a.College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
b.School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
c.CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
zhangxin2019@ucas.ac.cn (X.Z.)
huihuang@ucas.ac.cn (H.H.)
Scan for full text
Xiao-Bin Gu, Jin-Hua Gao, Zi-Yang Han, et al. A Simple Building Block with Noncovalently Conformational Locks towards Constructing Low-Cost and High-Performance Nonfused Ring Electron Acceptors. [J]. Chinese Journal of Polymer Science 41(4):556-563(2023)
Xiao-Bin Gu, Jin-Hua Gao, Zi-Yang Han, et al. A Simple Building Block with Noncovalently Conformational Locks towards Constructing Low-Cost and High-Performance Nonfused Ring Electron Acceptors. [J]. Chinese Journal of Polymer Science 41(4):556-563(2023) DOI: 10.1007/s10118-022-2888-9.
In this work, a simple building block (POBT) based on bithiophene was designed and synthesized, which could be regarded as tailoring from the fused-ring CPT unit. Two novel NFREAs based on CPT and POBT were developed, and PBDB-T:TT-POBT based PSC devices showed a much better PCE than the TT-CPT counterpart.
Nonfused ring electron acceptors (NFREAs) have attracted much attention due to their concise synthetic routes and low cost. However, developing high-performance NFREAs with simple structure remains a great challenge. In this work, a simple building block (POBT) with noncovalently conformational locks (NoCLs) was designed and synthesized. Single-crystal X-ray study indicated the presence of S···O NOCLs in POBT, thus enabling it to possess a coplanar conformation comparable to that of fused-ring CPT. Two novel NFREAs based on CPT and POBT were developed, namely ,TT-CPT, and ,TT-POBT, respectively. Besides,TT-POBT, possessed a smaller Stokes shift and a reduced reorganization energy compared with ,TT-CPT, indicating the introduction of S···O NoCLs can enhance the molecular rigidity even if simplifying the molecular structure. As a result, the ,TT-POBT,-based PSC device afforded an impressive power conversion efficiency of 11.15%, much higher than that of ,TT-CPT, counterpart (7.03%), mainly resulting from the tighter ,π,-,π, stacking, improved and balanced charge transport, and more favorable film morphology. This work demonstrates the potential of the simple building block POBT with NoCLs towards constructing low-cost and high-performance NFREAs.
Polymer solar cellsNonfused ring electron acceptorsSimple building blockNoncovalent conformation locksReorganization energy
Karki, A.; Gillett, A. J.; Friend, R. H.; Nguyen, T. Q . The path to 20% power conversion efficiencies in nonfullerene acceptor organic solar cells . Adv. Energy Mater. , 2021 . 11 2003441 DOI:10.1002/aenm.202003441http://doi.org/10.1002/aenm.202003441 .
Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X . Non-fullerene acceptors for organic solar cells . Nat. Rev. Mater. , 2018 . 3 18003 DOI:10.1038/natrevmats.2018.3http://doi.org/10.1038/natrevmats.2018.3 .
Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z . Recent progress in organic solar cells (Part I material science) . Sci. China Chem. , 2021 . 65 224 -268. .
Guo, X.; Facchetti, A.; Marks, T. J . Imide- and amide-functionalized polymer semiconductors . Chem. Rev. , 2014 . 114 8943 -9021 . DOI:10.1021/cr500225dhttp://doi.org/10.1021/cr500225d .
Wei, Q.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H.; Zou, Y . A-DA′D-A non-fullerene acceptors for high-performance organic solar cells . Sci. China Chem. , 2020 . 63 1352 -1366 . DOI:10.1007/s11426-020-9799-4http://doi.org/10.1007/s11426-020-9799-4 .
Liu, Y.; Liu, B.; Ma, C . Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z. Recent progress in organic solar cells (Part II device engineering) . Sci. China Chem. , 2022 . 65 1457 -1497 . DOI:10.1007/s11426-022-1256-8http://doi.org/10.1007/s11426-022-1256-8 .
Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J . Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages . Nat. Commun. , 2019 . 10 2515 DOI:10.1038/s41467-019-10351-5http://doi.org/10.1038/s41467-019-10351-5 .
