1.MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
renkf@zju.edu.cn (K.F.R)
jijian@zju.edu.cn (J.J.)
Scan for full text
Jia-Qi Hu, Wei-Pin Huang, Jing Wang, et al. UV-triggered Polymerization of Polyelectrolyte Composite Coating with Pore Formation and Lubricant Infusion. [J]. Chinese Journal of Polymer Science 41(3):365-372(2023)
Jia-Qi Hu, Wei-Pin Huang, Jing Wang, et al. UV-triggered Polymerization of Polyelectrolyte Composite Coating with Pore Formation and Lubricant Infusion. [J]. Chinese Journal of Polymer Science 41(3):365-372(2023) DOI: 10.1007/s10118-022-2851-9.
We demonstrated a simple and efficient method to construct the poly(ethylenimine) (PEI)/poly(acrylic acid) (PAA) coating by in-situ photopolymerization of acrylic acid in the PEI network. The coating kept higher stability and porous structures could be constructed after acid treatment, which was utilized to load lubricant to enhance the lubricating property.
Porous coatings with the features of muti-interfaces and high specific surface area have emerged as an excellent material platform for the manipulation of porous structures. Layer-by-layer (LbL) assembly technique has been widely used in preparing porous polyelectrolyte coatings. However, the efficient construction of stable film from the LbL technique is still a question. Herein, we reported a new solution to construct a stabilized polyelectrolyte coating with porous structures. Inspired by the mechanical reinforcement of double-network hydrogel, we constructed the poly(ethylenimine) (PEI)/poly(acrylic acid) (PAA) coating by ,in situ, photopolymerization of acrylic acid in the PEI network instead of assembling PEI and PAA. Compared with the LbL films, the ,in situ, polymerized coating kept higher stability after 30 iterations of friction. Porous structures could also be constructed after acid treatment, which was utilized to load lubricant to enhance the lubricating property of the coating. This work provides a new method for the construction of dynamic and stable polyelectrolyte coatings, expediting more development of practical applications.
Porous coatingPolyelectrolyte coatingDip-coatingUV-triggered polymerizationStability
Nisticò, R.; Scalarone, D.; Magnacca, G . Sol-gel chemistry, templating and spin-coating deposition: A combined approach to control in a simple way the porosity of inorganic thin films/coatings . Micropor. Mesopor. Mater. , 2017 . 248 18 -29 . DOI:10.1016/j.micromeso.2017.04.017http://doi.org/10.1016/j.micromeso.2017.04.017 .
Lu, A. H.; Schuth, F . Nanocasting: a versatile strategy for creating nanostructured porous materials . Adv. Mater. , 2006 . 18 1793 -1805 . DOI:10.1002/adma.200600148http://doi.org/10.1002/adma.200600148 .
Zhang, F.; Shi, Z. W.; Chen, L. S.; Jiang, Y. J.; Xu, C. Y.; Wu, Z. H.; Wang, Y. Y.; Peng, C. S . Porous superhydrophobic and superoleophilic surfaces prepared by template assisted chemical vapor deposition . Surf. Coat. Technol. , 2017 . 315 385 -390 . DOI:10.1016/j.surfcoat.2017.02.058http://doi.org/10.1016/j.surfcoat.2017.02.058 .
Fukushima, M.; Yoshizawa, Y . Fabrication of highly porous silica thermal insulators prepared by gelation-freezing route . J. Am. Ceram. Soc. , 2014 . 97 713 -717 . DOI:10.1111/jace.12723http://doi.org/10.1111/jace.12723 .
Chen, W.; Liu, W . Numerical analysis of heat transfer in a passive solar composite wall with porous absorber . Appl. Therm. Eng. , 2008 . 28 1251 -1258 . DOI:10.1016/j.applthermaleng.2007.10.017http://doi.org/10.1016/j.applthermaleng.2007.10.017 .
Zhu, J. L.; Sun, J.; Tang, H. P.; Wang, J. Z.; Ao, Q. B.; Bao, T. F.; Song, W. D . Gradient-structural optimization of metal fiber porous materials for sound absorption . Powder. Technol. , 2016 . 301 1235 -1241 . DOI:10.1016/j.powtec.2016.08.006http://doi.org/10.1016/j.powtec.2016.08.006 .
Liang, J.; Song, Z.; Wang, S.; Zhao, X.; Tong, Y.; Ren, H.; Guo, S.; Tang, Q.; Liu, Y . Cobweb-like, ultrathin porous polymer films for ultrasensitive no2 detection . ACS Appl. Mater. Interfaces , 2020 . 12 52992 -53002 . DOI:10.1021/acsami.0c09821http://doi.org/10.1021/acsami.0c09821 .
Chen, X. C.; Ren, K. F.; Zhang, J. H.; Li, D. D.; Zhao, E.; Zhao, Z. J.; Xu, Z. K.; Ji, J . Humidity-triggered self-healing of microporous polyelectrolyte multilayer coatings for hydrophobic drug delivery . Adv. Funct. Mater. , 2015 . 25 7470 -7477 . DOI:10.1002/adfm.201503258http://doi.org/10.1002/adfm.201503258 .
Daban, G.; Bayram, C.; Bozdogan, B.; Denkbas, E. B . Porous polyurethane film fabricated via the breath figure approach for sustained drug release . J. Appl. Polym. Sci. , 2019 . 136 47658 DOI:10.1002/app.47658http://doi.org/10.1002/app.47658 .
Zhang, X.; Li, Y.; Zhang, R.; Chen, Y.; Zhao, G.; Zhao, W.; Chen, X. C.; Zhang, S . Reversible visualization from exponentially growing polyelectrolyte assemblies with regionally confined dynamic structures . Chem. Eng. J. , 2021 . 425 131445 DOI:10.1016/j.cej.2021.131445http://doi.org/10.1016/j.cej.2021.131445 .
Gelebart, A. H.; Liu, D.; Mulder, D. J.; Leunissen, K. H. J.; van Gerven, J.; Schenning, A. P. H. J.; Broer, D. J . Photoresponsive sponge-like coating for on-demand liquid release . Adv. Funct. Mater. , 2018 . 28 1705942 DOI:10.1002/adfm.201705942http://doi.org/10.1002/adfm.201705942 .
Zhao, H.; Sun, Q.; Zhou, J.; Deng, X.; Cui, J . Switchable cavitation in silicone coatings for energy-saving cooling and heating . Adv. Mater. , 2020 . 32 e2000870 DOI:10.1002/adma.202000870http://doi.org/10.1002/adma.202000870 .
Zhang, D.; Li, Q. S.; Liang, Z. X.; Chen, X. C.; Hao, J.; Yao, J.; Lu, C. X.; Zhou, Y.; Jiang, L. . Laser-directed foaming of hydroplastic polyelectrolyte films toward tunable structures and programmable routes . Adv. Funct. Mater. , 2021 . 32 2107598 DOI:10.1002/adfm.202107598http://doi.org/10.1002/adfm.202107598 .
Wu, Y. F.; Yang, G.; Lin, M. C.; Kong, X. Y.; Mi, L.; Liu, S. Q.; Chen, G . S.; Tian, Y.; Jiang, L. Continuously tunable ion rectification and conductance in submicrochannels stemming from thermoresponsive polymer self-assembly . Angew. Chem. Int. Ed. , 2019 . 58 12481 -12485 . DOI:10.1002/anie.201906360http://doi.org/10.1002/anie.201906360 .
Wagberg, L.; Erlandsson, J . The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials . Adv. Mater. , 2021 . 33 e2001474 DOI:10.1002/adma.202001474http://doi.org/10.1002/adma.202001474 .
Mendelsohn, J. D.; Barrett, C. J.; Chan, V. V.; Pal, A. J.; Mayes, A. M.; Rubner, M. F . Fabrication of microporous thin films from polyelectrolyte multilayers . Langmuir , 2000 . 16 5017 -5023 . DOI:10.1021/la000075ghttp://doi.org/10.1021/la000075g .
Chen, X. C.; Ren, K. F.; Lei, W. X.; Zhang, J. H.; Martins, M. C.; Barbosa, M. A.; Ji, J . Self-healing spongy coating for drug "cocktail" delivery . ACS Appl. Mater. Interfaces , 2016 . 8 4309 -4313 . DOI:10.1021/acsami.5b11602http://doi.org/10.1021/acsami.5b11602 .
Huang, W. P.; Huang, D. N.; Ren, K. F.; Ji, J . Pore-formation through controlling noncovalent interactions in polyelectrolyte film . Acta Polymerica Sinica (in Chinese) , 2021 . 52 978 -986. .
Huang, W. P.; Qian, H. L.; Wang, J.; Ren, K. F.; Ji, J . Periodic stratified porous structures in dynamic polyelectrolyte films through standing-wave optical crosslinking for structural color . Adv. Sci. , 2021 . 8 e2100402 DOI:10.1002/advs.202100402http://doi.org/10.1002/advs.202100402 .
Chen, X. C.; Huang, W. P.; Hu, M.; Ren, K. F.; Ji, J . Controlling structural transformation of polyelectrolyte films for spatially encapsulating functional species . Small , 2019 . 15 e1804867 DOI:10.1002/smll.201804867http://doi.org/10.1002/smll.201804867 .
Lee, C. W.; Kim, O.; Gong, M. S . Humidity-sensitive properties of new polyelectrolytes based on the copolymers containing phosphonium salt and phosphine function . J. Appl. Polym. Sci. , 2003 . 89 1062 -1070 . DOI:10.1002/app.12253http://doi.org/10.1002/app.12253 .
Khong, S. H.; Sivaramakrishnan, S.; Png, R. Q.; Wong, L. Y.; Chia, P. J.; Chua, L. L.; Ho, P. K. H . General photo-patterning of polyelectrolyte thin films via efficient ionic bis(fluorinated phenyl azide) photo-crosslinkers and their post-deposition modification . Adv. Funct. Mater. , 2007 . 17 2490 -2499 . DOI:10.1002/adfm.200600506http://doi.org/10.1002/adfm.200600506 .
Gong, J . P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-network hydrogels with extremely high mechanical strength . Adv. Mater. , 2003 . 15 1155 -1158 . DOI:10.1002/adma.200304907http://doi.org/10.1002/adma.200304907 .
Chen, X. C.; Ren, K. F.; Chen, J . Y.; Wang, J.; Zhang, H.; Ji, J. Self-wrinkling polyelectrolyte multilayers: Construction, smoothing and the underlying mechanism . Phys. Chem. Chem. Phys. , 2016 . 18 31168 -31174 . DOI:10.1039/C6CP05419Fhttp://doi.org/10.1039/C6CP05419F .
Tang, X.; Yan, X . Dip-coating for fibrous materials: mechanism, methods and applications . J. Solgel. Sci. Technol. , 2016 . 81 378 -404. .
Landau, L.; Levich, B . Dragging of a liquid by a moving plate . Acta Physicochim. Urs. , 1942 . 17 42 -54. .
Zhang, H.; Suszynski, W. J.; Agrawal, K. V.; Tsapatsis, M.; Al Hashimi, S.; Francis, L. F . Coating of open cell foams . Ind. Eng. Chem. Res. , 2012 . 51 9250 -9259 . DOI:10.1021/ie300266phttp://doi.org/10.1021/ie300266p .
Fang, H. W.; Li, K. Y.; Su, T. L.; Yang, T. C. K.; Chang, J. S.; Lin, P. L.; Chang, W. C . Dip coating assisted polylactic acid deposition on steel surface: Film thickness affected by drag force and gravity . Mater. Lett. , 2008 . 62 3739 -3741 . DOI:10.1016/j.matlet.2008.04.046http://doi.org/10.1016/j.matlet.2008.04.046 .
Argarate, N.; Olalde, B.; Atorrasagasti, G.; Valero, J.; Carolina Cifuentes, S.; Benavente, R.; Lieblich, M.; Luis González-Carrasco, J . Biodegradable bi-layered coating on polymeric orthopaedic implants for controlled release of drugs . Mater. Lett. , 2014 . 132 193 -195 . DOI:10.1016/j.matlet.2014.06.070http://doi.org/10.1016/j.matlet.2014.06.070 .
Lii, D. F.; Huang, J. L.; Tsui, L. J.; Lee, S. M . Formation of bn films on carbon fibers by dip-coating . Surf. Coat. Technol. , 2002 . 150 269 -276 . DOI:10.1016/S0257-8972(01)01539-0http://doi.org/10.1016/S0257-8972(01)01539-0 .
Hariri, H. H.; Lehaf, A. M.; Schlenoff, J. B . Mechanical properties of osmotically stressed polyelectrolyte complexes and multilayers: water as a plasticizer . Macromolecules , 2012 . 45 9364 -9372 . DOI:10.1021/ma302055mhttp://doi.org/10.1021/ma302055m .
Muzzio, N. E.; Gregurec, D.; Diamanti, E.; Irigoyen, J.; Pasquale, M. A.; Azzaroni, O.; Moya, S. E . Thermal annealing of polyelectrolyte multilayers: an effective approach for the enhancement of cell adhesion . Adv. Mater. Interfaces , 2017 . 4 1600126 DOI:10.1002/admi.201600126http://doi.org/10.1002/admi.201600126 .
Chen, X. C.; Huang, W. P.; Ferreira, L.; Ren, K. F.; Ji, J . Spatially confining surface roughness on exponentially growing polyelectrolyte multilayer films . Adv. Mater. Interfaces , 2019 . 6 1900702 DOI:10.1002/admi.201900702http://doi.org/10.1002/admi.201900702 .
Hodge, R. M.; Bastow, T. J.; Edward, G. H.; Simon, G. P.; Hill, A. J . Free volume and the mechanism of plasticization in water-swollen poly(vinyl alcohol) . Macromolecules , 1996 . 29 8137 -8143 . DOI:10.1021/ma951073jhttp://doi.org/10.1021/ma951073j .
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution