Fig 1 Synthesis routes to SPJ and SPJ-Cl.
Scan for full text
Cite this article
The recently emerged double-cable conjugated polymers have come into focus due to their significantly improved power conversion efficiencies (PCEs) in single-component organic solar cells (SCOSCs). In this work, the effect of chlorination in double-cable conjugated polymers with linear benzodithiophene backbone and pendant perylene bisimide on the photovoltaic performance in SCOSCs has been studied. After introducing chlorine atoms into conjugated side chains, the highest occupied molecular orbital level of the conjugated polymers is down-shifted, thus resulting in a higher open-circuit voltage. As a result, the chlorinated double-cable conjugated polymer exhibits improved photovoltaic performance from 3.46% to 3.57%.
Double-cable conjugated polymer;
Chlorination;
Single-component organic solar cells
Organic solar cells (OSCs) have drawn great attention because of the potential in portal electronics, internet of things, etc.[
Double-cable polymer is a type of materials that can be applied in SCOSCs.[
Halogenation has been widely used to modify the organic photovoltaic materials.[
In this work, we studied the effects of chlorination on the physical and photovoltaic properties of double-cable polymers SPJ with linear homopolymer of benzodithiophene (BDT) units and pendant PBI side groups. The donor backbone and acceptor side units are attachedvia a dodecyl linker. The SPJ based SCOSCs showed a PCE of 3.46%, a short-circuit current density (Jsc) of 7.55 mA/cm2, a Voc of 0.71 V and a fill factor (FF) of 0.64, while the chlorinated double-cable polymer SPJ-Cl provided an enhanced PCE of 3.57% mainly because of the significantly improved Voc (0.85 V versus 0.71 V of SPJ).
All reagents and solvents were purchased from Aladdin, Energy Chemical, etc.; and used without further purification.
The two polymers were applied as the photoactive layer for SCOSCs using an inverted configuration with ITO/ZnO and MoO3 (10 nm)/Ag (100 nm) as the electrodes. The optimized condition was spin coating the polymer solution in chloroform with the concentration of 10 mg/mL with 1 vol% DIO as the processing additive, then thermal annealing at 150 °C for 10 min. Details could be found in the electronic supplementary information (ESI).
Compounds 2−7 and monomers 8−10 for polymerization were synthesized according to the literature procedure.[
Compound 8
1H-NMR (400 MHz, chloroform-d, δ, ppm): 8.60 (m, 8H), 8.56–8.50 (m, 8H), 7.52 (s, 2H), 7.16 (d, J=4.4 Hz, 2H), 6.87 (d, J=4.4 Hz, 2H), 5.19 (m, 2H), 4.18 (t, J=6.4 Hz, 4H), 2.89 (t, J=7.6 Hz, 4H), 2.25 (m, 4H), 1.89−1.85 (m, 4H), 1.78−1.71 (m, 8H), 1.44-1.31 (m, 36H), 1.26-1.23 (m, 36H), 0.82 (t, J=6.8 Hz, 12H).
SPJ
To a degassed solution of compound 8 (50.0 mg, 25.1 µmol), compound 9 (24.3 mg, 25.1 µmol) in toluene (3 mL) and DMF (0.3 mL), Pd(PPh3)4 (1.4 mg, 1.2 µmol) were added. The mixture was stirred at 115 °C for 48 h, then it was precipitated in methanol and filtered through a Soxhlet thimble. The polymer was extracted with acetone, hexane, dichloromethane, and chloroform. The chloroform was evaporated and the polymer was precipitated in acetone. The polymer was collected by filter and dried in a vacuum oven to yield SPJ (39 mg, 62%). Mn=13.1 kDa, Mw=32.1 kDa, and ĐM=1.68.
SPJ-Cl
The same procedure as for SPJ was used except that compound 8 (50.0 mg, 25.1 µmol) and compound 10 (26.1 mg, 25.1 µmol) were used as the monomers. Yield: 65%. Mn=11.1 kDa, Mw=31.0 kDa, and ĐM=2.11.
The synthetic procedures for the monomers and the two polymers are shown in
Fig 1 Synthesis routes to SPJ and SPJ-Cl.
Polymer | Mn (kDa) | ĐM | HOMO (eV) | LUMO (eV) | Eoptg (eV) |
---|---|---|---|---|---|
SPJ | 13.1 | 1.68 | −5.26 | −3.41 | 2.03 |
SPJ-Cl | 11.3 | 2.11 | −5.40 | −3.41 | 1.99 |
UV-Vis absorption spectra of the double-cable polymer SPJ and SPJ-Cl in CHCl3 solution and thin films are shown in
Fig 1 (a) Normalized absorption spectra of SPJ and SPJ-Cl in CHCl3 solution; (b) Normalized absorption spectra of SPJ (red lines) and SPJ-Cl (blue lines) films with (dash lines) or without (solid lines) thermal annealing at 150 °C for 10 min.
The energy levels of SPJ and SPJ-Cl were determined by square wave (SWV) measurements and ferrocene was used as the internal standard (−4.8 eV).[
Fig 2 Square wave voltammetry curves of (a) SPJ and (b) SPJ-Cl.
These double-cable polymers were applied into SCOSCs with an inverted configuration of ITO/ZnO/polymer/MoO3/Ag. Device optimization was conducted in terms of the active layer thickness, solvent additive and thermal annealing at different temperatures (Tables S1−S5 in ESI). The optimized photovoltaic performance could be obtained when using CF/DIO (1%) as the solvent, thermal annealing at 150 °C for 10 min when the thickness of the polymer is 50 nm. J-V characteristics and external quantum efficiencies (EQEs) spectra of the optimized SCOSCs are presented in
Fig 3 (a) Current density-voltage (J-V) curves and (b) EQE spectra of SPJ and SPJ-Cl based SCOSCs.
Active layer | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) | μh (cm2·V−1·s−1) |
---|---|---|---|---|---|
SPJ | 0.71 (0.71±0.01) | 7.55 (7.56±0.10) | 0.64 (0.63±0.01) | 3.46 (3.42±0.04) | 3.78×10−4 |
SPJ-Cl | 0.85 (0.85±0.01) | 7.36 (7.27±0.10) | 0.57 (0.57±0.01) | 3.57 (3.53±0.03) | 1.95×10−4 |
The characteristics of the photocurrent density Jph versus the effective voltage Veff are plotted in
Fig 4 (a) Photocurrent density (Jph) versus effective voltage (Veff) curves of the devices; (b) Jsc-light intensity relationships.
The charge mobility of SPJ and SPJ-Cl were measured by pace charge-limited current (SCLC) method (Fig. S1 in ESI). Unfortunately, only hole mobility could be obtained using hole-only devices with the structure of ITO/PEDOT:PSS/Active Layer/PFN-Br/Ag. The hole mobility of SPJ was calculated to be 3.78×10−4 cm2·V−1·s−1, which is nearly two times larger than SPJ-Cl (1.95×10−4 cm2·V−1·s−1). The higher hole mobility of SPJ-based device is consistent with the high Jsc and FF. The enhanced charge carrier mobility can be attributed to the strong aggregation of SPJ after thermal annealing, which is consistent with the absorption spectra as shown in
To further understand the surface morphology of these polymer thin films, AFM images were recorded. As seen in
Fig 5 AFM phase images of SPJ and SPJ-Cl films.
In this work, the effect of chlorination at the conjugated side chains of double cable conjugated polymers on the photovoltaic performance of SCOSCs was studied. Since the pendant PBI groups determine the LUMO energy, the chlorination only lowers the HOMO level, which results in a significantly improved Voc. After thermal annealing which benefit for improved PCE, the aggregation of chlorinated polymer SPJ-Cl decreases, thus the Jsc and FF slightly reduce. As a consequence, the chlorinated double-cable polymer SPJ-Cl based SCOSCs achieved a higher PCE of 3.57%. Our work demonstrates that chlorination is an effective method to improve the performance double-cable polymers for SCOSCs.
Liu, B.; Xu, Y.; Xia, D.; Xiao, C.; Yang, Z.; Li, W . Semitransparent organic solar cells based on non-fullerene electron acceptors . Acta Phys. Chim. Sin. , 2021 . 37 2009056 DOI:10.3866/PKU.WHXB202009056 .
Riede, M.; Spoltore, D.; Leo, K . Organic solar cells—the path to commercial success . Adv. Energy Mater. , 2020 . 11 2002653 .
Armin, A.; Li, W.; Sandberg, O. J.; Xiao, Z.; Ding, L.; Nelson, J.; Neher, D.; Vandewal, K.; Shoaee, S.; Wang, T.; Ade, H.; Heumüller, T.; Brabec, C.; Meredith, P . A History and perspective of non-fullerene electron acceptors for organic solar cells . Adv. Energy Mater. , 2021 . 11 2003570 DOI:10.1002/aenm.202003570 .
Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z. G.; Bo, Z . Recent progress in organic solar cells (Part II device engineering) . Sci. China Chem. , 2022 . 65 1457 -1497 . DOI:10.1007/s11426-022-1256-8 .
Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C.-C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F . Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology . Nat. Mater. , 2022 . 21 656 -663 . DOI:10.1038/s41563-022-01244-y .
Li, N.; Perea, J. D.; Kassar, T.; Richter, M.; Heumueller, T.; Matt, G. J.; Hou, Y.; Güldal, N. S.; Chen, H.; Chen, S.; Langner, S.; Berlinghof, M.; Unruh, T.; Brabec, C. J . Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing . Nat. Commun. , 2017 . 8 14541 DOI:10.1038/ncomms14541 .
Xia, D.; Li, C.; Li, W . Crystalline conjugated polymers for organic solar cells: from donor, acceptor to single-component . Chem. Rec. , 2019 . 19 962 -972 . DOI:10.1002/tcr.201800131 .
Li, C.; Wu, X.; Sui, X.; Wu, H.; Wang, C.; Feng, G.; Wu, Y.; Liu, F.; Liu, X.; Tang, Z.; Li, W . Crystalline cooperativity of donor and acceptor segments in double-cable conjugated polymers toward efficient single-component organic solar cells . Angew. Chem. Int. Ed. , 2019 . 58 15532 -15540 . DOI:10.1002/anie.201910489 .
Jiang, X.; Yang, J.; Karuthedath, S.; Li, J.; Lai, W.; Li, C.; Xiao, C.; Ye, L.; Ma, Z.; Tang, Z.; Laquai, F.; Li, W . Miscibility-controlled phase separation in double-cable conjugated polymers for single-component organic solar cells with efficiencies over 8 . Angew. Chem. Int. Ed. , 2020 . 59 21683 -21692 . DOI:10.1002/anie.202009272 .
Liang, S.; Xu, Y.; Li, C.; Li, J.; Wang, D.; Li, W . Realizing lamellar nanophase separation in a double-cable conjugated polymer via a solvent annealing process . Polym. Chem. , 2019 . 10 4584 -4592 . DOI:10.1039/C9PY00765B .
Feng, G.; Li, J.; He, Y.; Zheng, W.; Wang, J.; Li, C.; Tang, Z.; Osvet, A.; Li, N.; Brabec, C. J.; Yi, Y.; Yan, H.; Li, W . Thermal-driven phase separation of double-cable polymers enables efficient single-component organic solar cells . Joule , 2019 . 3 1765 -1781 . DOI:10.1016/j.joule.2019.05.008 .
Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C . Bulk heterojunction solar cells: morphology and performance relationships . Chem. Rev. , 2014 . 114 7006 -7043 . DOI:10.1021/cr400353v .
Zhang, Y.; Pan, L.; Peng, Z.; Deng, W.; Zhang, B.; Yuan, X.; Chen, Z.; Ye, L.; Hu, H.; Gao, X.; Liu, Z.; Duan, C.; Huang, F.; Cao, Y . Ternary copolymers containing 3,4-dicyanothiophene for efficient organic solar cells with reduced energy loss . J. Mater. Chem. A , 2021 . 9 13522 -13530 . DOI:10.1039/D1TA03161A .