Lin, Y.; Wang, J.; Zhang, Z . G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 . 27 1170 -1174 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317 .
Swick, S. M.; Alzola, J. M.; Sangwan, V. K.; Amsterdam, S. H.; Zhu, W.; Jones, L. O.; Powers-Riggs, N.; Facchetti, A.; Kohlstedt, K. L.; Schatz, G. C.; Hersam, M. C.; Wasielewski, M. R.; Marks, T. J . Fluorinating π-extended molecular acceptors yields highly connected crystal structures and low reorganization energies for efficient solar cells . Adv. Energy Mater. , 2020 . 10 2000635 DOI:10.1002/aenm.202000635http://doi.org/10.1002/aenm.202000635 .
Yu, H.; Qi, Z.; Zhang, J.; Wang, Z.; Sun, R.; Chang, Y.; Sun, H.; Zhou, W.; Min, J.; Ade, H.; Yan, H . Tailoring non-fullerene acceptors using selenium-incorporated heterocycles for organic solar cells with over 16% efficiency . J. Mater. Chem. A , 2020 . 8 23756 -23765 . DOI:10.1039/D0TA06658Chttp://doi.org/10.1039/D0TA06658C .
Liu, B. Y.; Xie, C.; Ge, C. W.; Cui, M. M.; Yang, W.; Ma, Z. F.; Gao, X. K.; Zhou, Y. H.; Zhang, Q . Benzobisthiazole polymer with resonance-assisted hydrogen bonds for high-performance transistor and solar cell applications . Chinese J. Polym. Sci. , 2022 . 40 147 -156 . DOI:10.1007/s10118-022-2662-zhttp://doi.org/10.1007/s10118-022-2662-z .
Nie, Q.; Tang, A.; Guo, Q.; Zhou, E . Benzothiadiazole-based non-fullerene acceptors . Nano Energy , 2021 . 87 106174 DOI:10.1016/j.nanoen.2021.106174http://doi.org/10.1016/j.nanoen.2021.106174 .
Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y . Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells . Nat Energy , 2021 . 6 605 -613 . DOI:10.1038/s41560-021-00820-xhttp://doi.org/10.1038/s41560-021-00820-x .
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L . 18% Efficiency organic solar cells . Sci. Bull. , 2020 . 65 272 -275 . DOI:10.1016/j.scib.2020.01.001http://doi.org/10.1016/j.scib.2020.01.001 .
Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J . Single-junction organic photovoltaic cell with 19% efficiency . Adv. Mater. , 2021 . 33 2102420 DOI:10.1002/adma.202102420http://doi.org/10.1002/adma.202102420 .
Zhang, Z.-G.; Bai, Y.; Li, Y . Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells . Chinese J. Polym. Sci. , 2021 . 39 1 -13 . DOI:10.1007/s10118-020-2496-5http://doi.org/10.1007/s10118-020-2496-5 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P . A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1140 -1151 . DOI:10.1016/j.joule.2019.01.004http://doi.org/10.1016/j.joule.2019.01.004 .
Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z.; Zhang, J.; Wei, Z.; Zhang, X.; Huang, H . Binary organic solar cells breaking 19% via manipulating vertical component distribution . Adv. Mater. , 2022 . 34 2204718 DOI:10.1002/adma.202204718http://doi.org/10.1002/adma.202204718 .
Zhou, Y.; Li, M.; Lu, H.; Jin, H.; Wang, X.; Zhang, Y.; Shen, S.; Ma, Z.; Song, J.; Bo, Z . High-efficiency organic solar cells based on a low-cost fully non-fused electron acceptor . Adv. Funct. Mater. , 2021 . 31 2101742 DOI:10.1002/adfm.202101742http://doi.org/10.1002/adfm.202101742 .
Chen, Z.; Ma, S. S.; Zhang, K.; Hu, Z. C.; Yin, Q . W.; Huang, F.; Cao, Y. A near-infrared non-fullerene acceptor with thienopyrrole-expanded benzo[1,2-b:4,5-b′]dithiophene core for polymer solar cells . Chinese J. Polym. Sci. , 2021 . 39 35 -42 . DOI:10.1007/s10118-020-2440-8http://doi.org/10.1007/s10118-020-2440-8 .
Huang, H.; Guo, Q.; Feng, S.; Zhang, C . e.; Bi, Z.; Xue, W.; Yang, J.; Song, J.; Li, C.; Xu, X.; Tang, Z.; Ma, W.; Bo, Z. Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells . Nat. Commun. , 2019 . 10 3038 DOI:10.1038/s41467-019-11001-6http://doi.org/10.1038/s41467-019-11001-6 .
Li, C.; Zhang, X.; Yu, N.; Gu, X.; Qin, L.; Wei, Y.; Liu, X.; Zhang, J.; Wei, Z.; Tang, Z.; Shi, Q.; Huang, H . Simple nonfused-ring electron acceptors with noncovalently conformational locks for low-cost and high-performance organic solar cells enabled by end-group engineering . Adv. Funct. Mater. , 2022 . 32 2108861 DOI:10.1002/adfm.202108861http://doi.org/10.1002/adfm.202108861 .
Wang, X.; Lu, H.; Liu, Y.; Zhang, A.; Yu, N.; Wang, H.; Li, S.; Zhou, Y.; Xu, X.; Tang, Z.; Bo, Z . Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44% . Adv. Energy Mater. , 2021 . 11 2102591 DOI:10.1002/aenm.202102591http://doi.org/10.1002/aenm.202102591 .
Yu, Z. P.; Liu, Z. X.; Chen, F. X.; Qin, R.; Lau, T. K.; Yin, J. L.; Kong, X.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H . Simple non-fused electron acceptors for efficient and stable organic solar cells . Nat. Commun. , 2019 . 10 2152 DOI:10.1038/s41467-019-10098-zhttp://doi.org/10.1038/s41467-019-10098-z .
Chang, M.; Meng, L.; Wang, Y.; Ke, X.; Yi, Y. Q . Q.; Zheng, N.; Zheng, W.; Xie, Z.; Zhang, M.; Yi, Y.; Zhang, H.; Wan, X.; Li, C.; Chen, Y. Achieving an efficient and stable morphology in organic solar cells via fine-tuning the side chains of small-molecule acceptors . Chem. Mater. , 2020 . 32 2593 -2604 . DOI:10.1021/acs.chemmater.0c00097http://doi.org/10.1021/acs.chemmater.0c00097 .
Ma, L.; Zhang, S.; Zhu, J.; Wang, J.; Ren, J.; Zhang, J.; Hou, J . Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell . Nat. Commun. , 2021 . 12 5093 DOI:10.1038/s41467-021-25394-whttp://doi.org/10.1038/s41467-021-25394-w .
Zhao, J.; Xu, X.; Yu, L.; Li, R.; Li, Y.; Peng, Q . Highly efficient non-fused-ring electron acceptors enabled by the conformational lock and structural isomerization effects . ACS Appl. Mater. Interfaces , 2021 . 13 25214 -25223 . DOI:10.1021/acsami.1c06299http://doi.org/10.1021/acsami.1c06299 .
Cao, J.; Qu, S.; Yang, L.; Wang, H.; Du, F.; Yu, J.; Tang, W . Asymmetric simple unfused acceptor enabling over 12% efficiency organic solar cells . Chem. Eng. J. , 2021 . 412 128770 DOI:10.1016/j.cej.2021.128770http://doi.org/10.1016/j.cej.2021.128770 .
Peng, W.; Zhang, G.; Zhu, M.; Xia, H.; Zhang, Y.; Tan, H.; Liu, Y.; Chi, W.; Peng, Q.; Zhu, W . Simple-structured nir-absorbing small-molecule acceptors with a thiazolothiazole core: multiple noncovalent conformational locks and d-a effect for efficient OSCs . ACS Appl. Mater. Interfaces , 2019 . 11 48128 -48133 . DOI:10.1021/acsami.9b16686http://doi.org/10.1021/acsami.9b16686 .
Zhang, X.; Qin, L.; Liu, X.; Zhang, C.; Yu, J.; Xiao, Z.; Zheng, N.; Wang, B.; Wei, Y.; Xie, Z.; Wu, Y.; Wei, Z.; Wang, K.; Gao, F.; Ding, L.; Huang, H . Enhancing the photovoltaic performance of triplet acceptors enabled by side-chain engineering . Solar RRL , 2021 . 5 2100522 DOI:10.1002/solr.202100522http://doi.org/10.1002/solr.202100522 .
Liu, X.; Wei, Y.; Zhang, X.; Qin, L.; Wei, Z.; Huang, H . An A-D-A’-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency . Sci. China Chem. , 2021 . 64 228 -231 . DOI:10.1007/s11426-020-9868-8http://doi.org/10.1007/s11426-020-9868-8 .
Gu, X.; Wei, Y.; Liu, X.; Yu, N.; Li, L.; Han, Z.; Gao, J.; Li, C.; Wei, Z.; Tang, Z.; Zhang, X.; Huang, H . Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells . Sci. China Chem. , 2022 . 65 926 -933 . DOI:10.1007/s11426-022-1222-yhttp://doi.org/10.1007/s11426-022-1222-y .
Huang, H.; Chen, Z.; Ponce Ortiz, R.; Newman, C.; Usta, H.; Lou, S.; Youn, J.; Noh, Y. Y.; Baeg, K. J.; Chen, L. X.; Facchetti, A.; Marks, T. J . Combining electron-neutral building blocks with intramolecular "conformational locks" affords stable, high-mobility p- and n-channel polymer semiconductors . J. Am. Chem. Soc. , 2012 . 134 10966 -73 . DOI:10.1021/ja303401shttp://doi.org/10.1021/ja303401s .
Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J . Organic and polymeric semiconductors enhanced by noncovalent conformational locks . Chem. Rev. , 2017 . 117 10291 -10318 . DOI:10.1021/acs.chemrev.7b00084http://doi.org/10.1021/acs.chemrev.7b00084 .
Yu, S.; Peng, A.; Zhang, S.; Huang, H . Noncovalent conformational locks in organic semiconductors . Sci. China Chem. , 2018 . 61 1359 -1367 . DOI:10.1007/s11426-018-9315-2http://doi.org/10.1007/s11426-018-9315-2 .
Wen, T. J.; Liu, Z. X.; Chen, Z.; Zhou, J.; Shen, Z.; Xiao, Y.; Lu, X.; Xie, Z.; Zhu, H.; Li, C. Z.; Chen, H . Simple non-fused electron acceptors leading to efficient organic photovoltaics . Angew. Chem. Int. Ed. , 2021 . 60 12964 -12970 . DOI:10.1002/anie.202101867http://doi.org/10.1002/anie.202101867 .
Geng, S. Z.; Yang, W. T.; Gao, J.; Li, S. X.; Shi, M. M.; Lau, T. K.; Lu, X. H.; Li, C. Z.; Chen, H. Z . Non-fullerene acceptors with a thieno[3,4-c]pyrrole-4,6-dione (TPD) core for efficient organic solar cells . Chinese J. Polym. Sci. , 2019 . 37 1005 -1014 . DOI:10.1007/s10118-019-2309-xhttp://doi.org/10.1007/s10118-019-2309-x .
Zhang, X.; Qin, L.; Li, L.; Liu, X.; Wei, Y.; Huang, H . A new noncovalently fused-ring electron acceptor based on 3,7-dialkyloxybenzo[1,2-b:4,5-b']dithiophene for low-cost and high-performance organic solar cells . Macromol. Rapid Commun. , 2022 . 43 2200085 DOI:10.1002/marc.202200085http://doi.org/10.1002/marc.202200085 .
Li, C.; Gu, X.; Chen, Z.; Han, X.; Yu, N.; Wei, Y.; Gao, J.; Chen, H.; Zhang, M.; Wang, A.; Zhang, J.; Wei, Z.; Peng, Q.; Tang, Z.; Hao, X.; Zhang, X.; Huang, H . Achieving record-efficiency organic solar cells upon tuning the conformation of solid additives . J. Am. Chem. Soc. , 2022 . 144 14731 DOI:10.1021/jacs.2c05303http://doi.org/10.1021/jacs.2c05303 .
Yi, Y. Q . Q.; Feng, H.; Ke, X.; Yan, J.; Chang, M.; Wan, X.; Li, C.; Chen, Y. A cyclopentadithiophene-bridged small molecule acceptor with near-infrared light absorption for efficient organic solar cells . J. Mater. Chem. C , 2019 . 7 4013 -4019 . DOI:10.1039/C9TC00162Jhttp://doi.org/10.1039/C9TC00162J .
Hu, X.; Zhong, C., Li, X.; Jia, X.; Wei, Y.; Xie, L . Synthesis and application of cyclopentadithiophene derivatives . Acta Chim. Sinica , 2021 . 79 953 -966 . DOI:10.6023/A21050196http://doi.org/10.6023/A21050196 .
Zhang, X.; Qin, L.; Yu, J.; Li, Y.; Wei, Y.; Liu, X.; Lu, X.; Gao, F.; Huang, H . High-performance noncovalently fused-ring electron acceptors for organic solar cells enabled by noncovalent intramolecular interactions and end-group engineering . Angew. Chem. Int. Ed. , 2021 . 60 12475 -12484 . DOI:10.1002/anie.202100390http://doi.org/10.1002/anie.202100390 .
Pang, S.; Zhou, X.; Zhang, S.; Tang, H.; Dhakal, S.; Gu, X.; Duan, C.; Huang, F.; Cao, Y . Nonfused nonfullerene acceptors with an A-D-A′-D-A framework and a benzothiadiazole core for high-performance organic solar cells . ACS Appl. Mater. Interfaces , 2020 . 12 16531 -16540 . DOI:10.1021/acsami.0c01850http://doi.org/10.1021/acsami.0c01850 .
Altman, R. A.; Buchwald, S. L . Pd-catalyzed Suzuki–Miyaura reactions of aryl halides using bulky biarylmonophosphine ligands . Nat. Protoc. , 2007 . 2 3115 -3121 . DOI:10.1038/nprot.2007.411http://doi.org/10.1038/nprot.2007.411 .
Bruno, N. C.; Niljianskul, N.; Buchwald, S. L . N-substituted 2-aminobiphenylpalladium methanesulfonate precatalysts and their use in C–C and C–N cross-couplings . J. Org. Chem. , 2014 . 79 4161 -4166 . DOI:10.1021/jo500355khttp://doi.org/10.1021/jo500355k .
Zhang, X.; Qin, L.; Li, Y.; Yu, J.; Chen, H.; Gu, X.; Wei, Y.; Lu, X.; Gao, F.; Huang, H . High-performance all-small-molecule organic solar cells enabled by regio-isomerization of noncovalently conformational locks . Adv. Funct. Mater. , 2022 . 32 2112433 DOI:10.1002/adfm.202112433http://doi.org/10.1002/adfm.202112433 .
Marcus, R. A . Electron transfer reactions in chemistry: theory and experiment (Nobel Lecture) . Angew. Chem. Int. Ed. , 1993 . 32 1111 -1121 . DOI:10.1002/anie.199311113http://doi.org/10.1002/anie.199311113 .
Yu, H.; Qi, Z.; Li, X.; Wang, Z.; Zhou, W.; Ade, H.; Yan, H.; Chen, K . Modulating energy level on an A-D-A′-D-A-type unfused acceptor by a benzothiadiazole core enables organic solar cells with simple procedure and high performance . Solar RRL , 2020 . 4 2000421 DOI:10.1002/solr.202000421http://doi.org/10.1002/solr.202000421 .
Cao, J.; Wang, H.; Qu, S.; Yu, J.; Yang, L.; Zhang, Z.; Du, F.; Tang, W . 2D side-chain engineered asymmetric acceptors enabling over 14% efficiency and 75% fill factor stable organic solar cells . Adv. Funct. Mater. , 2020 . 30 2006141 DOI:10.1002/adfm.202006141http://doi.org/10.1002/adfm.202006141 .
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution