a.Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
b.Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China
c.Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
z.hua@ahau.edu.cn (Z.H.)
gml@ustc.edu.cn (G.M.L.)
Scan for full text
Jian Zhang, Jie Zhu, Zan Hua, et al. Specific Ion Effects on the Enzymatic Degradation of Polyester Films. [J]. Chinese Journal of Polymer Science 41(4):476-482(2023)
Jian Zhang, Jie Zhu, Zan Hua, et al. Specific Ion Effects on the Enzymatic Degradation of Polyester Films. [J]. Chinese Journal of Polymer Science 41(4):476-482(2023) DOI: 10.1007/s10118-022-2869-z.
The specific ion effects on the enzymatic degradation of the polyester films are closely related to the ion-specific enzymatic hydrolysis of the ester bonds.
Soil environment on earth contains a variety of ions, which are expected to play a vital role in the biodegradation of plastics discarded in the environment. In this work, poly(butyleneadipate-,co,-terephthalate) (PBAT) is employed as a model biodegradable plastic to study the specific ion effects on the enzymatic degradation of polyester plastics. The results show that the specific ion effects on the enzymatic degradation rate of the PBAT films and on the catalytic rate constant for the enzymatic hydrolysis of the ester bonds are strongly dependent on temperature and ionic strength. Both the enzymatic degradation rate and catalytic rate constant decrease following the trends Na,+,>, K ,+,>, Ca ,2+, and Cl,−,>, SO ,4,2−,>, NO ,3,−, for cations and anions, respectively, indicating that the ion-specific enzymatic degradation of the PBAT films is closely correlated with the specific ion effects on enzymatic hydrolysis of the ester bonds. Our study shows that the specific ion effects on the enzyme activity can be understood by taking into account the ion-specific cation-anion interaction, ionic dispersion force, salting-out effect and salting-in effect. This study of specific ion effects on the enzymatic hydrolysis of the ester bonds and the resultant enzymatic degradation of the PBAT films would offer us a new clue to develop new biodegradable, environmentally friendly synthetic plastics.
Specific ion effectsBiodegradable filmsIon-enzyme interactionsEnzyme activity
Eriksen, M.; Lebreton, L. C. M.; Carson, H. S.; Thiel, M.; Moore, C. J.; Borerro, J. C.; Galgani, F.; Ryan, P. G.; Reisser, J . Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea . PLoS ONE , 2014 . 9 e111913 DOI:10.1371/journal.pone.0111913http://doi.org/10.1371/journal.pone.0111913 .
Halden; R. U . Plastics and health risks . Annu. Rev. Public Health , 2010 . 31 179 -194 . DOI:10.1146/annurev.publhealth.012809.103714http://doi.org/10.1146/annurev.publhealth.012809.103714 .
Zheng, Y.; Liu, D . Research on marine pollution problems and solutions in China from the perspective of marine tourism . J. Mar. Sci. , 2021 . 3 19 -28 . DOI:10.30564/jms.v3i1.2599http://doi.org/10.30564/jms.v3i1.2599 .
Cauwenberghe, L. V.; Vanreusel, A.; Mees, J.; Janssen, C. R . Microplastic pollution in deep-sea sediments . Environ. Pollut. , 2013 . 182 495 -499 . DOI:10.1016/j.envpol.2013.08.013http://doi.org/10.1016/j.envpol.2013.08.013 .
Lusher, A . L.; Burke, A.; O'Connor, I.; Officer, R. Microplastic pollution in the northeast atlantic ocean: validated and opportunistic sampling . Mar. Pollut. Bull. , 2014 . 88 325 -333 . DOI:10.1016/j.marpolbul.2014.08.023http://doi.org/10.1016/j.marpolbul.2014.08.023 .
Mathalon, A.; Hill, P . Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia . Mar. Pollut. Bull. , 2014 . 81 69 -79 . DOI:10.1016/j.marpolbul.2014.02.018http://doi.org/10.1016/j.marpolbul.2014.02.018 .
Leslie, H. A.; J. M. van Velzen, M.; Brandsma, S. H.; Vethaak, D.; Garcia, V.; Juan J.; Lamoree, M. H . Discovery and quantification of plastic particle pollution in human blood . Environ. Int. , 2022 . 163 107199 DOI:10.1016/j.envint.2022.107199http://doi.org/10.1016/j.envint.2022.107199 .
Jenner, L. C.; Rotchell, J. M.; Bennett, R. T.; Cowen, M.; Tentzeris, V.; Sadofsky, L. R . Detection of microplastics in human lung tissue using MuFTIR spectroscopy . Sci. Total. Environ. , 2022 . 831 154907 DOI:10.1016/j.scitotenv.2022.154907http://doi.org/10.1016/j.scitotenv.2022.154907 .
Clapp, J.; Swanston, L . Doing away with plastic shopping bags: international patterns of norm emergence and policy implementation . Environ. Polit. , 2009 . 18 315 -332 . DOI:10.1080/09644010902823717http://doi.org/10.1080/09644010902823717 .
Bean, M. J . Legal strategies for reducing persistent plastics in the marine environment . Mar. Pollut. Bull. , 1987 . 18 357 -360 . DOI:10.1016/S0025-326X(87)80026-7http://doi.org/10.1016/S0025-326X(87)80026-7 .
Lara, O. H.; Spalding, M. J.; Navarrete, A. H.; Park, C. A.; Braestrup, A. In Plastics in the Aquatic Environment-Part II, Springer: 2020; pp 221–254.
Häußler, M.; Eck, M.; Rothauer, D.; Mecking, S . Closed-loop recycling of polyethylene-like materials . Nature , 2021 . 590 423 -427 . DOI:10.1038/s41586-020-03149-9http://doi.org/10.1038/s41586-020-03149-9 .
Baur, M.; Lin, F.; Morgen, T . O.; Odenwald, L.; Mecking, S. Polyethylene materials with in-chain ketones from nonalternating catalytic copolymerization . Science , 2021 . 374 604 -607 . DOI:10.1126/science.abi8183http://doi.org/10.1126/science.abi8183 .
Tian, Y.; Wu, J.; Fang, X.; Guan, L.; Yao, N.; Yang, G.; Wang, Z.; Hua, Z.; Liu, G. M . Rational design of bioinspired nucleobase-containing polymers as tough bioplastics and ultra-strong adhesives . Adv. Funct. Mater. , 2022 . 32 2112741 DOI:10.1002/adfm.202112741http://doi.org/10.1002/adfm.202112741 .
Wu, J.; Lei, H.; Fang, X.; Wang, B.; Yang, G.; O’Reilly, R. K.; Wang, Z.; Hua, Z.; Liu, G. M . Instant strong and responsive underwater adhesion manifested by bioinspired supramolecular polymeric adhesives . Macromolecules , 2022 . 55 2003 -2013 . DOI:10.1021/acs.macromol.1c02361http://doi.org/10.1021/acs.macromol.1c02361 .
Zhao, N.; Cao, X. X.; Shi, J. F.; Li, Z. B . Preparation of degradable polymenthide and its elastomers from biobased menthide via organocatalyzed ring-opening polymerization and UV curing . Chinese J. Polym. Sci. , 2020 . 38 1092 -1098 . DOI:10.1007/s10118-020-2415-9http://doi.org/10.1007/s10118-020-2415-9 .
Ma, C. F.; Yang, H. J.; Zhang, G. Z . Anti-biofouling by degradation of polymers . Chinese J. Polym. Sci. , 2012 . 30 337 -342 . DOI:10.1007/s10118-012-1158-7http://doi.org/10.1007/s10118-012-1158-7 .
Ma, X. T.; Han, G. D.; Zhao, H. Y . Degradable protein-loaded polymer capsules fabricated by thiol-disulfide cross-linking reaction at liquid-liquid interface . Chinese J. Polym. Sci. , 2019 . 37 790 -796 . DOI:10.1007/s10118-019-2253-9http://doi.org/10.1007/s10118-019-2253-9 .
Zhao, H.; Zhang, C.; Crittle, T. D . Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil . J. Mol. Catal. B: Enzym. , 2013 . 85 243 -247. .
Aversa, C.; Barletta, M . Addition of thermoplastic starch (TPS) to binary blends of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT): extrusion compounding, cast extrusion and thermoforming of home compostable materials . Chinese J. Polym. Sci. , 2022 . 40 1269 -1286 . DOI:10.1007/s10118-022-2734-0http://doi.org/10.1007/s10118-022-2734-0 .
Tu, Y. Y.; Wan, X. T.; Huan, J.; Zhu, X.; Li, X. H.; Tu, Y. F . The effect of trifluoroacetic acid on molecular weight determination of polyesters: an in situ NMR investigation . Chinese J. Polym. Sci. , 2021 . 39 1590 -1596 . DOI:10.1007/s10118-021-2605-0http://doi.org/10.1007/s10118-021-2605-0 .
Wang, J. G.; Zhang, X. Q.; Shen, A.; Zhu, J.; Song, P. A.; Wang, H.; Liu, X. Q . Synthesis and properties investigation of thiophene-aromatic polyesters: potential alternatives for the 2,5-furandicarboxylic acid-based ones . Chinese J. Polym. Sci. , 2020 . 38 1082 -1091 . DOI:10.1007/s10118-020-2438-2http://doi.org/10.1007/s10118-020-2438-2 .
Mueller, R. J . Biological degradation of synthetic polyesters—enzymes as potential catalysts for polyester recycling . Proc. Biochem. , 2006 . 41 2124 -2128 . DOI:10.1016/j.procbio.2006.05.018http://doi.org/10.1016/j.procbio.2006.05.018 .
Avella, M.; Vlieger, J.; Errico, M. E.; Fischer, S.; Vacca, P.; Volpe, M. G . Biodegradable starch/clay nanocomposite films for food packaging applications . Food Chem. , 2005 . 93 467 -474 . DOI:10.1016/j.foodchem.2004.10.024http://doi.org/10.1016/j.foodchem.2004.10.024 .
Luc, Avérous . Biodegradable multiphase systems based on plasticized starch: a review . J. Macromol. Sci., Part C: Polym. Rev. , 2004 . 44 231 -274 . DOI:10.1081/MC-200029326http://doi.org/10.1081/MC-200029326 .
Flieger, M.; Kantorová, M.; Prell, A.; Ezanka, T.; Votruba, J . Biodegradable plastics from renewable sources . Folia Microbiol. , 2003 . 48 27 -44 . DOI:10.1007/BF02931273http://doi.org/10.1007/BF02931273 .
Nawrath, C.; Poirier, Y.; Somerville, C . Plant polymers for biodegradable plastics: cellulose, starch and poly- hydroxyalkanoates . Mol. Breed. , 1995 . 1 105 -122 . DOI:10.1007/BF01249696http://doi.org/10.1007/BF01249696 .
Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y. X; Leibfarth, F. A.; Sardon, H . Critical advances and future opportunities in upcycling commodity polymers . Nature , 2022 . 603 803 -814 . DOI:10.1038/s41586-021-04350-0http://doi.org/10.1038/s41586-021-04350-0 .
Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K . A bacterium that degrades and assimilates poly(ethylene terephthalate) . Science , 2016 . 351 1196 -1199 . DOI:10.1126/science.aad6359http://doi.org/10.1126/science.aad6359 .
Song, J.; Murphy, R.; Narayan, R.; Davies, G . Biodegradable and compostable alternatives to conventional plastics . Philosophical Transactions of the Royal Soc. B: Biol. Sci. , 2009 . 364 2127 -2139 . DOI:10.1098/rstb.2008.0289http://doi.org/10.1098/rstb.2008.0289 .
Yu, Y.; Griffin, L. Deirdre E; Miles, C. A.; Hayes, D. G.; Flury, M . Are micro- and nanoplastics from soil-biodegradable plastic mulches an environmental concern . J. Hazard. Mater. Adv. , 2021 . 4 100024 DOI:10.1016/j.hazadv.2021.100024http://doi.org/10.1016/j.hazadv.2021.100024 .
Zhu, J.; Pan, J. S.; Ma, C. F.; Zhang, G. Z.; Liu, G. M . Specific ion effects on the enzymatic degradation of polymeric marine antibiofouling materials . Langmuir , 2019 . 35 11157 -11166 . DOI:10.1021/acs.langmuir.9b01740http://doi.org/10.1021/acs.langmuir.9b01740 .
Hofmeister, F . Zur lehre von der wirkung der salze: zweite mittheilung . Pathol. Pharmakol. , 1888 . 24 247 -260. .
Zhang, Y.; Cremer, P. S . Interactions between macromolecules and ions: the Hofmeister series . Curr. Opin. Chem. Biol. , 2006 . 10 658 -663 . DOI:10.1016/j.cbpa.2006.09.020http://doi.org/10.1016/j.cbpa.2006.09.020 .
Xie, W. J.; Gao, Y. Q . A Simple theory for the hofmeister series . J. Phys. Chem. Lett. , 2013 . 4 4247 -4252 . DOI:10.1021/jz402072ghttp://doi.org/10.1021/jz402072g .
Fox, J. M.; Kang, K.; Sherman, W.; Héroux, A.; Sastry, G. M.; Baghbanzadeh, M.; Lockett, M. R.; Whitesides, G. M . Interactions between Hofmeister anions and the binding pocket of a protein . J. Am. Chem. Soc. , 2015 . 137 3859 -3866 . DOI:10.1021/jacs.5b00187http://doi.org/10.1021/jacs.5b00187 .
Parsons, D. F.; Boström, M.; Nostro, P. L.; Ninham, B. W . Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size . Phys. Chem. Chem. Phys. , 2011 . 13 12352 -12367 . DOI:10.1039/c1cp20538bhttp://doi.org/10.1039/c1cp20538b .
Parsons, D. F.; Ninham, B. W . Importance of accurate dynamic polarizabilities for the ionic dispersion interactions of alkali halides . Langmuir , 2010 . 26 1816 -1823 . DOI:10.1021/la902533xhttp://doi.org/10.1021/la902533x .
Mazzini, V.; Craig, V. S . What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents. . Chem. Sci. , 2017 . 8 7052 -7065 . DOI:10.1039/C7SC02691Ahttp://doi.org/10.1039/C7SC02691A .
Mazzini, V.; Craig, V. S . Volcano plots emerge from a sea of nonaqueous solvents: the law of matching water affinities extends to all solvents . ACS Cent. Sci. , 2018 . 4 1056 -1064 . DOI:10.1021/acscentsci.8b00348http://doi.org/10.1021/acscentsci.8b00348 .
Lian, L. L.; Xu, S. Y.; Yuan, H. Y.; Liu, G. M . The anion binding affinity determines the strength of anion specificities of thermosensitive polymers . Chinese J. Polym. Sci. , 2021 . 39 1351 -1356 . DOI:10.1007/s10118-021-2633-9http://doi.org/10.1007/s10118-021-2633-9 .
Liu, L. P.; Long, X. H.; Shao, H. B.; Liu, Z. P.; Tao, Y.; Zhou, Q. S.; Zong, J. Q . Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province, China . Ecol. Eng. , 2015 . 81 328 -334 . DOI:10.1016/j.ecoleng.2015.04.032http://doi.org/10.1016/j.ecoleng.2015.04.032 .
Yang, C.; Zhang, Y.; Li, C.; W. C . Ion composition and content changes of greenhouse soil in Ningxia . Acta Agric. Boreali Occidentalis Sin. , 2014 . 23 201 -206. .
Mihray, X.; Ümüt, H.; Zulpiya, M.; Maierdang, K . Relationship between the major ion composition and the salinity of selected soil along the oasis shelter forests in Xinjiang . Northern Horticulture , 2019 . 4 117 -123. .
Bauduin, P.; Nohmie, F.; Touraud, D.; Neueder, R.; Kunz, W.; Ninham, B. W . Hofmeister specific-ion effects on enzyme activity and buffer pH: horseradish peroxidase in citrate buffer . J. Mol. Liq. , 2006 . 123 14 -19 . DOI:10.1016/j.molliq.2005.03.003http://doi.org/10.1016/j.molliq.2005.03.003 .
Salis, A.; Bilanicova, D.; Ninham, B. W.; Monduzzi, M . Hofmeister effects in enzymatic activity: weak and strong electrolyte influences on the activity of Candida Rugosa lipase . J. Phys. Chem. B , 2007 . 111 1149 -1156 . DOI:10.1021/jp066346zhttp://doi.org/10.1021/jp066346z .
Carucci, C.; Haltenort, P.; Salazar, M.; Salis, A.; Magner, E . Hofmeister phenomena in bioelectrochemistry: the supporting electrolyte affects the response of glucose electrodes . Chem. Electro. Chem. , 2015 . 2 659 -663 . DOI:10.1002/celc.201402412http://doi.org/10.1002/celc.201402412 .
Těpánková, V.; Paterová, J.; Damborsky, J.; Jungwirth, P.; Chaloupková, R.; Heyda, J . Cation-specific effects on enzymatic catalysis driven by interactions at the tunnel mouth . J. Phys. Chem. B , 2013 . 117 6394 -402 . DOI:10.1021/jp401506vhttp://doi.org/10.1021/jp401506v .
Piluso, S.; Lendlein, A.; Neffe, A. T . Enzymatic action as switch of bulk to surface degradation of clicked gelatin-based networks . Polym. Adv. Technol. , 2017 . 28 1318 -1324 . DOI:10.1002/pat.3962http://doi.org/10.1002/pat.3962 .
Yan, C. Y.; Xue, Z. M.; Zhao, W. C.; Wang, J. F.; Mu, T. C . Surprising Hofmeister effects on the bending vibration of water . Chemphyschem , 2016 . 17 3309 -3314 . DOI:10.1002/cphc.201600551http://doi.org/10.1002/cphc.201600551 .
Yan, C. Y.; Mu, T. C . Molecular understanding of ion specificity at the peptide bond . Phys. Chem. Chem. Phys. , 2015 . 17 3241 -3249 . DOI:10.1039/C4CP04055Dhttp://doi.org/10.1039/C4CP04055D .
Pastor, I.; Vilaseca, E.; Madurga, S.; Garcés, J . L.; Cascante, M.; Mas, F. Effect of crowding by dextrans on the hydrolysis of N-succinyl-l-phenyl-ala-p-nitroanilide catalyzed by α-chymotrypsin . J. Phys. Chem. B , 2011 . 115 1115 -1121 . DOI:10.1021/jp105296chttp://doi.org/10.1021/jp105296c .
Crawford, D. L.; Powers, D. A . Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B Locus in the Fish Fundulus Heteroclitus . Proc. Natl. Acad. Sci. U. S. A. , 1989 . 86 9365 -9369 . DOI:10.1073/pnas.86.23.9365http://doi.org/10.1073/pnas.86.23.9365 .
Zhang, J.; Cai, H. T.; Tang, L.; Liu, G. M . Tuning the pH response of weak polyelectrolyte brushes with specific anion effects . Langmuir , 2018 . 34 12419 -12427 . DOI:10.1021/acs.langmuir.8b02776http://doi.org/10.1021/acs.langmuir.8b02776 .
Liu, L. D; Kou, R.; Liu, G. M . Ion specificities of artificial macromolecules . Soft Matter , 2017 . 13 68 -80 . DOI:10.1039/C6SM01773Hhttp://doi.org/10.1039/C6SM01773H .
Liu, G. M . Tuning the properties of charged polymers at the solid/liquid interface with ions . Langmuir , 2019 . 35 3232 -3247 . DOI:10.1021/acs.langmuir.8b01158http://doi.org/10.1021/acs.langmuir.8b01158 .
Wondrak, E. M.; Louis, J. M.; Oroszlan, S . The effect of salt on the michaelis menten constant of the HIV-1 protease correlates with the Hofmeister series . FEBS Lett. , 1991 . 280 344 -346 . DOI:10.1016/0014-5793(91)80327-Yhttp://doi.org/10.1016/0014-5793(91)80327-Y .
Hyde, A. M.; Zultanski, S. L.; Waldman, J. H.; Zhong, Y . L.; Shevlin, M.; Peng, F. General principles and strategies for salting-out informed by the Hofmeister series . Org. Process Res. Dev. , 2017 . 21 1355 -1370 . DOI:10.1021/acs.oprd.7b00197http://doi.org/10.1021/acs.oprd.7b00197 .
0
Views
8
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution