
a.College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
b.Chongqing University Key Laboratory of Micro/Nano Materials Engineering and Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China
c.Hubei Huifu Nanomaterial Co., LTD., Yichang 443007, China
iswangjie@126.com
Scan for full text
Hong-Da Mao, Ting-Ting Zhang, Zhen-You Guo, et al. A Cross-linked Polyethylene with Recyclability and Mechanical Robustness Enabled by Establishment of Multiple Hydrogen Bonds Network
Hong-Da Mao, Ting-Ting Zhang, Zhen-You Guo, et al. A Cross-linked Polyethylene with Recyclability and Mechanical Robustness Enabled by Establishment of Multiple Hydrogen Bonds Network
H-bonds cross-linked polyethylene based on amide triazole ring-carboxylic acid units was prepared by reactive melt-blending. The multiple H-bonds with intrinsic reversibility can enhance the interchain interactions of polyethylene, imparting it with mechanical robustness, good creep and thermal resistance, and recyclability.
Physical cross-linking by hydrogen-bonds (H-bonds), providing a good combination of application properties of thermosets and processability of thermoplastics, is a potential strategy to resolve the recycling problem of traditional chemically cross-linked polyethylene. However, ureidopyrimidone (UPy), the most widely used H-bonding motif, is unfavorable for large-scale industrial application due to its poor thermal stability. In this work, H-bonds cross-linked polyethylene was successfully prepared by reactive melt blending maleic anhydride grafted polyethylene (PE-,g,-MAH) with 3-amino-1,2,4-triazole (ATA) to form amide triazole ring-carboxylic acid units. Triazole ring can easily generate multiple H-bonds with carboxylic acid and amide. More importantly, these units are more thermal stable than UPy due to the absence of unstable urea group of UPy. The introduction of H-bonds cross-linking leads to an obvious improvement in mechanical properties and creep resistance and a good maintain in thermal properties and recyclability. Furthermore, the reinforcement effect monotonically improves with increasing the density of H-bonds. The obtained good properties are mainly attributed to largely enhanced interchain interactions induced by H-bonds cross-linking and intrinsic reversibility of H-bonds. This work develops a novel way for the simple fabrication of H-bonds cross-linked PE with high performance through reactive melt blending.
Cross-linked polyethyleneHydrogen bondsRecyclability
Stuerzel,M.;Mihan,S.;Muelhaupt,R.Frommultisitepolymerizationcatalysistosustainablematerialsandall-polyolefincomposites.Chem. Rev.2016,116,1398−1433..
Wang,Z.B.;Mao,Y.M.;Li,X.K.;LiY.K.Jarumaneeroj,C.;Thitisak,B.;Tiyapiboonchaiya,P.;Rungswang,W.;HsiaoB.S.Theinfluenceofethylbranchonformationofshish-kebabcrystalsinbimodalpolyethyleneundershearatlowtemperature.Chinese J. Polym. Sci.2021,39,1050−1058..
An,M.F.;Lv,Y.;Xu,H.J.;Wang,B.J.;Wang,Y.X.;Gu,Q.;Wang,Z.B.Effectofgelsolutionconcentrationonthestructureandpropertiesofgel-spunultrahighmolecularweightpolyethylenefibers.Ind. Eng. Chem. Res.2016,55,8357−8363..
Gomez-Estaca,J.;Lopez-de-Dicastillo,C.;Hernandez-Munoz,P.;Catala,R.;Gavara,R.Advancesinantioxidantactivefoodpackaging.Trends Food Sci. Technol.2014,35,42−51..
Ryou,M.H.;Lee,Y.M.;Park,J.K.;Choi,J.W.Mussel-inspiredpolydopamine-treatedpolyethyleneseparatorsforhigh-powerLi-ionbatteries.Adv. Mater.2011,23,3066−3070..
Hubert,L.;David,L.;Seguela,R.;Vigier,G.;Degoulet,C.;Germain,Y.Physicalandmechanicalpropertiesofpolyethyleneforpipesinrelationtomoleculararchitecture.I.Microstructureandcrystallisationkinetics.Polymer2001,42,8425−8434..
