
a.College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
b.Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
junyuan@csu.edu.cn (J.Y.)
yingpingzou@csu.edu.cn (Y.P.Z.)
Scan for full text
Dong-Xu Li, Shu-Fang Li, Cheng-Long Wen, et al. Quinoxaline-based Polymers with Asymmetric Aromatic Side Chain Enables 16.27% Efficiency for Organic Solar Cells. [J]. Chinese Journal of Polymer Science 41(7):1002-1010(2023)
Dong-Xu Li, Shu-Fang Li, Cheng-Long Wen, et al. Quinoxaline-based Polymers with Asymmetric Aromatic Side Chain Enables 16.27% Efficiency for Organic Solar Cells. [J]. Chinese Journal of Polymer Science 41(7):1002-1010(2023) DOI: 10.1007/s10118-023-2895-5.
Four quinoxaline-based polymer donors with asymmetric aromatic side chain, TPQ-0F, TPQ-1F, TPQ-1Fi, and TPQ-2F were designed and synthesized. The binary OSC based on TPQ-2F and Y6 achieved an efficient PCE of 16.27 %, which was attributed to balanced hole/electron mobilities, less charge carrier recombination, better excitondissociation and charge transport, and more favorable morphology.
In recent years, due to the rapid development of high-performance small molecule acceptor (SMA) materials, the researches on ,p,-type electron donor materials for matching with current efficient SMAs have become important. By means of asymmetric strategies to optimize the energy levels and inter/intramolecular interactions of molecules, we designed and synthesized an asymmetric aromatic side chain quinoxaline-based polymer donor TPQ-0F. Meanwhile, we took advantage of F atom which could form noncovalent interaction and strong electron-withdrawing property, to obtain the optimized quinoxaline-based polymer donors TPQ-1F, TPQ-1Fi and TPQ-2F. Eventually, the binary device based on TPQ-2F achieved an efficient power conversion efficiency (PCE) of 16.27%, which attributed to balanced hole/electron mobilities, less charge carrier recombination, and more favorable aggregation morphology. Our work demonstrates the great potential of asymmetric aromatic side chain quinoxaline-based polymer donors on optimizing the morphology of blending films, improving inter/intramolecular interactions, and subtly tuning energy level, finally for more efficient organic solar cells.
Asymmetric aromatic side chainQuinoxaline-based polymer donorFluorine substitutionBinary device
Li,Y.F.Moleculardesignofphotovoltaicmaterialsforpolymersolarcells:towardsuitableelectronicenergylevelsandbroadabsorption.Acc. Chem. Res.2012,45,723−733..
Zhang,Z.G.;Li,Y.Polymerizedsmall-moleculeacceptorsforhigh-performanceall-polymersolarcells.Angew. Chem. Int. Ed.2021,60,4422−4433..
Li,Y.;Zou,Y.Conjugatedpolymerphotovoltaicmaterialswithbroadabsorptionbandandhighchargecarriermobility.Adv. Mater.2008,20,2952−2958..
Zhang,M.;Guo,X.;Ma,W.;Ade,H.;Hou,J.Alarge-bandgapconjugatedpolymerforversatilephotovoltaicapplicationswithhighperformance.Adv. Mater.2015,27,4655−4660..
Zhao,W.;Li,S.;Yao,H.;Zhang,S.;Zhang,Y.;Yang,B.;Hou,J.Molecularoptimizationenablesover13%efficiencyinorganicsolarcells.J. Am. Chem. Soc.2017,139,7148−7151..
Yuan,J.;Huang,T.;Cheng,P.;Zou,Y.;Zhang,H.;Yang,J.L.;Chang,S.Y.;Zhang,Z.;Huang,W.;Wang,R.;Meng,D.;Gao,F.;Yang,Y.Enablinglowvoltagelossesandhighphotocurrentinfullerene-freeorganicphotovoltaics.Nat. Commun.2019,10,570..
Wei,Q.;Liu,W.;Leclerc,M.;Yuan,J.;Chen,H.;Zou,Y.A-DA’D-Anon-fullereneacceptorsforhigh-performanceorganicsolarcells.Sci. China Chem.2020,63,1352−1366..
Sun,C.;Pan,F.;Bin,H.;Zhang,J.;Xue,L.;Qiu,B.;Wei,Z.;Zhang,Z.G.;Li,Y.Alowcostandhighperformancepolymerdonormaterialforpolymersolarcells.Nat. Commun.2018,9,743..
Wang,D.;Qin,R.;Zhou,G.;Li,X.;Xia,R.;Li,Y.;Zhan,L.;Zhu,H.;Lu,X.;Yip,H.L.;Chen,H.;Li,C.Z.High-performancesemitransparentorganicsolarcellswithexcellentinfraredreflectionandsee-throughfunctions.Adv. Mater.2020,32,e2001621..
Meng,L.;Zhang,Y.;Wan,X.;Li,C.;Zhang,X.;Wang,Y.;Ke,X.;Xiao,Z.;Ding,L.;Xia,R.;Yip,H.L.;Cao,Y.;Chen,Y.Organicandsolution-processedtandemsolarcellswith17.3%efficiency.Science2019,361,1094−1098..
Meng,X.;Zhang,L.;Xie,Y.;Hu,X.;Xing,Z.;Huang,Z.;Liu,C.;Tan,L.;Zhou,W.;Sun,Y.;Ma,W.;Chen,Y.Ageneralapproachforlab-to-manufacturingtranslationonflexibleorganicsolarcells.Adv. Mater.2019,31,e1903649..
Che,X.;Li,Y.;Qu,Y.;Forrest,S.R.Highfabricationyieldorganictandemphotovoltaicscombiningvacuum-andsolution-processedsubcellswith15%efficiency.Nat. Energy2018,3,422−427..
Yan,T.T.;Song,W.;Huang,J.M.;Peng,R.X.;Huang,L.K.;Ge,Z.Y.16.67%Rigidand14.06%flexibleorganicsolarcellsenabledbyternaryheterojunctionstrategy.Adv. Mater.2019,31,1902210..
Zheng,Z.;Wang,J.;Bi,P.;Ren,J.;Wang,Y.;Yang,Y.;Liu,X.;Zhang,S.;Hou,J.Tandemorganicsolarcellwith20.2%efficiency.Joule2022,6,171−184..
Zhang,J.;Tan,H.S.;Guo,X.;Facchetti,A.;Yan,H.Materialinsightsandchallengesfornon-fullereneorganicsolarcellsbasedonsmallmolecularacceptors.Nat. Energy2018,3,720−731..
Yu,G.;Gao,J.;Hummelen,J.C.;Wudl,F.;Heeger,A.J.Polymerphotovoltaiccells:enhancedefficienciesviaanetworkofinternaldonor-acceptorheterojunctions.Science1995,270,1789−1791..
Sun,C.;Zhu,C.;Meng,L.;Li,Y.Quinoxaline-basedD-Acopolymersfortheapplicationsaspolymerdonorandholetransportmaterialinpolymer/perovskitesolarcells.Adv. Mater.2021,34,2104161..
Lin,Y.Z.;Wang,J.Y.;Zhang,Z.G.;Bai,H.T.;Li,Y.F.;Zhu,D.B.;Zhan,X.W.Anelectronacceptorchallengingfullerenesforefficientpolymersolarcells.Adv. Mater.2015,27,1170−1174..
Feng,L.;Yuan,J.;Zhang,Z.;Peng,H.;Zhang,Z.G.;Xu,S.;Liu,Y.;Li,Y.;Zou,Y.Thieno3,2-bpyrrolo-fusedpentacyclicbenzotriazole-basedacceptorforefficientorganicphotovoltaics.ACS Appl. Mater. Interfaces2017,9,31985−31992..
Yuan,J.;Zhang,Y.;Zhou,L.;Zhang,G.;Yip,H.L.;Lau,T.K.;Lu,X.;Zhu,C.;Peng,H.;Johnson,P.A.;Leclerc,M.;Cao,Y.;Ulanski,J.;Li,Y.;Zou,Y.Single-junctionorganicsolarcellwithover15%efficiencyusingfused-ringacceptorwithelectron-deficientcore.Joule2019,3,1140−1151..
Yuan,J.;Zou,Y.ThehistoryanddevelopmentofY6.Org. Electron.2022,102,106436..
Cui,Y.;Yao,H.;Zhang,J.;Xian,K.;Zhang,T.;Hong,L.;Wang,Y.;Xu,Y.;Ma,K.;An,C.;He,C.;Wei,Z.;Gao,F.;Hou,J.Single-junctionorganicphotovoltaiccellswithapproaching18%efficiency.Adv. Mater.2020,32,e1908205..
Cui,Y.;Xu,Y.;Yao,H.;Bi,P.;Hong,L.;Zhang,J.;Zu,Y.;Zhang,T.;Qin,J.;Ren,J.;Chen,Z.;He,C.;Hao,X.;Wei,Z.;Hou,J.Single-junctionorganicphotovoltaiccellwith19%efficiency.Adv. Mater.2021,33,2102420..
Bao,S.;Yang,H.;Fan,H.;Zhang,J.;Wei,Z.;Cui,C.;Li,Y.Volatilizablesolidadditive-assistedtreatmentenablesorganicsolarcellswithefficiencyover18.8%andfillfactorexceeding80%.Adv. Mater.2021,33,2105301..
Bi,P.;Zhang,S.;Chen,Z.;Xu,Y.;Cui,Y.;Zhang,T.;Ren,J.;Qin,J.;Hong,L.;Hao,X.;Hou,J.Reducednon-radiativechargerecombinationenablesorganicphotovoltaiccellapproaching19%efficiency.Joule2021,5,2408−2419..
Chen,Z.;Song,W.;Yu,K.;Ge,J.;Zhang,J.;Xie,L.;Peng,R.;Ge,Z.Small-moleculardonorguestachievesrigid18.5%andflexible15.9%efficiencyorganicphotovoltaicviafine-tuningmicrostructuremorphology.Joule2021,5,2395−2407..
Yang,C.;An,Q.;Bai,H.R.;Zhi,H.F.;Ryu,H.S.;Mahmood,A.;Zhao,X.;Zhang,S.;Woo,H.Y.;Wang,J.L.Asynergisticstrategyofmanipulatingthenumberofselenopheneunitsanddissymmetriccentralcoreofsmallmolecularacceptorsenablespolymersolarcellswith17.5%efficiency.Angew. Chem. Int. Ed.2021,60,19241−19252..
Zhang,M.;Zhu,L.;Zhou,G.;Hao,T.;Qiu,C.;Zhao,Z.;Hu,Q.;Larson,B.W.;Zhu,H.;Ma,Z.;Tang,Z.;Feng,W.;Zhang,Y.;Russell,T.P.;Liu,F.Single-layeredorganicphotovoltaicswithdoublecascadingchargetransportpathways:18%efficiencies.Nat. Commun.2021,12,1−10..
Li,C.;Zhou,J.;Song,J.;Xu,J.;Zhang,H.;Zhang,X.;Guo,J.;Zhu,L.;Wei,D.;Han,G.;Min,J.;Zhang,Y.;Xie,Z.;Yi,Y.;Yan,H.;Gao,F.;Liu,F.;Sun,Y.Non-fullereneacceptorswithbranchedsidechainsandimprovedmolecularpackingtoexceed18%efficiencyinorganicsolarcells.Nat. Energy2021,6,605−613..
Jiang,K.;Wei,Q.;Lai,J.Y.L.;Peng,Z.;Kim,H.K.;Yuan,J.;Ye,L.;Ade,H.;Zou,Y.;Yan,H.Alkylchaintuningofsmallmoleculeacceptorsforefficientorganicsolarcells.Joule2019,3,3020−3033..
Zheng,Q.;Jung,B.J.;Sun,J.;Katz,H.E.Ladder-typeoligo-p-phenylene-containingcopolymerswithhighopen-circuitvoltagesandambientphotovoltaicactivity.J. Am. Chem. Soc.2010,132,5394−5404..
Liang,Y.;Xu,Z.;Xia,J.;Tsai,S.-T.;Wu,Y.;Li,G.;Ray,C.;Yu,L.Forthebrightfuture—bulkheterojunctionpolymersolarcellswithpowerconversionefficiencyof7.4%.Adv. Mater.2010,22,E135−E138..
Zhao,W.C.;Qian,D.P.;Zhang,S.Q.;Li,S.S.;Inganas,O.;Gao,F.;Hou,J.H.Fullerene-freepolymersolarcellswithover11%efficiencyandexcellentthermalstability.Adv. Mater.2016,28,4734−4739..
Zhang,S.Q.;Qin,Y.P.;Zhu,J.;Hou,J.H.Over14%efficiencyinpolymersolarcellsenabledbyachlorinatedpolymerdonor.Adv. Mater.2018,30,1800868..
Bin,H.J.;Gao,L.;Zhang,Z.G.;Yang,Y.K.;Zhang,Y.D.;Zhang,C.F.;Chen,S.S.;Xue,L.W.;Yang,C.;Xiao,M.;Li,Y.F.11.4%Efficiencynon-fullerenepolymersolarcellswithtrialkylsilylsubstituted2D-conjugatedpolymerasdonor.Nat. Commun.2016,7,1−11..
Bin,H.;Zhang,Z.G.;Gao,L.;Chen,S.;Zhong,L.;Xue,L.;Yang,C.;Li,Y.Non-fullerenepolymersolarcellsbasedonalkylthioandfluorinesubstituted2D-conjugatedpolymersreach9.5%efficiency.J. Am. Chem. Soc.2016,138,4657−6464..
Sun,C.;Pan,F.;Chen,S.;Wang,R.;Sun,R.;Shang,Z.;Qiu,B.;Min,J.;Lv,M.;Meng,L.;Zhang,C.;Xiao,M.;Yang,C.;Li,Y.Achievingfastchargeseparationandlownonradiativerecombinationlossbyrationalfluorinationforhigh-efficiencypolymersolarcells.Adv. Mater.2019,31,e1905480..
Zhang,Z.G.;Bai,Y.;Li,Y.Benzotriazolebased2D-conjugatedpolymerdonorsforhighperformancepolymersolarcells.Chinese J. Polym. Sci.2021,39,1−13..
Xu,S.;Wang,W.;Liu,H.;Yu,X.;Qin,F.;Luo,H.;Zhou,Y.;Li,Z.Anewdiazabenzo[k]fluoranthene-basedD-Aconjugatedpolymerdonorforefficientorganicsolarcells.Macromol. Rapid Commun.2022,e2200276..
Fan,H.;Yang,H.;Zou,Y.;Dong,Y.;Fan,D.;Zheng,Y.;Wu,Y.;Cui,C.;Li,Y.Conjugatedside-chainsengineeringofpolymerdonorenablingimprovedefficiencyforpolymersolarcells.J. Mater. Chem. A2020,8,15919−15926..
Liu,Q.;Jiang,Y.;Jin,K.;Qin,J.;Xu,J.;Li,W.;Xiong,J.;Liu,J.;Xiao,Z.;Sun,K.;Yang,S.;Zhang,X.;Ding,L.18%Efficiencyorganicsolarcells.Sci. Bull.2020,65,272−275..
Fan,Q.P.;Zhu,Q.L.;Xu,Z.;Su,W.Y.;Chen,J.;Wu,J.N.;Guo,X.;Ma,W.;Zhang,M.J.;Li,Y.F.Chlorinesubstituted2D-conjugatedpolymerforhigh-performancepolymersolarcellswith13.1%efficiencyviatolueneprocessing.Nano Energy2018,48,413−420..
Kivala,M.;Diederich,F.Acetylene-derivedstrongorganicacceptorsforplanarandnonplanarpush-pullchromophores.Acc. Chem. Res.2009,42,235−248..
Zhu,C.;Meng,L.;Zhang,J.;Qin,S.;Lai,W.;Qiu,B.;Yuan,J.;Wan,Y.;Huang,W.;Li,Y.Aquinoxaline-basedD-Acopolymerdonorachieving17.62%efficiencyoforganicsolarcells.Adv. Mater.2021,33,2100474..
Yuan,J.;Ouyang,J.;Cimrová,V.;Leclerc,M.;Najari,A.;Zou,Y.Developmentofquinoxalinebasedpolymersforphotovoltaicapplications.J. Mater. Chem. C2017,5,1858−1879..
Wang,X.;Chen,H.;Yuan,J.;Wei,Q.;Li,J.;Jiang,L.;Huang,J.;Li,Y.;Li,Y.;Zou,Y.Precisefluorinationofpolymericdonorstowardsefficientnon-fullereneorganicsolarcellswithbalancedopencircuitvoltage,shortcircuitcurrentandfillfactor.J. Mater. Chem. A2021,9,14752−14757..
Zhao,Y.;Zhou,L.;Wu,X.;Wang,X.;Li,Y.;Qi,Y.;Jiang,L.;Chen,G.;Zou,Y.Ternaryorganicsolarcells:improvedopticalandmorphologicalpropertiesallowanenhancedefficiency.Chinese Chem. Lett.2021,32,1359−1362..
Busireddy,M.R.;Chen,T.W.;Huang,S.C.;Nie,H.;Su,Y.J.;Chuang,C.T.;Kuo,P.J.;Chen,J.T.;Hsu,C.S.Finetuningalkylsubstituentsondithienoquinoxaline-basedwide-bandgappolymerdonorsfororganicphotovoltaics.ACS Appl. Mater. Interfaces2022,14,22353−22362..
Lee,S.W.;Shin,H.J.;Park,B.;Shome,S.;Whang,D.R.;Bae,H.;Chung,S.;Cho,K.;Ko,S.J.;Choi,H.;Chang,D.W.Effectofelectron-withdrawingchlorinesubstituentonmorphologicalandphotovoltaicpropertiesofallchlorinatedD-A-typequinoxaline-basedpolymers.ACS Appl. Mater. Interfaces2022,14,19785−19794..
Chen,S.;Feng,L.;Jia,T.;Jing,J.;Hu,Z.;Zhang,K.;Huang,F.High-performancepolymersolarcellswithefficiencyover18%enabledbyasymmetricsidechainengineeringofnon-fullereneacceptors.Sci. China Chem.2021,64,1192−1199..
Li,D.;Sun,C.;Yan,T.;Yuan,J.;Zou,Y.Asymmetricnon-fullerenesmall-moleculeacceptorstowardhigh-performanceorganicsolarcells.ACS Cent. Sci.2021,7,1787−1797..
Yuan,J.;Liu,Y.;Zhu,C.;Shen,P.;Wan,M.;Feng,L.;Zou,Y.Asymmetricquinoxaline-basedpolymerforhighefficiencynon-fullerenesolarcells.Acta Physico-Chimica Sinica2018,34,1272−1278..
Yao,H.;Cui,Y.;Yu,R.;Gao,B.;Zhang,H.;Hou,J.Design,synthesis,andphotovoltaiccharacterizationofasmallmolecularacceptorwithanultra-narrowbandgap.Angew. Chem. Int. Ed.2017,56,3045−3049..
Kawashima,K.;Fukuhara,T.;Suda,Y.;Suzuki,Y.;Koganezawa,T.;Yoshida,H.;Ohkita,H.;Osaka,I.;Takimiya,K.Implicationoffluorineatomonelectronicproperties,orderingstructures,andphotovoltaicperformanceinnaphthobisthiadiazole-basedsemiconductingpolymers.J. Am. Chem. Soc.2016,138,10265−10275..
Zhang,M.;Guo,X.;Zhang,S.;Hou,J.Synergisticeffectoffluorinationonmolecularenergylevelmodulationinhighlyefficientphotovoltaicpolymers.Adv. Mater.2014,26,1118−1123..
Reichenbächer,K.;Süss,H.I.;Hulliger,J.Fluorineincrystalengineering—“thelittleatomthatcould”.Chem. Soc. Rev.2005,34,22−30..
Lu,L.;Yu,L.UnderstandinglowbandgappolymerPTB7andoptimizingpolymersolarcellsbasedonit.Adv. Mater.2014,26,4413−4430..
Liu,Y.;Liu,J.;Chen,D.;Wang,X.;Liu,Z.;Liu,H.;Jiang,L.;Wu,C.;Zou,Y.Quinoxaline-basedsemiconductingpolymerdotsforin vivoNIR-IIfluorescenceimaging.Macromolecules2019,52,5735−5740..
Xu,S.;Feng,L.;Yuan,J.;Zhang,Z.G.;Li,Y.;Peng,H.;Zou,Y.Hexafluoroquinoxalinebasedpolymerfornonfullerenesolarcellsreaching9.4%efficiency.ACS Appl. Mater. Interfaces2017,9,18816−18825..
Liu,Y.;Liu,J.;Chen,D.;Wang,X.;Zhang,Z.;Yang,Y.;Jiang,L.;Qi,W.;Ye,Z.;He,S.;Liu,Q.;Xi,L.;Zou,Y.;Wu,C.FluorinationenhancesNIR-IIfluorescenceofpolymerdotsforquantitativebraintumorimaging.Angew. Chem. Int. Ed.2020,59,21049−21057..
Cui,W.;Zhao,Y.;Tian,H.;Xie,Z.;Geng,Y.;Wang,F.Synthesisandcharacterizationsofpoly(9,10-bisarylethynyl-2,6-anthrylene)sandpoly(9,10-bisalkynyl-2,6-anthrylene).Macromolecules2009,42,8021−8027..
Huo,L.;Zhang,S.;Guo,X.;Xu,F.;Li,Y.;Hou,J.Replacingalkoxygroupswithalkylthienylgroups:afeasibleapproachtoimprovethepropertiesofphotovoltaicpolymers.Angew Chem. Int. Ed.2011,50,9697−9702..
Nielsen,C.B.;Holliday,S.;Chen,H.Y.;Cryer,S.J.;McCulloch,I.Non-fullereneelectronacceptorsforuseinorganicsolarcells.Acc. Chem. Res.2015,48,2803−2812..
Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Petersson,G.A.;Nakatsuji,H.;Li,X.;Caricato,M.;Marenich,A.V.;Bloino,J.;Janesko,B.G.;Gomperts,R.;Mennucci,B.;Hratchian,H.P.;Ortiz,J.V.;Izmaylov,A.F.;Sonnenberg,J.L.;Williams;Ding,F.;Lipparini,F.;Egidi,F.;Goings,J.;Peng,B.;Petrone,A.;Henderson,T.;Ranasinghe,D.;Zakrzewski,V.G.;Gao,J.;Rega,N.;Zheng,G.;Liang,W.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Vreven,T.;Throssell,K.;MontgomeryJr.J.A.;Peralta,J.E.;Ogliaro,F.;Bearpark,M.J.;Heyd,J.J.;Brothers,E.N.;Kudin,K.N.;Staroverov,V.N.;Keith,T.A.;Kobayashi,R.;Normand,J.;Raghavachari,K.;Rendell,A.P.;Burant,J.C.;Iyengar,S.S.;Tomasi,J.;Cossi,M.;Millam,J.M.;Klene,M.;Adamo,C.;Cammi,R.;Ochterski,J.W.;Martin,R.L.;Morokuma,K.;Farkas,O.;Foresman,J.B.;Fox,D.J.Gaussian16Rev.C.01,Wallingford,CT,2016.
Mihailetchi,V.D.;Wildeman,J.;Blom,P.W.M.Space-chargelimitedphotocurrent.Phys. Rev. Lett.2005,94,126602..
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621