Gao, X.; Yu, K.; Zhao, Y.; Zhang, T.; Wen, J.; Liu, Z . Effects of subtle change in side chains on the photovoltaic performance of small molecular donors for solar cells . Chin. Chem. Lett. , 2021 . 33 4659 -4663. .
Liang, S.; Jiang, X.; Xiao, C.; Li, C.; Chen, Q.; Li, W . Double-cable conjugated polymers with pendant rylene diimides for single-component organic solar cells . Acc. Chem. Res. , 2021 . 54 2227 -2237 . DOI:10.1021/acs.accounts.1c00070 .
He, Y.; Li, N.; Brabec, C. J . Single-component organic solar cells with competitive performance . Org. Mater. , 2021 . 3 228 -244 . DOI:10.1055/s-0041-1727234 .
Roncali, J.; Grosu, I . The dawn of single material organic solar cells . Adv. Sci. , 2019 . 6 1801026 DOI:10.1002/advs.201801026 .
Lai, W.; Li, C.; Zhang, J.; Yang, F.; Colberts, F. J. M.; Guo, B.; Wang, Q. M.; Li, M.; Zhang, A.; Janssen, R. A. J . Diketopyrrolopyrrole-based conjugated polymers with perylene bisimide side chains for single-component organic solar cells . Chem. Mater. , 2017 . 29 7073 -7077 . DOI:10.1021/acs.chemmater.7b02534 .
Feng, G.; Li, J.; Colberts, F. J. M.; Li, M.; Zhang, J.; Yang, F.; Jin, Y.; Zhang, F.; Janssen, R. A. J.; Li, C.; Li, W . "Double-cable" conjugated polymers with linear backbone toward high quantum efficiencies in single-component polymer solar cells . J. Am. Chem. Soc. , 2017 . 139 18647 -18656 . DOI:10.1021/jacs.7b10499 .
Li, C.; Yu, C.; Lai, W.; Liang, S.; Jiang, X.; Feng, G.; Zhang, J.; Xu, Y.; Li, W . Multifunctional diketopyrrolopyrrole-based conjugated polymers with perylene bisimide side chains . Macromol. Rapid Commun. , 2018 . 39 e1700611 DOI:10.1002/marc.201700611 .
Yang, F.; Wang, X.; Feng, G.; Ma, J.; Li, C.; Li, J.; Ma, W.; Li, W . A new strategy for designing polymer electron acceptors: electronrich conjugated backbone with electron-deficient side units . Sci. China Chem. , 2018 . 61 824 -829 . DOI:10.1007/s11426-018-9241-0 .
Yu, C.; Xu, Y.; Li, C.; Feng, G.; Yang, F.; Li, J.; Li, W . An isoindigo-based “double-cable” conjugated polymer for single- component polymer solar cells . Chinese J. Chem. , 2018 . 36 515 -518 . DOI:10.1002/cjoc.201800009 .
Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Sozzani, P.; & Zotti, G . The first “charm bracelet” conjugated polymer: an electroconducting polythiophene with covalently bound fullerene moieties . Angew. Chem. Int. Ed. , 1996 . 35 648 -651 . DOI:10.1002/anie.199606481 .
Cravino, A.; Zerza, G.; Neugebauer, H.; Sariciftci, N. S.; Maggini, M.; Bucella, S.; Svensson, M.; Andersson, M. R . A novel polythiophene with pendant fullerenes: toward donor/acceptor double-cable polymers . Chem. Commun. , 2000 . 2487 -2488 . DOI:10.1039/b008072l .
Ramos, A. M.; Rispens, M. T.; van Duren, J. K.; Hummelen, J. C.; & Janssen, R . A Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes . J. Am. Chem. Soc. , 2001 . 123 6714 -6715 . DOI:10.1021/ja015614y .
Zhang, F. ; Svensson, M. ; Andersson, M. R. ; Maggini, M. ; Bucella, S. ; Menna, E. ; & Inganäs, O . Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes . Adv. Mater. , 2001 . 13 1871 -1874 . DOI:10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2 .
Tan, Z. A.; Hou, J.; He, Y.; Zhou, E.; Yang, C.; & Li, Y . Synthesis and photovoltaic properties of a donor-acceptor double-cable polythiophene with high content of C60 pendant . Macromolecules , 2007 . 40 1868 -1873 . DOI:10.1021/ma070052+ .
Miyanishi, S.; Zhang, Y.; Hashimoto, K.; Tajima, K . Controlled synthesis of fullerene-attached poly(3-alkylthiophene)-based copolymers for rational morphological design in polymer photovoltaic devices . Macromolecules , 2012 . 45 6424 -6437 . DOI:10.1021/ma300376m .
Miyanishi, S.; Zhang, Y.; Tajima, K.; Hashimoto, K . Fullerene attached all-semiconducting diblock copolymers for stable single-component polymer solar cells . Chem. Commun. , 2010 . 46 6723 -6725 . DOI:10.1039/c0cc01819h .
Yang, F.; Li, J.; Li, C.; Li, W . Improving electron transport in a double-cable conjugated polymer via parallel perylenetriimide design . Macromolecules , 2019 . 52 3689 -3696 . DOI:10.1021/acs.macromol.9b00495 .
Yu, P.; Feng, G.; Li, J.; Li, C.; Xu, Y.; Xiao, C.; Li, W . A selenophene substituted double-cable conjugated polymer enables efficient single-component organic solar cells . J. Mater. Chem. C , 2020 . 8 2790 -2797 . DOI:10.1039/C9TC06667E .
Al Kobaisi, M.; Bhosale, S. V.; Latham, K.; Raynor, A. M.; Bhosale, S. V . Functional naphthalene diimides: synthesis, properties, and applications . Chem. Rev. , 2016 . 116 11685 -11796 . DOI:10.1021/acs.chemrev.6b00160 .
Liu, Z.; Gao, Y.; Dong, J.; Yang, M.; Liu, M.; Zhang, Y.; Wen, J.; Ma, H.; Gao, X.; Chen, W.; Shao, M . Chlorinated wide-bandgap donor polymer enabling annealing free nonfullerene solar cells with the efficiency of 11 . 5. J. Phys. Chem. Lett. , 2018 . 9 6955 -6962 . DOI:10.1021/acs.jpclett.8b03247 .
Zhang, L.; Xia, Z.; Wen, J.; Gao, J.; Gao, X.; Liu, Z . Fluorinated perylene diimide dimer for organic solar cells as non-fullerene acceptor . Asian J. Org. Chem. , 2021 . 10 3374 -3379 . DOI:10.1002/ajoc.202100585 .
Liu, Z.; Zeng, D.; Gao, X.; Li, P.; Zhang, Q.; Peng, X . Non-fullerene polymer acceptors based on perylene diimides in all-polymer solar cells . Sol. Energy Mater. Sol. Cells , 2019 . 189 103 -117 . DOI:10.1016/j.solmat.2018.09.024 .
Liu, Z.; Wu, Y.; Zhang, Q.; Gao, X . Non-fullerene small molecule acceptors based on perylene diimides . J. Mater. Chem. A , 2016 . 4 17604 -17622 . DOI:10.1039/C6TA06978A .
Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu, K.; Gao, F.; Yan, H . Fast charge separation in a non-fullerene organic solar cell with a small driving force . Nat. Energy , 2016 . 1 16089 DOI:10.1038/nenergy.2016.89 .
Hwang, Y. J. ; Courtright, B. A. E. ; Ferreira, A. S. ; Tolbert, S. H. ; Jenekhe, S. A . 7.7% Efficient all-polymer solar cells . Adv. Mater. , 2015 . 27 4578 -4584 . DOI:10.1002/adma.201501604 .
Liu, B. Q.; Xu, Y. H.; Liu, F.; Xie, C. C.; Liang, S. J.; Chen, Q. M.; Li, W. W . Double-cable conjugated polymers with fullerene pendant for single-component organic solar cells . Chinese J. Polym. Sci. , 2022 . 40 898 -904 . DOI:10.1007/s10118-022-2732-2 .
Wang, C.; Xia, D.; Yang, F.; Li, J.; Wu, Y.; Li, W . Benzothiadiazole-based double-cable conjugated polymers for single-component organic solar cells with efficiency over 4% . ACS Applied Polym. Mater. , 2021 . 3 4645 -4650 . DOI:10.1021/acsapm.1c00743 .
Yang, Z.; Liang, S.; Liu, B.; Wang, J.; Yang, F.; Chen, Q.; Xiao, C.; Tang, Z.; Li, W . Incorporating semiflexible linkers into double-cable conjugated polymers via a click reaction . Polym. Chem. , 2021 . 12 6865 -6872 . DOI:10.1039/D1PY01188J .
Liang, S.; Wang, J.; Ouyang, Y.; Tan, W. L.; McNeill, C. R.; Chen, Q.; Tang, Z.; Li, W . Double-cable conjugated polymers with rigid phenyl linkers for single-component organic solar cells . Macromolecules , 2022 . 55 2517 -2523 . DOI:10.1021/acs.macromol.1c02593 .
Fang, H.; Xia, D.; Zhao, C.; Zhou, S.; Wang, R.; Zang, Y.; Xiao, C.; Li, W . Perylene bisimides-based molecular dyads with different alkyl linkers for single-component organic solar cells . Dyes Pigments , 2022 . 203 110355 DOI:10.1016/j.dyepig.2022.110355 .
Kini, G. P.; Jeon, S. J.; Moon, D. K . Design principles and synergistic effects of chlorination on a conjugated backbone for efficient organic photovoltaics: a critical review . Adv. Mater. , 2020 . 32 e1906175 DOI:10.1002/adma.201906175 .
Zhang, Q.; Kelly, M. A.; Bauer, N.; You, W . The curious case of fluorination of conjugated polymers for solar cells . Acc. Chem. Res. , 2017 . 50 2401 -2409 . DOI:10.1021/acs.accounts.7b00326 .
Gao, X.; Shen, J.; Chen, B.; Liu, Z.; Zhang, Q . Synthesis and characterization of conjugated polymers containing bromide side chain . J. Mater. Sci. , Mater. Electr. , 2017 . 28 18049 -18056 . DOI:10.1007/s10854-017-7748-y .
Zhang, S.; Qin, Y.; Zhu, J.; Hou, J . Over 14% Efficiency in polymer solar cells enabled by a chlorinated polymer donor . Adv. Mater. , 2018 . 30 e1800868 DOI:10.1002/adma.201800868 .
Fan, Q.; Zhu, Q.; Xu, Z.; Su, W.; Chen, J.; Wu, J.; Guo, X.; Ma, W.; Zhang, M.; Li, Y . Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing . Nano Energy , 2018 . 48 413 -420 . DOI:10.1016/j.nanoen.2018.04.002 .
Chao, P.; Liu, L.; Zhou, J.; Qu, J.; Mo, D.; Meng, H.; Xie, Z.; He, F.; Ma, Y . Multichloro-substitution strategy: facing low photon energy loss in nonfullerene solar cells . ACS Appl. Energy Mater. , 2018 . 1 6549 -6559 . DOI:10.1021/acsaem.8b01447 .
Yang, Z.; Chen, H.; Wang, H.; Mo, D.; Liu, L.; Chao, P.; Zhu, Y.; Liu, C.; Chen, W.; He, F . The integrated adjustment of chlorine substitution and two-dimensional side chain of low band gap polymers in organic solar cells . Polym. Chem. , 2018 . 9 940 -947 . DOI:10.1039/C7PY01792H .
Zhang, Y.; Ren, F.; Li, Q.; Zhang, Z.; He, X.; Chen, Z.; Shi, J.; Tu, G . Performance comparison of fluorinated and chlorinated donor-acceptor copolymers for polymer solar cells . J. Mater. Chem. C , 2018 . 6 4658 -4662 . DOI:10.1039/C8TC00948A .
Wang, T.; Sun, R.; Xu, S.; Guo, J.; Wang, W.; Guo, J.; Jiao, X.; Wang, J.; Jia, S.; Zhu, X.; Li, Y.; Min, J . A wide-bandgap D-A copolymer donor based on a chlorine substituted acceptor unit for high performance polymer solar cells . J. Mater. Chem. A , 2019 . 7 14070 -14078 . DOI:10.1039/C9TA03272J .
Gao, X.; Shen, J.; Hu, B.; Tu, G . A straightforward synthesis of chlorine-bearing donor-acceptor alternating copolymers with deep frontier orbital levels . Macromol. Chem. Phys. , 2014 . 215 1388 -1395 . DOI:10.1002/macp.201400131 .
Jeon, S. J. ; Han, Y. W. ; Moon, D. K. 13.9%-Efficiency and eco-friendly nonfullerene polymer solar cells obtained by balancing molecular weight and solubility in chlorinated thiophene-based polymer backbones. Small 2019, 15, e1902598.
Zhan, L.; Li, S.; Zhang, S.; Chen, X.; Lau, T. K.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H . Enhanced charge transfer between fullerene and non-fullerene acceptors enables highly efficient ternary organic solar cells . ACS Appl. Mater. Interfaces , 2018 . 10 42444 -42452 . DOI:10.1021/acsami.8b16131 .
Zhou, J.; Cong, P.; Chen, L.; Zhang, B.; Geng, Y.; Tang, A.; Zhou, E . Gradually modulating the three parts of D-π-A type polymers for high-performance organic solar cells . J. Energy Chem. , 2021 . 62 532 -537 . DOI:10.1016/j.jechem.2021.03.056 .
Tang, A.; Song, W.; Xiao, B.; Guo, J.; Min, J.; Ge, Z.; Zhang, J.; Wei, Z.; Zhou, E . Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high VOC of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells . Chem. Mater. , 2019 . 31 3941 -3947 . DOI:10.1021/acs.chemmater.8b05316 .
An, N.; Cai, Y.; Wu, H.; Tang, A.; Zhang, K.; Hao, X.; Ma, Z.; Guo, Q.; Ryu, H. S.; Woo, H. Y.; Sun, Y.; Zhou, E . Solution-processed organic solar cells with high open-circuit voltage of 1.3 V and low non-radiative voltage loss of 0.16 V . Adv. Mater. , 2020 . 32 e2002122 DOI:10.1002/adma.202002122 .
Yang, F.; Li, C.; Lai, W.; Zhang, A.; Huang, H.; Li, W . Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells . Mater. Chem. Front. , 2017 . 1 1389 -1395 . DOI:10.1039/C7QM00025A .
Yao, H.; Wang, J.; Xu, Y.; Zhang, S.; Hou, J . Recent progress in chlorinated organic photovoltaic materials . Acc. Chem. Res. , 2020 . 53 822 -832 . DOI:10.1021/acs.accounts.0c00009 .
Chao, P.; Johner, N.; Zhong, X.; Meng, H.; He, F . Chlorination strategy on polymer donors toward efficient solar conversions . J. Energy Chem. , 2019 . 39 208 -216 . DOI:10.1016/j.jechem.2019.04.002 .
Gao, X.; Xu, M.-C.; Zeng, D.; Dong, J.; Zhang, Y. M.; Wen, J.; Wang, C.; Liu, Z.; Shao, M . Comparison study of the chlorination positions in wide band gap donor polymers . J. Phys. Chem. C , 2020 . 124 24592 -24600 . DOI:10.1021/acs.jpcc.0c05644 .
Tang, M. L.; J. H. O.; Reichardt, A. D.; Bao, Z. N . Chlorination: a general route toward electron transport in organic semiconductors . J. Am. Chem. Soc. , 2009 . 131 3733 -3740 . DOI:10.1021/ja809045s .
Zhang, Y.; Gao, X.; Li, J.; Tu, G . Highly selective palladium-catalyzed Stille coupling reaction toward chlorine-containing NIR electroluminescent polymers . J. Mater. Chem. C , 2015 . 3 7463 -7468 . DOI:10.1039/C5TC01013F .
16
Views
38
Downloads
3
CSCD
Related Articles
Related Author
Related Institution