Chen,L.;Hou,J.R.;Chen,Y.W.;Wang,H.J.;Duan,Y.X.;Zhang,J.M.Synergisticeffectofconductivecarbonblackandsilicaparticlesforimprovingthepyroresistivepropertiesofhighdensitypolyethylenecomposites.Compos. Part B2019,178,8..
Gibb,B.C.Plasticsareforever.Nat. Chem.2019,11,394−395..
Du,Z.C.;Yang,H.;Luo,X.H.;Xie,Z.X.;Fu,Q.;Gao,X.Q.Theroleofmoldtemperatureonmorphologyandmechanicalpropertiesofpepipeproducedbyrotationalshear.Chinese J. Polym. Sci.2020,38,653−664..
Cao,W.;Wang,K.;Zhang,Q.;Du,R.N.;Fu,Q.Thehierarchystructureandorientationofhighdensitypolyethyleneobtainedviadynamicpackinginjectionmolding.Polymer2006,47,6857−6867..
Thomas,J.;Joseph,B.;Jose,J.P.;Maria,H.J.;Main,P.;Rahman,A.A.;Francis,B.;Ahmad,Z.;Thomas,S.Recentadvancesincross-linkedpolyethylene-basednanocompositesforhighvoltageengineeringapplications:acriticalreview.Ind. Eng. Chem. Res.2019,58,20863−20879..
Khonakdar,H.A.;Morshedian,J.;Wagenknecht,U.;Jafari,S.H.Aninvestigationofchemicalcrosslinkingeffectonpropertiesofhigh-densitypolyethylene.Polymer2003,44,4301−4309..
Chen,Z.;Leatherman,M.D.;Daugulis,O.;Brookhart,M.Nickel-catalyzedcopolymerizationofethyleneandvinyltrialkoxysilanes:catalyticproductionofcross-linkablepolyethyleneandelucidationofthechain-growthmechanism.J. Am. Chem. Soc.2017,139,16013−16022..
Wang,B.;Wang,M.;Xing,Z.;Zeng,H.;Wu,G.Preparationofradiationcrosslinkedfoamsfromlow-densitypolyethylene/ethylene-vinylacetate(LDPE/EVA)copolymerblendwithasupercriticalcarbondioxideapproach.J. Appl. Polym. Sci.2013,127,912−918..
Lehn,J.M.Dynamiccombinatorialchemistryandvirtualcombinatoriallibraries.Chem. Eur. J.1999,5,2455−2463..
Jin,Y.;Yu,C.;Denman,R.J.;Zhang,W.Recentadvancesindynamiccovalentchemistry.Chem. Soc. Rev.2013,42,6634−54..
Hu,Z.;Li,Y.;Xu,X.;Yuan,W.;Yang,L.;Shao,Q.;Guo,Z.;Ding,T.;Huang,Y.Efficientintrinsicself-healingepoxyacrylateformedfromhost-guestchemistry.Polymer2019,164,79−85..
Xia,S.;Song,S.;Gao,G.Robustandflexiblestrainsensorsbasedondualphysicallycross-linkeddoublenetworkhydrogelsformonitoringhuman-motion.Chem. Eng. J.2018,354,817−824..
Wei,H.;Tong,L.;Yu,S.;Zhang,J.;Dong,Y.;Li,X.;Ding,Y.Non-covalentlycrosslinkedanionexchangemembranes:effectofureahydrogen-bondinggroupposition.Polymer2019,179,121654..
Wojtecki,R.J.;Meador,M.A.;Rowan,S.J.Usingthedynamicbondtoaccessmacroscopicallyresponsivestructurallydynamicpolymers.Nat. Mater.2011,10,14−27..
Feng,P.;Wang,W.;Hou,J.;Wang,K.;Cheng,S.;Jiang,K.A3Dcoral-likestructuredNaVPO4F/Cconstructedbyanovelsynthesisrouteashigh-performancecathodematerialforsodium-ionbattery.Chem. Eng. J.2018,353,25−33..
Dong,H.;Xin,Z.;Lu,X.;Lv,Y.EffectofN-substituentsonthesurfacecharacteristicsandhydrogenbondingnetworkofpolybenzoxazines.Polymer2011,52,1092−1101..
Grande,A.M.;Bijleveld,J.C.;Garcia,S.J.;vanderZwaag,S.Acombinedfracturemechanical-rheologicalstudytoseparatethecontributionsofhydrogenbondsanddisulphidelinkagestothehealingofpoly(urea-urethane)networks.Polymer2016,96,26−34..
Sijbesma,R.P.;Beijer,F.H.;Brunsveld,L.;Folmer,B.J.B.;Hirschberg,J.;Lange,R.F.M.;Lowe,J.K.L.;Meijer,E.W.Reversiblepolymersformedfromself-complementarymonomersusingquadruplehydrogenbonding.Science1997,278,1601−1604..
Lin,Y.L.;Li,G.J.Anintermolecularquadruplehydrogen-bondingstrategytofabricateself-healingandhighlydeformablepolyurethanehydrogels.J. Mater. Chem. B2014,2,6878−6885..
Houston,K.R.;Jackson,A.M.S.;Yost,R.W.;Carman,H.S.;Ashby,V.S.Supramolecularengineeringpolyesters:endgroupfunctionalizationofglycolmodifiedPETwithureidopyrimidinone.Polym. Chem.2016,7,6744−6751..
Hympanova,L.;MoridaCunha,M.G.M.C.;Rynkevic,R.;Wachf,R.A.;Olejnik,A.K.;Dankers,P.Y.W.;Arts,B.;Mes,T.;Bosman,A.W.;Albersen,M.;Deprest,J.Experimentalreconstructionofanabdominalwalldefectwithelectrospunpolycaprolactone-ureidopyrimidinonemeshconservescomplianceyetmayhaveinsufficientstrength.J. Mech. Behav. Biomed. Mater.2018,88,431−441..
Zhang,J.P.;Zhang,F.S.Recyclingwastepolyethylenefilmforamphotericsuperabsorbentresinsynthesis.Chem. Eng. J.2018,331,169−176..
Zych,A.;Verdelli,A.;Soliman,M.;Pinalli,R.;Vachon,J.;Dalcanale,E.Physicallycross-linkedpolyethyleneviareactiveextrusion.Polym. Chem.2019,10,1741−1750..
Tellers,J.;Canossa,S.;Pinalli,R.;Soliman,M.;Vachon,J.;Dalcanale,E.Dynamiccross-linkingofpolyethyleneviasextuplehydrogenbondingarray.Macromolecules2018,51,7680−7691..
vanBeek,D.J.M.;Spiering,A.J.H.;Peters,G.W.M.;teNijenhuis,K.;Sijbesma,R.P.Unidirectionaldimerizationandstackingofureidopyrimidinoneendgroupsinpolycaprolactonesupramolecularpolymers.Macromolecules2007,40,8464−8475..
Wang,P.;Cai,Z.S.Highlyefficientflame-retardantepoxyresinwithanovelDOPO-basedtriazolecompound:thermalstability,flameretardancyandmechanism.Polym. Degrad. Stabil.2017,137,138−150..
Cai,J.X.;Xie,C.P.;Xiong,J.;Zhang,J.Y.;Yin,P.;Pang,S.P.Highperformanceandheat-resistantpyrazole-1,2,4-triazoleenergeticmaterials:tuningthethermalstabilitybyasymmetricframeworkandazo-bistriazolebridge.Chem. Eng. J.2022,433,134480..
Chino,K.;Ashiura,M.Themoreversiblecross-linkingrubberusingsupramolecularhydrogen-bondingnetworks.Macromolecules2001,34,9201−9204..
Liu,J.;Liu,J.;Wang,S.;Huang,J.;Wu,S.;Tang,Z.;Guo,B.;Zhang,L.Anadvancedelastomerwithanunprecedentedcombinationofexcellentmechanicalpropertiesandhighself-healingcapability.J. Mater. Chem. A2017,5,25660−25671..
Xiong,C.;Li,X.;He,H.;Xue,B.;Wang,Y.;Li,J.;Zhu,Z.AthermallyreversiblehealingEPDMbasedelastomerwithhighertensilepropertiesanddampingproperties.J. Appl. Polym. Sci.2021,138,e49767..
Wang,S.S.;Zhao,Z.Q.;Wang,N.;Zhao,J.R.;Feng,Y.Structureandmechanismoffunctionalisotacticpolypropyleneviain situchlorinationgraftcopolymerization.Polym. Int.2011,60,1068−1077..
Barra,G.M.;Crespo,J.S.;Bertolino,J.R.;Soldi,V.;Pires,A.T.N.MaleicanhydridegraftingonEPDM:qualitativeandquantitativedetermination.J. Braz. Chem. Soc.1999,10,31−34..
Liu,J.;Wang,S.;Tang,Z.;Huang,J.;Guo,B.;Huang,G.Bioinspiredengineeringoftwodifferenttypesofsacrificialbondsintochemicallycross-linkedcis-1,4-polyisoprenetowardahigh-performanceelastomer.Macromolecules2016,49,8593−8604..
Song,Y.;Liu,C.Waste-reducingpreparationofPE-g-MAHandPE-g-DBMviasolidphasegraftingreactionandtheirapplicationascompatibilizers.J. Appl. Polym. Sci.2006,101,3781−3790..
Nojiri,S.;Yamada,H.;Kimata,S.;Ikeda,K.;Senda,T.;Bosman,A.W.Supramolecularpolypropylenewithself-complementaryhydrogenbondingsystem.Polymer2016,87,308−315..
Martin,S.;Vega,J.F.;Exposito,M.T.;Flores,A.;Martinez-Salazar,J.Athree-phasemicrostructuralmodeltoexplainthemechanicalrelaxationsofbranchedpolyethylene:aDSC,WAXDandDMTAcombinedstudy.Colloid. Polym. Sci.2011,289,257−268..
Stehling,F.C.;Mandelkern,L.Theglasstemperatureoflinearpolyethylene.Macromolecules1970,3,242−252..
Armstrong,G.;Buggy,M.Thermalstabilityofsomeself-assemblinghydrogen-bondedpolymersandrelatedmodelcomplexes.Polym. Int.2002,51,1219−1224..
Pietrasanta;Robin,J.;Torres,N.;Boutevin,B.Mechanicalperformanceimprovementoflow-densitypolyethyleneblends.Mech. Time-Depend. Mater.1998,2,85−95..
Jose,J.P.;Thomas,S.Alumina-claynanoscalehybridfillerassemblingincross-linkedpolyethylenebasednanocomposites:mechanicsandthermalproperties.Phys. Chem. Chem. Phys.2014,16,14730−14740..
Liu,S.Q.;Gong,W.G.;Zheng,B.C.Theeffectofperoxidecross-linkingonthepropertiesoflow-densitypolyethylene.J. Macromol. Sci. Part B- Phys.2014,53,67−77..
Wang,W.;Zhang,Y.;Liu,W.Bioinspiredfabricationofhighstrengthhydrogelsfromnon-covalentinteractions.Prog. Polym. Sci.2017,71,1−25..
Zhang,Q.;Cai,H.;Ren,X.;Kong,L.;Liu,J.;Jiang,X.Thedynamicmechanicalanalysisofhighlyfilledricehuskbiochar/high-densitypolyethylenecomposites.Polymers2017,9,628..
Xia,H.;Song,M.;Zhang,Z.;Richardson,M.Microphaseseparation,stressrelaxation,andcreepbehaviorofpolyurethanenanocomposites.J. Appl. Polym. Sci.2007,103,2992−3002..
0
Views
13
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621