethermoplasticadhesive.J. Adhesion2018,96,1003−1026..
Salimia,S.;Babraa,T.S.;Dinesb,G.S.;Baskervilleb,S.W.;Hayesa,W.;Greenland,B.W.Compositepolyurethaneadhesivesthatdebond-on-demandbyhysteresisheatinginanoscillatingmagneticfield.Eur. Polym. J.2019,121,109264..
Ciardielloa,R.;Belingardia,G.;Martoranab,B.;Brunella,V.Physicalandmechanicalpropertiesofareversibleadhesiveforautomotiveapplications.Int. J. Adhes. Adhes2019,89,117−128..
Xu,Y.;Lu,W.;Xu,G.;Chou,T.W.Structuralsupercapacitorcomposites:areview.Compos. Sci. Technol.2021,204,108636..
Fan,P.;Liu,H.;Marosz,V.;Samuels,N.T.;Suib,S.L.;Sun,L.;Liao,L.Highperformancecompositepolymerelectrolytesforlithium-ionbatteries.Adv. Funct. Mater.2021,31,2101380..
Kim,H.J.;Paquin,L.;Barney,C.W.;So,S.;Chen,B.;Suo,Z.;Crosby,A.J.;Hayward,R.C.Low-voltagereversibleelectroadhesionofionoelastomerjunctions.Adv. Mater.2020,32,2000600..
Liu,Y.;Wang,P.;Su,X.;Xu,L.;Tian,Z.;Wang,H.;Ji,G.;Huang,J.Electricallyprogrammableinterfacialadhesionforultrastronghydrogelbonding.Adv. Mater.2022,34,2108820..
Asoh,T.A.;Nakamura,M.;Shoji,T.;Tsuboi,Y.;Uyama,H.Electrophoreticadhesionofconductivehydrogels.Macromol. Rapid Commun.2020,41,2000169..
Xin,A.;Zhang,R.;Yu,K.;Wang,Q.Mechanicsofelectrophoresis-inducedreversiblehydrogeladhesion.J. Mech. Phys. Solids2019,125,1−21..
Huang,J.;Liu,Y.;Yang,Y.;Zhou,Z.;Mao,J.;Wu,T.;Liu,J.;Cai,Q.;Peng,C.;Xu,Y.;Zeng,B.;Luo,W.;Chen,G.;Yuan,C.;Dai,L.Electricallyprogrammableadhesivehydrogelsforclimbingrobots.Sci. Robot.2021,6,eabe1858..
Calado,M.S.;Diogo,J.C.F.;Mata,J.L.C.;Caetano,F.J.P.;Visak,Z.P.;Fareleira,J.M.N.A.Electrolyticconductivityoffourimidazolium-basedionicliquids.Int. J. Thermophys.2013,34,1265−1279..
Fuller,J.;Breda,A.C.;Carlin,R.T.Ionicliquid-polymergelelectrolytesfromhydrophilicandhydrophobicionicliquids.J. Electroanal. Chem.1998,459,29−34..
Hameed,N.;Eyckens,D.J.;Long,B.M.;Salim,N.V.;Capricho,C.;Servinis,L.;Souza,M.D.;Perus,M.D.;Varley,R.J.;Henderson,L.C.Rapidcross-linkingofepoxythermosetsinducedbysolvateionicliquids.ACS Appl. Polym. Mater.2020,2,2651−2657..
Liu,D.Y.;Krogstad,D.V.Self-assemblyandphasetransformationofblockcopolymernanostructuresinionicliquid-curedepoxy.Macromolecules2021,54,988−994..
Ye,Y.;Zhang,Y.;Chen,Y.;Han,X.;Jiang,F.Cellulosenanofibrilsenhanced,strong,stretchable,freezing-tolerantionicconductiveorganohydrogelformulti-functionalsensors.Adv. Funct. Mater.2020,30,2003430..
Zhang,Y.;Feng,W.;Zhen,Y.;Zhao,P.;Wang,X.;Li,L.EffectsoflithiumsaltsonPEO-basedsolidpolymerelectrolytesandtheirall-solid-statelithium-ionbatteries.Ionics2022,28,2751−2758..
Li,R.;Si,Y.;Zhu,Z.;Guo,Y.;Zhang,Y.;Pan,N.;Sun,G.;Pan,T.Supercapacitiveiontronicnanofabricsensing.Adv. Mater.2017,29,1700253..
Yoon,E.;Lee,J.;Byun,S.;Kim,D.;Yoon,T.PassivationfailureofAlcurrentcollectorinLiPF6-basedelectrolytesforlithium-ionbatteries.Adv. Funct. Mater.2022,32,2200026..
Xie,J.;Sun,S.Y.;Chen,X.;Hou,L.P.;Li,B.Q.Peng,H.J.Huang,J.Q.;Zhang,X.Q.;Zhang,Q.Fluorinatingthesolidelectrolyteinterphasebyrationalmoleculardesignforpracticallithium-metalbatteries.Angew. Chem. Int. Ed.2022,61,e202204776..
Bortolami,M.;Magboo,F.J.P.;Petrucci,R.;Vetica,F.;Zollo,G.;Feroci,M.ElectrogeneratedBF3fromtetrafluoroborate-basedionicliquids:theoreticalandexperimentalstudiestowardsselectivestyreneoxideisomerization.J. Electrochem. Soc.2021,168,115501..
Ferocia,M.;Chiarottoa,I.;Cipriotia,S.V.;Inesi,A.OnthereactivityandstabilityofelectrogeneratedN-heterocycliccarbeneinparent1-butyl-3-methylimidazoliumtetrafluoroborate:formationanduseofN-heterocycliccarbene-CO2adductaslatentcatalyst.Electrochim. Acta2013,109,95−101..
Xiao,L.;Johnson,K.E.Electrochemistryof1-butyl-3-methyl-1H-immidazoliumtetrafluoroborateionicliquid.J. Electrochem. Soc.2002,19,910−922..
Vos,N.D.;Maton,C.;Stevens,C.V.Electrochemicalstabilityofionicliquids:generalinfluencesanddegradationmechanisms.ChemElectroChem2014,1,1258−1270..
0
Views
8
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution