a.School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
b.Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
c.Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
xyhuang@mail.sioc.ac.cn (X.Y.H.)
cfeng@ecust.edu.cn (C.F.)
Scan for full text
Yang Song, Bo Xiang, Xiao-Yu Huang, et al. Living Crystallization-Driven Self-Assembly of Oligo(
Yang Song, Bo Xiang, Xiao-Yu Huang, et al. Living Crystallization-Driven Self-Assembly of Oligo(
This work indicates that the structure of alkyl side chains of OPV segments plays an important role in determining the crystallization-driven self-assembled behaviors of OPV-based block copolymers. It is the steric repulsion effect induced by branched alkyl side chains, not stereoregular effect, that would promote self-nucleation in crystallization-driven micellar elongation.
The structure of side chains of ,π,-conjugated segments is a critical factor determining living crystallization-driven self-assembly (CDSA), a versatile platform to generate fiber-like nanostructures with precise length and composition. Herein, we design and synthesize three block copolymers (BCPs) containing same corona-forming poly(,N,-isopropyl acrylamide) (PNIPAM) segment, but different core-forming ,π,-conjugated oligo(,p,-phenylene vinylene) (OPV) with linear pentyl (l-OPV), racemic 2-methyl butyl (r-OPV) and stereo-regular chiral (,S,)-2-methyl butyl (c-OPV) side chains, respectively. By using these BCPs of l-OPV-,b,-PNIPAM,47, r-OPV-,b,-PNIPAM,47, and c-OPV-,b,-PNIPAM,47, as model, we aim to get a deep insight into how steric and stereo-regular effect induced by branched alkyl side chains of OPV segment affects the living CDSA. The results showed that l-OPV-,b,-PNIPAM,47, exhibits typical characteristics of self-seeding and seeded growth of living CDSA to give uniform fiber-like micelles of controlled length. On the contrary, r-OPV-,b,-PNIPAM,47, and c-OPV-,b,-PNIPAM,47, with branched racemic and stereo-regular chiral alkyl side chains are more prone to self-nucleation during the micellar elongation to give short and polydisperse fiber-like micelles. The obvious self-nucleation during the micellar elongation of r-OPV-,b,-PNIPAM,47, and c-OPV-,b,-PNIPAM,47, is due to the increase of steric repulsion with OPV units induced by branched alkyl side chains, not the stereo-irregular effect of racemic alkyl side chains.
π-Conjugated polymer NanofiberLiving crystallization-driven self-assemblyStructure effect
Sun, X.; Zhu, Z.; Xie, Z.; Liu, J.; Yin, J.; Yang, Y.; Jia, C.; Liu, F.; Yang, J . Self-assembly crystal, manipulated polymorphic crystalline structure and elevated thermal degradation temperature of poly(1,4-butylene adipate): effects of an aryl bisamide-based compound . Compos. Commun. , 2021 . 25 100765 DOI:10.1016/j.coco.2021.100765http://doi.org/10.1016/j.coco.2021.100765 .
Yuan, Z. Q.; Ding, A. S.; Xu, B. B.; Huang, X. Y.; Lu, G. L.; Guo, H . Double-bond-containing polyallene-based composite nanofibers . Compos. Commun. , 2022 . 32 101189 DOI:10.1016/j.coco.2022.101189http://doi.org/10.1016/j.coco.2022.101189 .
Cheng, A. H.; Zhang, C. Y; Deng, Z. C.; Sun, Y. L . Structure control of liquid crystalline block copolymers in liquid-phase self-assembly . Chin. J. Appl. Chem. , 2021 . 38 1255 -1267. .
Zhang, Z. Y.; Li, Q.; Wang,, D. L.; Fang, J. L.; Chen, D. Z . Controlled synthesis and photophysical properties of liquid crystalline diblock copolymers with side-chain discotic triphylene and calamitic azobenzene mesogens . Chin. J. Appl. Chem. , 2021 . 38 1340 -1352. .
Zhang, L. F.; Eisenberg, A . Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers . Science , 1995 . 268 1728 -1731 . DOI:10.1126/science.268.5218.1728http://doi.org/10.1126/science.268.5218.1728 .
Cai, W. B.; Liu, D. D.; Chen, Y.; Zhang, L.; Tan, J. B . Enzyme-assisted photoinitiated polymerization-induced self-assembly in continuous flow reactors with oxygen tolerance . Chinese J. Polym. Sci. , 2021 . 39 1127 -1137 . DOI:10.1007/s10118-021-2533-zhttp://doi.org/10.1007/s10118-021-2533-z .
Bai, J . L.; Liu, D.; Wang, R. Self-assembly of amphiphilic diblock copolymers induced by liquid-liquid phase separation . Chinese J. Polym. Sci. , 2021 . 39 1217 -1224 . DOI:10.1007/s10118-021-2563-6http://doi.org/10.1007/s10118-021-2563-6 .
Xu, Z.; Li, W . Control the self-assembly of block copolymers by tailoring the packing frustration . Chinese J. Chem. , 2022 . 40 1083 -1090 . DOI:10.1002/cjoc.202100780http://doi.org/10.1002/cjoc.202100780 .
Zhang, J.; Jiang, J.; Lin, S.; Cornel, E . J.; Li, C.; Du, J. Polymersomes: from macromolecular self-assembly to particle assembly . Chinese J. Chem. , 2022 . 40 1842 -1855 . DOI:10.1002/cjoc.202200182http://doi.org/10.1002/cjoc.202200182 .
Liu, Y.; Liu, B.; Nie, Z . Concurrent self-assembly of amphiphiles into nanoarchitectures with increasing complexity . Nano Today , 2015 . 10 278 -300 . DOI:10.1016/j.nantod.2015.04.001http://doi.org/10.1016/j.nantod.2015.04.001 .
Blanazs, A.; Armes, S. P.; Ryan, A. J . Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications . Macromol. Rapid Commun. , 2009 . 30 267 -277 . DOI:10.1002/marc.200800713http://doi.org/10.1002/marc.200800713 .
Kataoka, K.; Harada, A.; Nagasaki, Y . Block copolymer micelles for drug delivery: design, characterization and biological significance . Adv. Drug Deliv. Rev. , 2001 . 47 113 -131 . DOI:10.1016/S0169-409X(00)00124-1http://doi.org/10.1016/S0169-409X(00)00124-1 .
Jain, S.; Bates, F. S . Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions . Macromolecules , 2004 . 37 1511 -1523 . DOI:10.1021/ma035467jhttp://doi.org/10.1021/ma035467j .
Bhargava, P.; Zheng, J. X.; Li, P.; Quirk, R. P.; Harris, F. W.; Cheng, S. Z. D . Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution . Macromolecules , 2006 . 39 4880 -4888 . DOI:10.1021/ma060677shttp://doi.org/10.1021/ma060677s .
Soo, P. L.; Eisenberg, A . Preparation of block copolymer vesicles in solution . J. Polym. Sci., Part B: Polym. Phys. , 2004 . 42 923 -938 . DOI:10.1002/polb.10739http://doi.org/10.1002/polb.10739 .
Battaglia, G.; Ryan, A. J . Effect of amphiphile size on the transformation from a lyotropic gel to a vesicular dispersion . Macromolecules , 2006 . 39 798 -805 . DOI:10.1021/ma052108ahttp://doi.org/10.1021/ma052108a .
Zhang, J.; Chen, X. F.; Wei, H. B.; Wan, X. H . Tunable assembly of amphiphilic rod-coil block copolymers in solution . Chem. Soc. Rev. , 2013 . 42 9127 -9154 . DOI:10.1039/c3cs60192ghttp://doi.org/10.1039/c3cs60192g .
van Rijn, P.; Tutus, M.; Kathrein, C.; Zhu, L . L.; Wessling, M.; Schwaneberg, U.; Boker, A. Challenges and advances in the field of self-assembled membranes . Chem. Soc. Rev. , 2013 . 42 6578 -6592 . DOI:10.1039/c3cs60125khttp://doi.org/10.1039/c3cs60125k .
Wang, H.; Lin, W. J.; Fritz, K. P.; Scholes, G. D.; Winnik, M. A.; Manners, I . Cylindrical block co-micelles with spatially selective functionalization by nanoparticles . J. Am. Chem. Soc. , 2007 . 129 12924 -12929 . DOI:10.1021/ja075587xhttp://doi.org/10.1021/ja075587x .
Massey, J.; Power, K. N.; Manners, I.; Winnik, M. A . Self-assembly of a novel organometallic-inorganic block copolymer in solution and the solid state: nonintrusive observation of novel wormlike poly(ferrocenyldimethylsilane)-b-poly(dimethylsiloxane) micelles . J. Am. Chem. Soc. , 1998 . 120 9533 -9540 . DOI:10.1021/ja981803dhttp://doi.org/10.1021/ja981803d .
Qian, J. S.; Guerin, G.; Lu, Y. J.; Cambridge, G.; Manners, I.; Winnik, M. A . Self-seeding in one dimension: an approach to control the length of fiberlike polyisoprene-polyferrocenylsilane block copolymer micelles . Angew. Chem. Int. Ed. , 2011 . 50 1622 -1625 . DOI:10.1002/anie.201006223http://doi.org/10.1002/anie.201006223 .
Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik, M. A . Cylindrical block copolymer micelles and co-micelles of controlled length and architecture . Science , 2007 . 317 644 DOI:10.1126/science.1141382http://doi.org/10.1126/science.1141382 .
Ma, J. Y.; Lu, G. L.; Huang, X. Y.; Feng, C . π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications . Chem. Commun. , 2021 . 57 13259 -13274 . DOI:10.1039/D1CC04825Bhttp://doi.org/10.1039/D1CC04825B .
Cui, Y. N.; Wang, Z. Q.; Huang, X. Y.; Lu, G. L.; Manners, I.; Winnik, M. A.; Feng, C . How a small change of oligo(p-phenylenevinylene) chain length affects self-seeding of oligo(p-phenylenevinylene)-containing block copolymers . Macromolecules , 2020 . 53 1831 -1841 . DOI:10.1021/acs.macromol.0c00068http://doi.org/10.1021/acs.macromol.0c00068 .
Nie, J. C.; Wang, Z. Q.; Huang, X. Y.; Lu, G. L.; Feng, C . Uniform continuous and segmented nanofibers containing a π-conjugated oligo(p-phenylene ethynylene) core via “living” crystallization-driven self-assembly: importance of oligo(p-phenylene ethynylene) chain length . Macromolecules , 2020 . 53 6299 -6313 . DOI:10.1021/acs.macromol.0c01199http://doi.org/10.1021/acs.macromol.0c01199 .
Tao, D. L.; Lu, G. L.; Huang, X. Y.; Feng, C . Synthesis and crystallization- driven self-assembly of oligo(p-phenylenevinylene)-b-poly(ethylene glycol) . J. Funct. Polym. , 2019 . 32 617 -625. .
Nie, J. C.; Huang, X. Y.; Lu, G. L.; Winnik, M. A.; Feng, C . Living crystallization-driven self-assembly of linear and V-shaped oligo(p-phenylene ethynylene)-containing block copolymers: architecture effect of π-conjugated crystalline segment . Macromolecules , 2022 . 55 7856 -7868 . DOI:10.1021/acs.macromol.2c01273http://doi.org/10.1021/acs.macromol.2c01273 .
Kynaston, E. L.; Gould, O. E. C.; Gwyther, J.; Whittell, G. R.; Winnik, M. A.; Manners, I . Fiber-like micelles from the crystallization-driven self-assembly of poly(3-heptylselenophene)-block-polystyrene . Macromol. Chem. Phys. , 2015 . 216 685 -695 . DOI:10.1002/macp.201400541http://doi.org/10.1002/macp.201400541 .
Kynaston, E. L.; Nazemi, A.; MacFarlane, L. R.; Whittell, G. R.; Faul, C. F. J.; Manners, I . Uniform polyselenophene block copolymer fiberlike micelles and block co-micelles via living crystallization-driven self-assembly . Macromolecules , 2018 . 51 1002 -1010 . DOI:10.1021/acs.macromol.7b02317http://doi.org/10.1021/acs.macromol.7b02317 .
Han, L.; Wang, M.; Jia, X.; Chen, W.; Qian, H.; He, F . Uniform two-dimensional square assemblies from conjugated block copolymers driven by π-π interactions with controllable sizes . Nat. Commun. , 2018 . 9 865 DOI:10.1038/s41467-018-03195-yhttp://doi.org/10.1038/s41467-018-03195-y .
Tao, D. L.; Feng, C.; Cui, Y. N.; Yang, X.; Manners, I.; Winnik, M. A.; Huang, X. Y . Monodisperse fiber-like micelles of controlled length and composition with an oligo(p-phenylenevinylene) core via “living” crystallization-driven self-assembly . J. Am. Chem. Soc. , 2017 . 139 7136 -7139 . DOI:10.1021/jacs.7b02208http://doi.org/10.1021/jacs.7b02208 .
Tao, D. L.; Feng, C.; Lu, Y. J.; Cui, Y. N.; Yang, X.; Manners, I.; Winnik, M. A.; Huang, X. Y . Self-seeding of block copolymers with a π-conjugated oligo(p-phenylenevinylene) segment: a versatile route toward monodisperse fiber-like nanostructures . Macromolecules , 2018 . 51 2065 -2075 . DOI:10.1021/acs.macromol.8b00046http://doi.org/10.1021/acs.macromol.8b00046 .
Ma, J. Y.; Ma, C.; Huang, X. Y.; de Araujo, P. H. H.; Goyal, A. K.; Lu, G. L.; Feng, C. Preparation and cellular uptake behaviors of uniform fiber-like micelles with length controllability and high colloidal stability in aqueous media. Fundam. Res. 2022. https://doi.org/10.1016/j.fmre.2022.01.020.
Qian, J. S.; Lu, Y. J.; Chia, A.; Zhang, M.; Rupar, P. A.; Gunari, N.; Walker, G. C.; Cambridge, G.; He, F.; Guerin, G.; Manners, I.; Winnik, M. A . Self-seeding in one dimension: a route to uniform fiber-like nanostructures from block copolymers with a crystallizable core-forming block . ACS Nano , 2013 . 7 3754 -3766 . DOI:10.1021/nn400124xhttp://doi.org/10.1021/nn400124x .
Xu, J. J.; Ma, Y.; Hu, W . B.; Rehahn, M.; Reiter, G. Cloning polymer single crystals through self-seeding . Nat. Mater. , 2009 . 8 348 -353 . DOI:10.1038/nmat2405http://doi.org/10.1038/nmat2405 .
Shu, R.; Zha, L.; Eman, A. A.; Hu, W. B . Fibril crystal growth in diblock copolymer solutions studied by dynamic monte carlo simulations . J. Phys. Chem. B , 2015 . 119 5926 -5932 . DOI:10.1021/acs.jpcb.5b02204http://doi.org/10.1021/acs.jpcb.5b02204 .
Chen, J.; Zha, L.; Hu, W . Effect of solvent selectivity on crystallization-driven fibril growth kinetics of diblock copolymers . Polymer , 2018 . 138 359 -362 . DOI:10.1016/j.polymer.2018.01.074http://doi.org/10.1016/j.polymer.2018.01.074 .
Fukui, T.; Garcia-Hernandez, J. D.; MacFarlane, L. R.; Lei, S.; Whittell, G. R.; Manners, I . Seeded self-assembly of charge-terminated poly(3-hexylthiophene) amphiphiles based on the energy landscape . J. Am. Chem. Soc. , 2020 . 142 15038 -15048 . DOI:10.1021/jacs.0c06185http://doi.org/10.1021/jacs.0c06185 .
0
Views
14
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution