a.CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
b.College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
c.School of Chemistry, Beihang University, Beijing 100191, China
d.School of Engineering and Technology, China University of Geosciences(Beijing), Beijing 100083, China
e.The Department of thoraciccardio surgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
jysyhan@126.com (B.H.)
zhanghong@nanoctr.cn (H.Z.)
zhouhq@nanoctr.cn (H.Q.Z.)
Scan for full text
Yan-Fu Liu, Si-Wen Zhang, Yan-Xun Li, et al. Solution-processed Molybdenum Oxide Hole Transport Layer Stabilizes Organic Solar Cells. [J]. Chinese Journal of Polymer Science 41(2):202-211(2023)
Yan-Fu Liu, Si-Wen Zhang, Yan-Xun Li, et al. Solution-processed Molybdenum Oxide Hole Transport Layer Stabilizes Organic Solar Cells. [J]. Chinese Journal of Polymer Science 41(2):202-211(2023) DOI: 10.1007/s10118-022-2873-3.
A stable molybdenum oxide (MoOx) hole transport layer with low cost was prepared by adjusting the state of the precursor solution with an alcoholic solution of molybdenum acetylacetonate through an oxidant. MoOx HTL exhibits good applicability while showing excellent performance in both ternary and all-polymer systems.
The hole transport layer (HTL) affects the device performance and stability of organic solar cells. In this work, a stable molybdenum oxide (MoO,x,) hole transport layer with low cost was prepared by adjusting the state of the precursor solution with an alcoholic solution of molybdenum acetylacetonate through an oxidant. The MoO,x, transport layer has good transmittance with a work function of 5.07 eV and higher surface energy. The PM6:Y6 devices using MoO,x, HTL achieve a high efficiency of 16.8%. MoO,x, HTL exhibits good applicability with excellent performance in both ternary and all-polymer systems. Air storage stability ,T,80, of the all-polymer device using MoO,x, HTL was over 600 h, much higher than 70 h of the PEDOT:PSS-based device, and its thermal stability at 85 °C and operational stability under light show better stability than that of the PEDOT:PSS hole transport layer. This work provides a facile and low-cost method to fabricate HTL for organic solar cells, which is beneficial to improve their efficiency and stability.
Hole transport layerMolybdenum oxideStability
Burlingame, Q.; Ball, M.; Loo, Y. L . It’s time to focus on organic solar cell stability . Nat. Energy , 2020 . 5 947 -949 . DOI:10.1038/s41560-020-00732-2http://doi.org/10.1038/s41560-020-00732-2 .
Riede, M.; Spoltore, D.; Leo, K . Organic solar cells—the path to commercial success . Adv. Energy Mater. , 2021 . 11 2002653 DOI:10.1002/aenm.202002653http://doi.org/10.1002/aenm.202002653 .
Liu, H.; Wang, W.; Zhou, Y.; Li, Z. a . A ring-locking strategy to enhance the chemical and photochemical stability of A-D-A-type non-fullerene acceptors . J. Mater. Chem. A , 2021 . 9 1080 -1088 . DOI:10.1039/D0TA09924Dhttp://doi.org/10.1039/D0TA09924D .
Liu, Y.; Liu, B.; Ma, C. Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z. G.; Bo, Z . Recent progress in organic solar cells. (Part II device engineering) . Sci. China Chem. , 2022 . 65 1457 -1497 . DOI:10.1007/s11426-022-1256-8http://doi.org/10.1007/s11426-022-1256-8 .
Liu, B. Q.; Xu, Y. H.; Xia, D. D.; Xiao, C. Y.; Yang, Z. F.; Li, W. W . Semitransparent organic solar cells based on non-fullerene electron acceptors . Acta Phys.-Chim. Sin. , 2021 . 37 2009056 .
Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J . Single-junction organic photovoltaic cell with 19% efficiency . Adv. Mater. , 2021 . 33 e2102420 DOI:10.1002/adma.202102420http://doi.org/10.1002/adma.202102420 .
Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C. C.; MacKenzie, R. C . I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology . Nat. Mater. , 2022 . 21 656 -663 . DOI:10.1038/s41563-022-01244-yhttp://doi.org/10.1038/s41563-022-01244-y .
Chen, L. M.; Xu, Z.; Hong, Z.; Yang, Y . Interface investigation and engineering—achieving high performance polymer photovoltaic devices . J. Mater. Chem. , 2010 . 20 2575 -2598 . DOI:10.1039/b925382chttp://doi.org/10.1039/b925382c .
Yin, Z.; Wei, J.; Zheng, Q . Interfacial materials for organic solar cells: recent advances and perspectives . Adv. Sci. , 2016 . 3 1500362 DOI:10.1002/advs.201500362http://doi.org/10.1002/advs.201500362 .
Xu, X.; Peng, Q . Hole/electron transporting materials for nonfullerene organic solar cells . Chem. Eur. J. , 2022 . 28 e202104453 .
Liu, Z. S.; Li, Y. W.; Zhao, X. J.; Zhu, Y. F.; Lin, Y. Z . Revealing the unusual efficiency enhancement of organic solar cells with polymer-donor-treated cathode contacts . Chinese J. Polym. Sci. , 2022 . 40 937 -943 . DOI:10.1007/s10118-022-2754-9http://doi.org/10.1007/s10118-022-2754-9 .
Li, Y.; Zhang, Z.; Han, X.; Li, T.; Lin, Y . Fine-tuning contact via complexation for high-performance organic solar cells . CCS Chem. , 2022 . 4 1087 -1097 . DOI:10.31635/ccschem.021.202100832http://doi.org/10.31635/ccschem.021.202100832 .
Xu, H.; Yuan, F.; Zhou, D.; Liao, X.; Chen, L.; Chen, Y . Hole transport layers for organic solar cells: recent progress and prospects . J. Mater. Chem. A , 2020 . 8 11478 -11492 . DOI:10.1039/D0TA03511Dhttp://doi.org/10.1039/D0TA03511D .
Han, W.; Ren, G.; Liu, J.; Li, Z.; Bao, H.; Liu, C.; Guo, W . Recent progress of inverted perovskite solar cells with a modified PEDOT:PSS hole transport layer . ACS Appl. Mater. Interfaces , 2020 . 12 49297 -49322 . DOI:10.1021/acsami.0c13576http://doi.org/10.1021/acsami.0c13576 .
Voroshazi, E.; Verreet, B.; Buri, A.; Müller, R.; Di Nuzzo, D.; Heremans, P . Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells . Org. Electron. , 2011 . 12 736 -744 . DOI:10.1016/j.orgel.2011.01.025http://doi.org/10.1016/j.orgel.2011.01.025 .
Norrman, K.; Madsen, M. V.; Gevorgyan, S. A.; Krebs, F. C . Degradation patterns in water and oxygen of an inverted polymer solar cell . J. Am. Chem. Soc. , 2010 . 132 16883 -16892 . DOI:10.1021/ja106299ghttp://doi.org/10.1021/ja106299g .
Lloyd, M. T.; Peters, C. H.; Garcia, A.; Kauvar, I. V.; Berry, J. J.; Reese, M. O.; McGehee, M. D.; Ginley, D. S.; Olson, D. C . Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics . Sol. Energy Mater. Sol. Cells , 2011 . 95 1382 -1388 . DOI:10.1016/j.solmat.2010.12.036http://doi.org/10.1016/j.solmat.2010.12.036 .
Zeng, M.; Wang, X.; Ma, R.; Zhu, W.; Li, Y.; Chen, Z.; Zhou, J.; Li, W.; Liu, T.; He, Z.; Yan, H.; Huang, F.; Cao, Y . Dopamine semiquinone radical doped PEDOT:PSS: enhanced conductivity, work function and performance in organic solar cells . Adv. Energy Mater. , 2020 . 10 2000743 DOI:10.1002/aenm.202000743http://doi.org/10.1002/aenm.202000743 .
Cui, H. Q.; Peng, R. X.; Song, W.; Zhang, J. F.; Huang, J. M.; Zhu, L. Q.; Ge, Z. Y . Optimization of ethylene glycol doped pedot:pss transparent electrodes for flexible organic solar cells by drop-coating method . Chinese J. Polym. Sci. , 2019 . 37 760 -766 . DOI:10.1007/s10118-019-2257-5http://doi.org/10.1007/s10118-019-2257-5 .
Zheng, Z.; Hu, Q.; Zhang, S.; Zhang, D.; Wang, J.; Xie, S.; Wang, R.; Qin, Y.; Li, W.; Hong, L.; Liang, N.; Liu, F.; Zhang, Y.; Wei, Z.; Tang, Z.; Russell, T. P.; Hou, J.; Zhou, H . A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer . Adv. Mater. , 2018 . 30 1801801 DOI:10.1002/adma.201801801http://doi.org/10.1002/adma.201801801 .
Yan, L.; Wang, Y.; Wei, J.; Ji, G.; Gu, H.; Li, Z.; Zhang, J.; Luo, Q.; Wang, Z.; Liu, X.; Xu, B.; Wei, Z.; Ma, C. Q . Simultaneous performance and stability improvement of polymer:fullerene solar cells by doping with piperazine . J. Mater. Chem. A , 2019 . 7 7099 -7108 . DOI:10.1039/C8TA12109Ehttp://doi.org/10.1039/C8TA12109E .
Li, Y.; Ding, J.; Liang, C.; Zhang, X.; Zhang, J.; Jakob, D . S.; Wang, B.; Li, X.; Zhang, H.; Li, L.; Yang, Y.; Zhang, G.; Zhang, X.; Du, W.; Liu, X.; Zhang, Y.; Zhang, Y.; Xu, X.; Qiu, X.; Zhou, H. Nanoscale heterogeneous distribution of surface energy at interlayers in organic bulk-heterojunction solar cells . Joule , 2021 . 5 3154 -3168 . DOI:10.1016/j.joule.2021.09.001http://doi.org/10.1016/j.joule.2021.09.001 .
Gong, Y.; Dong, Y.; Zhao, B.; Yu, R.; Hu, S.; Tan, Z. A . Diverse applications of MoO3 for high performance organic photovoltaics: fundamentals, processes and optimization strategies . J. Mater. Chem. A , 2020 . 8 978 -1009 . DOI:10.1039/C9TA12005Jhttp://doi.org/10.1039/C9TA12005J .
Tran, H. N.; Dao, D. Q.; Yoon, Y. J.; Shin, Y. S.; Choi, J. S.; Kim, J. Y.; Cho, S . Inverted polymer solar cells with annealing-free solution-processable NiO . Small , 2021 . 17 e2101729 DOI:10.1002/smll.202101729http://doi.org/10.1002/smll.202101729 .
Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A . Transition metal oxides for organic electronics energetics, device physics and applications . Adv. Mater. , 2012 . 24 5408 -5427 . DOI:10.1002/adma.201201630http://doi.org/10.1002/adma.201201630 .
Bao, X.; Zhu, Q.; Wang, T.; Guo, J.; Yang, C.; Yu, D.; Wang, N.; Chen, W.; Yang, R . Simple O2 plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells . ACS Appl. Mater. Interfaces , 2015 . 7 7613 -7618 . DOI:10.1021/acsami.5b00091http://doi.org/10.1021/acsami.5b00091 .
Ameen, M. Y.; Shamjid, P.; Abhijith, T.; Reddy, V. S . Solution processed transition metal oxide anode buffer layers for efficiency and stability enhancement of polymer solar cells . Opt. Mater. , 2018 . 75 491 -500 . DOI:10.1016/j.optmat.2017.11.006http://doi.org/10.1016/j.optmat.2017.11.006 .
Wang, F.; Tan, Z. a.; Li, Y . Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells . Energy Environ. Sci. , 2015 . 8 1059 -1091 . DOI:10.1039/C4EE03802Ahttp://doi.org/10.1039/C4EE03802A .
Che, X.; Chung, C. L.; Hsu, C. C.; Liu, F.; Wong, K. T.; Forrest, S. R . Donor-acceptor-acceptor's molecules for vacuum-deposited organic photovoltaics with efficiency exceeding 9% . Adv. Energy Mater. , 2018 . 8 1703603 DOI:10.1002/aenm.201703603http://doi.org/10.1002/aenm.201703603 .
Meyer, J.; Shu, A.; Kröger, M.; Kahn, A . Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces . Appl. Phys. Lett. , 2010 . 96 133308 DOI:10.1063/1.3374333http://doi.org/10.1063/1.3374333 .
Zhang, G.; Xiong, T.; Yan, M.; He, L.; Liao, X.; He, C.; Yin, C.; Zhang, H.; Mai, L . α-MoO3-x by plasma etching with improved capacity and stabilized structure for lithium storage . Nano Energy , 2018 . 49 555 -563 . DOI:10.1016/j.nanoen.2018.04.075http://doi.org/10.1016/j.nanoen.2018.04.075 .
Alsaif, M. M. Y. A.; Balendhran, S.; Field, M. R.; Latham, K.; Wlodarski, W.; Ou, J. Z.; Kalantar-zadeh, K . Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: application for H2 gas sensing . Sens. Actuators, B , 2014 . 192 196 -204 . DOI:10.1016/j.snb.2013.10.107http://doi.org/10.1016/j.snb.2013.10.107 .
Wei, Y. Q.; Sun, C.; Chen, Q. S.; Wang, M. S.; Guo, G. C . Significant enhancement of conductance of a hybrid layered molybdate semiconductor by light or heat . Chem. Commun. , 2018 . 54 14077 -14080 . DOI:10.1039/C8CC08220Khttp://doi.org/10.1039/C8CC08220K .
Yang, T.; Wang, M.; Cao, Y.; Huang, F.; Huang, L.; Peng, J.; Gong, X.; Cheng, S. Z. D.; Cao, Y . Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer . Adv. Energy Mater. , 2012 . 2 523 -527 . DOI:10.1002/aenm.201100598http://doi.org/10.1002/aenm.201100598 .
Tan, Z. A.; Qian, D.; Zhang, W.; Li, L.; Ding, Y.; Xu, Q.; Wang, F.; Li, Y. . Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer . J. Mater. Chem. A , 2013 . 1 657 -664 . DOI:10.1039/C2TA00325Bhttp://doi.org/10.1039/C2TA00325B .
Dong, W. J.; Jung, G. H.; Lee, J.-L . Solution-processed-MoO3 hole extraction layer on oxygen plasma-treated indium tin oxide in organic photovoltaics . Sol. Energy Mater. Sol. Cells , 2013 . 116 94 -101 . DOI:10.1016/j.solmat.2013.04.005http://doi.org/10.1016/j.solmat.2013.04.005 .
Qiu, W.; Hadipour, A.; Muller, R.; Conings, B.; Boyen, H . G.; Heremans, P.; Froyen, L. Ultrathin ammonium heptamolybdate films as efficient room-temperature hole transport layers for organic solar cells . ACS Appl. Mater. Interfaces , 2014 . 6 16335 -16343 . DOI:10.1021/am504606uhttp://doi.org/10.1021/am504606u .
Cai, P.; Ren, P.; Huang, X.; Zhang, X.; Zhan, T.; Xiong, J.; Xue, X.; Wang, Z.; Zhang, J.; Chen, J . An ultraviolet-deposited MoO3 film as anode interlayer for high-performance polymer solar cells . Adv. Mater. Interfaces , 2020 . 7 1901912 DOI:10.1002/admi.201901912http://doi.org/10.1002/admi.201901912 .
Yang, B.; Chen, Y.; Cui, Y.; Liu, D.; Xu, B.; Hou, J . Over 100-nm-thick MoOx films with superior hole collection and transport properties for organic solar cells . Adv. Energy Mater. , 2018 . 8 1800698 DOI:10.1002/aenm.201800698http://doi.org/10.1002/aenm.201800698 .
Kang, Q.; Zheng, Z.; Zu, Y.; Liao, Q.; Bi, P.; Zhang, S.; Yang, Y.; Xu, B.; Hou, J . n-Doped inorganic molecular clusters as a new type of hole transport material for efficient organic solar cells . Joule , 2021 . 5 646 -658 . DOI:10.1016/j.joule.2021.01.011http://doi.org/10.1016/j.joule.2021.01.011 .
Tran, H. N.; Park, S.; Wibowo, F. T. A.; Krishna, N. V.; Kang, J. H.; Seo, J. H.; Nguyen-Phu, H.; Jang, S. Y.; Cho, S . 17% Non-fullerene organic solar cells with annealing-free aqueous MoOx . Adv. Sci. , 2020 . 7 2002395 DOI:10.1002/advs.202002395http://doi.org/10.1002/advs.202002395 .
Zha, W.; Gu, H.; Pan, W.; Sun, X.; Han, Y.; Li, Z.; Weng, X.; Luo, Q.; Yang, S.; Ma, C. Q . Controllable synthesis and n-doping of HMoOx nanoparticle inks through simple photoreduction for solution-processed organic photovoltaics . Chem. Eng. J. , 2021 . 425 130620 DOI:10.1016/j.cej.2021.130620http://doi.org/10.1016/j.cej.2021.130620 .
Sheldon, R. A.; Van Doorn, J. A . Metal-catalyzed epoxidation of olefins with organic hydroperoxides: I. A comparison of various metal catalysts . J. Catal. , 1973 . 31 427 -437 . DOI:10.1016/0021-9517(73)90314-Xhttp://doi.org/10.1016/0021-9517(73)90314-X .
Neuenschwander, U.; Negron, A.; Jensen, K. F . A clock reaction based on molybdenum blue . J. Phys. Chem. A , 2013 . 117 4343 -4351 . DOI:10.1021/jp400879dhttp://doi.org/10.1021/jp400879d .
Botar, B.; Ellern, A.; Kogerler, P . Mapping the formation areas of giant molybdenum blue clusters: a spectroscopic study . Dalton Trans. , 2012 . 41 8951 -8959 . DOI:10.1039/c2dt30661ahttp://doi.org/10.1039/c2dt30661a .
Miras, H. N.; Richmond, C. J.; Long, D. L.; Cronin, L . Solution-phase monitoring of the structural evolution of a molybdenum blue nanoring . J. Am. Chem. Soc. , 2012 . 134 3816 -3824 . DOI:10.1021/ja210206zhttp://doi.org/10.1021/ja210206z .
Lopez-Pinto, N.; Tom, T.; Bertomeu, J.; Asensi, J . M.; Ros, E.; Ortega, P.; Voz, C. Deposition and characterisation of sputtered molybdenum oxide thin films with hydrogen atmosphere . Appl. Surf. Sci. , 2021 . 563 150285 DOI:10.1016/j.apsusc.2021.150285http://doi.org/10.1016/j.apsusc.2021.150285 .
de Castro, I. A.; Datta, R. S.; Ou, J . Z.; Castellanos-Gomez, A.; Sriram, S.; Daeneke, T.; Kalantar-Zadeh, K. Molybdenum oxides—from fundamentals to functionality . Adv. Mater. , 2017 . 29 1701619 DOI:10.1002/adma.201701619http://doi.org/10.1002/adma.201701619 .
Wang, Q.; Chueh, C. C.; Eslamian, M.; Jen, A. K. Y . Modulation of PEDOT:PSS pH for efficient inverted perovskite solar cells with reduced potential loss and enhanced stability . ACS Appl. Mater. Interfaces , 2016 . 8 32068 -32076 . DOI:10.1021/acsami.6b11757http://doi.org/10.1021/acsami.6b11757 .
Owens, D. K.; Wendt, R. C . Estimation of the surface free energy of polymers . J. Appl. Polym. Sci. , 1969 . 13 1741 -1747 . DOI:10.1002/app.1969.070130815http://doi.org/10.1002/app.1969.070130815 .
Meng, H.; Liao, C.; Deng, M.; Xu, X.; Yu, L.; Peng, Q. 18 . 77% Efficiency organic solar cells promoted by aqueous solution processed cobalt(II) acetate hole transporting layer . Angew. Chem. Int. Ed. , 2021 . 60 22554 -22561 . DOI:10.1002/anie.202110550http://doi.org/10.1002/anie.202110550 .
Yu, J.; Liu, X.; Zhong, Z.; Yan, C.; Liu, H.; Fong, P. W . K.; Liang, Q.; Lu, X.; Li, G. Copper phosphotungstate as low cost, solution-processed, stable inorganic anode interfacial material enables organic photovoltaics with over 18% efficiency . Nano Energy , 2022 . 94 106923 DOI:10.1016/j.nanoen.2022.106923http://doi.org/10.1016/j.nanoen.2022.106923 .
Cong, S.; Hadipour, A.; Sugahara, T.; Wei, T.; Jiu, J.; Ranjbar, S.; Hirose, Y.; Karakawa, M.; Nagao, S.; Aernouts, T.; Suganuma, K . Modifying the valence state of molybdenum in the efficient oxide buffer layer of organic solar cells via a mild hydrogen peroxide treatment . J. Mater. Chem. C , 2017 . 5 889 -895 . DOI:10.1039/C6TC04461Ahttp://doi.org/10.1039/C6TC04461A .
Li, X.; Choy, W. C . H.; Xie, F.; Zhang, S.; Hou, J. Room-temperature solution-processed molybdenum oxide as a hole transport layer with Ag nanoparticles for highly efficient inverted organic solar cells . J. Mater. Chem. A , 2013 . 1 6614 -6621 . DOI:10.1039/c3ta10531hhttp://doi.org/10.1039/c3ta10531h .
Kim, Y. S.; Kim, T.; Kim, B.; Lee, D. K.; Kim, H.; Ju, B. K.; Kim, K . Transient photovoltage and dark current analysis on enhanced open-circuit voltage of polymer solar cells with hole blocking TiO2 nanoparticle interfacial layer . Org. Electron. , 2013 . 14 1749 -1754 . DOI:10.1016/j.orgel.2013.04.016http://doi.org/10.1016/j.orgel.2013.04.016 .
Xu, Y.; Yuan, J.; Zhou, S.; Seifrid, M.; Ying, L.; Li, B.; Huang, F.; Bazan, G. C.; Ma, W . Ambient processable and stable all-polymer organic solar cells . Adv. Funct. Mater. , 2019 . 29 1806747 DOI:10.1002/adfm.201806747http://doi.org/10.1002/adfm.201806747 .
Li, Z.; Peng, F.; Quan, H.; Qian, X.; Ying, L.; Cao, Y . A universal strategy via polymerizing non-fullerene small molecule acceptors enables efficient all-polymer solar cells with > 1 year excellent thermal stability . Chem. Eng. J. , 2022 . 430 132711 DOI:10.1016/j.cej.2021.132711http://doi.org/10.1016/j.cej.2021.132711 .
Li, Y. W.; Li, T. F.; Wang, J. Y.; Zhan, X. W.; Lin, Y. Z . Intrinsically inert hyperbranched interlayer for enhanced stability of organic solar cells . Sci. Bull. , 2022 . 67 171 -177 . DOI:10.1016/j.scib.2021.09.013http://doi.org/10.1016/j.scib.2021.09.013 .
Liu, T.; Luo, Z.; Chen, Y.; Yang, T.; Xiao, Y.; Zhang, G.; Ma, R.; Lu, X.; Zhan, C.; Zhang, M.; Yang, C.; Li, Y.; Yao, J.; Yan, H . A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15% . Energy Environ. Sci , 2019 . 12 2529 -2536 . DOI:10.1039/C9EE01030Khttp://doi.org/10.1039/C9EE01030K .
Zhang, X.; Yang, S.; Bi, S.; Kumaresan, A.; Zhou, J.; Seifter, J.; Mi, H.; Xu, Y.; Zhang, Y.; Zhou, H . Improved electron extraction by a ZnO nanoparticle interlayer for solution-processed polymer solar cells . RSC Adv. , 2017 . 7 12400 -12406 . DOI:10.1039/C6RA28246Fhttp://doi.org/10.1039/C6RA28246F .
Rafique, S.; Abdullah, S . M.; Sulaiman, K.; Iwamoto, M. Layer by layer characterisation of the degradation process in PCDTBT:PC71BM based normal architecture polymer solar cells . Org. Electron. , 2017 . 40 65 -74 . DOI:10.1016/j.orgel.2016.10.029http://doi.org/10.1016/j.orgel.2016.10.029 .
0
Views
10
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution