a.School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
b.Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
c.State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo 256401, China
zhulei1130@outlook.com (L.Z.)
fengliu82@sjtu.edu.cn (F.L.)
Scan for full text
Lei Wang, Jun-Zhe Zhan, Wen-Kai Zhong, et al. The Role of Processing Solvent on Morphology Optimization for Slot-Die Printed Organic Photovoltaics. [J]. Chinese Journal of Polymer Science 41(6):842-850(2023)
Lei Wang, Jun-Zhe Zhan, Wen-Kai Zhong, et al. The Role of Processing Solvent on Morphology Optimization for Slot-Die Printed Organic Photovoltaics. [J]. Chinese Journal of Polymer Science 41(6):842-850(2023) DOI: 10.1007/s10118-022-2866-2.
This work shows the performance of slot-died printed devices processed by different solvents and additive, and points to the effect of three solvent properties (solvent effect on molecular crystallization, boiling point, and interaction parameters) on the film crystallization and phase separation.
The morphology manipulation of the active layers is important for improving the performance of organic photovoltaics (OPVs). The choice of processing solvent has great impact on the crystallization and phase separation during film formation, since solvent properties, including solvent effect on molecular crystallization, boiling point, and interaction parameters, can directly change the evolution pathways associated with thermodynamics and kinetics. Therefore, revealing the underlying solvent-regulated morphology mechanism is potential to provide guiding strategies for device optimization. In this study, chloroform, chlorobenzene, and toluene are used to process PM6:Y6 blends by slot-die printing to fabricate OPV devices. The chloroform printed film forms a fibrillar network morphology with enhanced crystallization, facilitating exciton dissociation, charge transport and extraction, resulting in an optimal power conversion efficiency of 16.22%. However, the addition of the additive chloronaphthalene in chloroform solution leads to over-crystallization of Y6, and thus, increasing domain size that exceeds the exciton diffusion length, resulting in lower device efficiency. In addition, both the chlorobenzene and toluene suppress the crystallization of Y6, which drastically decreased short-circuit current and fill factor. These results demonstrate the important role of processing solvent in dictating film morphology, which critically connects with the resultant printed OPV performance.
Organic solar cellsMorphologyProcessing solventCrystallizationPhase separation
Ng,L.W.T.;Lee,S.W.;Chang,D.W.;Hodgkiss,J.M.;Vak,D.Organicphotovoltaics’newrenaissance:advancestowardroll-to-rollmanufacturingofnon-fullereneacceptororganicphotovoltaics.Adv. Mater. Technol.2022,7,2101556..
Luo,D.;Jang,W.;Babu,D.;Kim,M.S.;Wang,D.H.;Kyaw,A.K.K.Recentprogressinorganicsolarcellsbasedonnon-fullereneacceptors:materialstodevices.J. Mater. Chem. A2022,10,3255−3295..
Sharma,T.;Mahajan,P.;AdilAfroz,M.;Singh,A.;KumarTailor,N.;Purohit,S.;Verma,S.;Padha,B.;Gupta,V.;Arya,S.Recentprogressinadvancedorganicphotovoltaics:emergingtechniquesandmaterials.ChemSusChem2022,15,e202101067..
Cui,Y.;Xu,Y.;Yao,H.;Bi,P.;Hong,L.;Zhang,J.;Zu,Y.;Zhang,T.;Qin,J.;Ren,J.Single-junctionorganicphotovoltaiccellwith19%efficiency.Adv. Mater.2021,33,2102420..
Chong,K.;Xu,X.;Meng,H.;Xue,J.;Yu,L.;Ma,W.;Peng,Q.Realizing19.05%efficiencypolymersolarcellsbyprogressivelyimprovingchargeextractionandsuppressingchargerecombination.Adv. Mater.2022,34,2109516..
Li,Y.;Liu,H.;Wu,J.;Tang,H.;Wang,H.;Yang,Q.;Fu,Y.;Xie,Z.Additiveandhigh-temperatureprocessingboostthephotovoltaicperformanceofnonfullereneorganicsolarcellsfabricatedwithbladecoatingandnonhalogenatedsolvents.ACS Appl. Mater. Interfaces2021,13,10239−10248..
Zhao,H.;Naveed,H.B.;Lin,B.;Zhou,X.;Yuan,J.;Zhou,K.;Wu,H.;Guo,R.;Scheel,M.A.;Chumakov,A.Hothydrocarbon-solventslot-diecoatingenableshigh-efficiencyorganicsolarcellswithtemperature-dependentaggregationbehavior.Adv. Mater.2020,32,2002302..
Xu,J.;Zhan,J.;Zhou,G.;Zhong,W.;Zhang,M.;Xue,X.;Zhu,L.;Leng,S.;Chen,J.;Zou,Y.Slot-die-coatedorganicsolarcellsoptimizedthroughmultistepcrystallizationkinetics.Sol. RRL2022,6,2100740..
Dong,S.;Jia,T.;Zhang,K.;Jing,J.;Huang,F.Single-componentnon-halogensolvent-processedhigh-performanceorganicsolarcellmodulewithefficiencyover14%.Joule2020,4,2004−2016..
Xue,J.;Zhao,H.;Lin,B.;Wang,Y.;Zhu,Q.;Lu,G.;Wu,B.;Bi,Z.;Zhou,X.;Zhao,C.Nonhalogenateddual-slot-dieprocessingenableshigh-efficiencyorganicsolarcells.Adv. Mater.2022,34,2202659..
Xue,J.;Naveed,H.B.;Zhao,H.;Lin,B.;Wang,Y.;Zhu,Q.;Wu,B.;Bi,Z.;Zhou,X.;Zhao,C.Kineticprocessesofphaseseparationandaggregationbehaviorsinslot-dieprocessedhighefficiencyY6-basedorganicsolarcells.J. Mater. Chem. A2022,10,13439−13447..
Guo,S.;Wang,W.;Herzig,E.M.;Naumann,A.;Tainter,G.;Perlich,J.;Müller-Buschbaum,P.Solvent-morphology-propertyrelationshipofPTB7:PC71BMpolymersolarcells.ACS Appl. Mater. Interfaces2017,9,3740−3748..
An,K.;Zhong,W.;Ying,L.;Zhu,P.;Fan,B.;Li,Z.;Li,N.;Huang,F.;Cao,Y.Optimizationofprocessingsolventandfilmmorphologytoachieveefficientnon-fullerenepolymersolarcellsprocessedinair.J. Mater. Chem. C2020,8,270−275..
Ye,L.;Xiong,Y.;Zhang,Q.;Li,S.;Wang,C.;Jiang,Z.;Hou,J.;You,W.;Ade,H.Surpassing10%efficiencybenchmarkfornonfullereneorganicsolarcellsbyscalablecoatinginairfromsinglenonhalogenatedsolvent.Adv. Mater.2018,30,1705485..
Zhan,J.;Wang,L.;Zhang,M.;Zhu,L.;Hao,T.;Zhou,G.;Zhou,Z.;Chen,J.;Zhong,W.;Qiu,C.Manipulatingcrystallizationkineticsofconjugatedpolymersinnonfullerenephotovoltaicblendstowardrefinedmorphologiesandhigherperformances.Macromolecules2021,54,4030−4041..
McDowell,C.;Abdelsamie,M.;Toney,M.F.;Bazan,G.C.Solventadditives:keymorphology-directingagentsforsolution-processedorganicsolarcells.Adv. Mater.2018,30,1707114..
Chen,Y.;Zhang,X.;Zhan,C.;Yao,J.Originofeffectsofadditivesolventonfilm-morphologyinsolution-processednonfullerenesolarcells.ACS Appl. Mater. Interfaces2015,7,6462−6471..
Zhang,L.;Xu,X.;Lin,B.;Zhao,H.;Li,T.;Xin,J.;Bi,Z.;Qiu,G.;Guo,S.;Zhou,K.Achievingbalancedcrystallinityofdonorandacceptorbycombiningblade-coatingandternarystrategiesinorganicsolarcells.Adv. Mater.2018,30,1805041..
Zhao,C.;Wang,J.;Zhao,X.;Du,Z.;Yang,R.;Tang,J.Recentadvances,challengesandprospectsinternaryorganicsolarcells.Nanoscale2021,13,2181−2208..
Verploegen,E.;Mondal,R.;Bettinger,C.J.;Sok,S.;Toney,M.F.;Bao,Z.Effectsofthermalannealinguponthemorphologyofpolymer-fullereneblends.Adv. Funct. Mater.2010,20,3519−3529..
Shin,P.K.;Kumar,P.;Kumar,A.;Kannappan,S.;Ochiai,S.EffectsoforganicsolventsforcompositeactivelayerofPCDTBT/PC71BMoncharacteristicsoforganicsolarcelldevices.Int. J. Photoenergy2014,2014,786468..
Ruderer,M.A.;Guo,S.;Meier,R.;Chiang,H.Y.;Körstgens,V.;Wiedersich,J.;Perlich,J.;Roth,S.V.;Müller-Buschbaum,P.Solvent-inducedmorphologyinpolymer-basedsystemsfororganicphotovoltaics.Adv. Funct. Mater.2011,21,3382−3391..
Zhu,L.;Zhang,M.;Zhou,G.;Hao,T.;Xu,J.;Wang,J.;Qiu,C.;Prine,N.;Ali,J.;Feng,W.Efficientorganicsolarcellwith16.88%efficiencyenabledbyrefinedacceptorcrystallizationandmorphologywithimprovedchargetransferandtransportproperties.Adv. Energy Mater.2020,10,1904234..
Kyaw,A.K.K.;Wang,D.H.;Gupta,V.;Leong,W.L.;Ke,L.;Bazan,G.C.;Heeger,A.J.Intensitydependenceofcurrent-voltagecharacteristicsandrecombinationinhigh-efficiencysolution-processedsmall-moleculesolarcells.ACS Nano2013,7,4569−4577..
Blom,P.W.;Mihailetchi,V.D.;Koster,L.J.A.;Markov,D.E.Devicephysicsofpolymer:fullerenebulkheterojunctionsolarcells.Adv. Mater.2007,19,1551−1566..
Lin,H.;Chen,S.;Li,Z.;Lai,J.Y.L.;Yang,G.;McAfee,T.;Jiang,K.;Li,Y.;Liu,Y.;Hu,H.High-performancenon-fullerenepolymersolarcellsbasedonapairofdonor-acceptormaterialswithcomplementaryabsorptionproperties.Adv. Mater.2015,27,7299−7304..
Carbone,A.;Kotowska,B.;Kotowski,D.Space-charge-limitedcurrentfluctuationsinorganicsemiconductors.Phys. Rev. Lett.2005,95,236601..
Li,Z.;Jiang,K.;Yang,G.;Lai,J.Y.L.;Ma,T.;Zhao,J.;Ma,W.;Yan,H.Donorpolymerdesignenablesefficientnon-fullereneorganicsolarcells.Nat. Commun.2016,7,13094..
Bakulin,A.A.;Rao,A.;Pavelyev,V.G.;vanLoosdrecht,P.H.;Pshenichnikov,M.S.;Niedzialek,D.;Cornil,J.;Beljonne,D.;Friend,R.H.Theroleofdrivingenergyanddelocalizedstatesforchargeseparationinorganicsemiconductors.Science2012,335,1340−1344..
Wang,R.;Zhang,C.;Li,Q.;Zhang,Z.;Wang,X.;Xiao,M.Chargeseparationfromanintra-moietyintermediatestateinthehigh-performancePM6:Y6organicphotovoltaicblend.J. Am. Chem. Soc.2020,142,12751−12759..
Zhou,G.;Ding,H.;Zhu,L.;Qiu,C.;Zhang,M.;Hao,T.;Feng,W.;Zhang,Y.;Zhu,H.;Liu,F.Photophysics,morphologyanddeviceperformancescorrelationonnon-fullereneacceptorbasedbinaryandternarysolarcells.J. Energy Chem.2020,47,180−187..
Li,T.;Wang,K.;Cai,G.;Li,Y.;Liu,H.;Jia,Y.;Zhang,Z.;Lu,X.;Yang,Y.;Lin,Y.Asymmetricglycolatedsubstitutionforenhancedpermittivityandecocompatibilityofhigh-performancephotovoltaicelectronacceptor.JACS Au2021,1,1733−1742..
Koster,L.J.A.;Mihailetchi,V.D.;Ramaker,R.;Blom,P.W.Lightintensitydependenceofopen-circuitvoltageofpolymer:fullerenesolarcells.Appl. Phys. Lett.2005,86,123509..
Schilinsky,P.;Waldauf,C.;Brabec,C.J.Recombinationandlossanalysisinpolythiophenebasedbulkheterojunctionphotodetectors.Appl. Phys. Lett.2002,81,3885−3887..
Foertig,A.;Rauh,J.;Dyakonov,V.;Deibel,C.ShockleyequationparametersofP3HT:PCBMsolarcellsdeterminedbytransienttechniques.Phys. Rev. B2012,86,115302..
Lv,J.;Tang,H.;Huang,J.;Yan,C.;Liu,K.;Yang,Q.;Hu,D.;Singh,R.;Lee,J.;Lu,S.Additive-inducedmiscibilityregulationandhierarchicalmorphologyenable17.5%binaryorganicsolarcells.Energy Environ. Sci.2021,14,3044−3052..
Maurano,A.;Shuttle,C.G.;Hamilton,R.;Ballantyne,A.M.;Nelson,J.;Zhang,W.;Heeney,M.;Durrant,J.R.Transientoptoelectronicanalysisofchargecarrierlossesinaselenophene/fullereneblendsolarcell.J. Phys. Chem. C2011,115,5947−5957..
Min,J.;Güldal,N.S.;Guo,J.;Fang,C.;Jiao,X.;Hu,H.;Heumüller,T.;Ade,H.;Brabec,C.J.Gainingfurtherinsightintotheeffectsofthermalannealingandsolventvaporannealingontimemorphologicaldevelopmentanddegradationinsmallmoleculesolarcells.J. Phys. Chem. A2017,5,18101−18110..
Firdaus,Y.;Maffei,L.P.;Cruciani,F.;Müller,M.A.;Liu,S.;Lopatin,S.;Wehbe,N.;Ndjawa,G.O.N.;Amassian,A.;Laquai,F.Polymermain-chainsubstitutioneffectsontheefficiencyofnonfullerenebhjsolarcells.Adv. Energy Mater.2017,7,1700834..
Liu,Y.;Zhou,K.;Zhou,X.;Xue,W.;Bi,Z.;Wu,H.;Ma,Z.;Ma,W.Strengtheningtheintermolecularinteractionofprototypicalsemicrystallineconjugatedpolymerenablesimprovedphotocurrentgenerationattheheterojunction.Macromol. Rapid Commun.2022,2100871..
Xu,X.;Yu,L.;Yan,H.;Li,R.;Peng,Q.Highlyefficientnon-fullereneorganicsolarcellsenabledbyadelayedprocessingmethodusinganon-halogenatedsolvent.Energy Environ. Sci.2020,13,4381−4388..
Hu,Q.;Chen,W.;Yang,W.;Li,Y.;Zhou,Y.;Larson,B.W.;Johnson,J.C.;Lu,Y.H.;Zhong,W.;Xu,J.Improvingefficiencyandstabilityofperovskitesolarcellsenabledbyanear-infrared-absorbingmoisturebarrier.Joule2020,4,1575−1593..
Hansen,C.M.Hansen solubility parameters: a user's handbook.CRCPress:2007,p.4..
VanKrevelen,D.W.;TeNijenhuis,K.Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions.Elsevier:2009,p.191..
Biernat,M.;Dąbczyński,P.;Biernat,P.;Rysz,J.PhaseseparationinPCDTBT:PCBMblends:fromflory-hugginsinteractionparameterstoternaryphasediagrams.Chinese J. Polym. Sci.2020,38,1025−1033..
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution