1.Kazan National Research Technological University, Department of General Chemical Technologies, Kazan 420015, Russia
c6u92@yandex.ru
Scan for full text
Aleksei Maksimov, Gennadii Kutyrev. Functionalized Hyperbranched Aliphatic Polyester Polyols: Synthesis, Properties and Applications. [J]. Chinese Journal of Polymer Science 40(12):1567-1585(2022)
Aleksei Maksimov, Gennadii Kutyrev. Functionalized Hyperbranched Aliphatic Polyester Polyols: Synthesis, Properties and Applications. [J]. Chinese Journal of Polymer Science 40(12):1567-1585(2022) DOI: 10.1007/s10118-022-2823-0.
Functionalized hyperbranched aliphatic polyesters have a spatially unloaded core (ethoxylated pentaerythritol, orange color) and a shell of branched dendrons (monomer 2,2-dihydroxypropanoic acid, yellow color), in which terminal oxygen-, nitrogen-, silicon-, sulfur- and organophosphorus functional fragments are predominantly located in the surface layer (red color).
Recently, hyperbranched polymers (HBPs), which differ significantly in structure and properties from linear, cross-linked and branched analogs, have become increasingly important. HBP have a spatial unloaded core and a shell of branched monomer units (dendrons), in which functional groups are predominantly located in the surface layer. The size of macromolecules ranges from 2 nm to 100 nm. Currently, there are a fairly large number of publications in the literature devoted to the modification of hyperbranched polyester polyols with various functional groups and the assessment of the potential for their use. However, there are no review articles on this topic in recent years. In this regard, it is relevant to generalize the latest achievements in the field of synthesis, properties and application of hyperbranched polyester polyols with terminal oxygen, nitrogen, silicon, sulfur and organophosphorus fragments. The advantage of hyperbranched polyester polyols of the Boltorn H series is their industrial availability, biodegradability, nanoscale, non-toxicity and high solubility in various polar solvents due to short monomer units, as well as the presence of reactive terminal hydroxyl groups. Functionalization of hyperbranched polyester polyols at hydroxyl groups is mainly carried out by addition of acid anhydrides, iso(thio)cyanates, alkenes, lactides, lactones, lactams, epoxy compounds or reactions with halogenated compounds (alkyl halides, acid chlorides). In some cases, for the functionalization of polyester polyols special linkers are used, such as acid chlorides of unsaturated or dicarboxylic acids, diisocyanates,etc,., which provide covalent bonding of the hyperbranched polymer with the target functional group. The obtained derivatives of hyperbranched polyesters are widely used in such areas as biomedicine, pharmacy, paints and varnishes, they are also used as catalysts, membranes, multifunctional coatings, plasticizers and polymer stabilizers.
Hyperbranched polymersHyperbranched polyester polyolsCurable coatingsTargeted drug deliveryMembranes
Wang, D.; Jin, Y.; Zhu, X.; Yan, D . Synthesis and applications of stimuli-responsive hyperbranched polymers . Prog. Polym. Sci. , 2017 . 64 114 -153 . DOI:10.1016/j.progpolymsci.2016.09.005http://doi.org/10.1016/j.progpolymsci.2016.09.005 .
Kutyreva, M. P.; Babkina, S. S.; Atanasyan, T. K.; Ulahovich, N. A.; Kutyrev, G. A., in Novye materialy: biologicheski aktivnye giperrazvetvlennye polimery i ih metallokompleksy [New materials: biologically active hyperbranched polymers and their metal complexes] (in Russian), Moskovskij gorodskoj pedagogicheskij universitet, Moscow, 2014, p. 136.
Caminade, A. M.; Yan, D.; Smith, D. K . Dendrimers and hyperbranched polymers . Chem. Soc. Rev. , 2015 . 44 3870 -3873 . DOI:10.1039/C5CS90049Bhttp://doi.org/10.1039/C5CS90049B .
Lederer, A.; Burchard, W., in Hyperbranched Polymers: Macromolecules in between deterministic linear chains and dendrimer structures, The Royal Society of Chemistry, Cambridge, 2015, р. 285.
Zheng, Y.; Li, S.; Weng, Z.; Gao, C . Hyperbranched polymers: advances from synthesis to applications . Chem. Soc. Rev. , 2015 . 44 4091 -4130 . DOI:10.1039/C4CS00528Ghttp://doi.org/10.1039/C4CS00528G .
Žagar, E.; Žigon, M . Aliphatic hyperbranched polyesters based on 2,2-bis(methylol)propionic acid—determination of structure, solution and bulk properties . Prog. Polym. Sci. , 2011 . 36 53 -88 . DOI:10.1016/j.progpolymsci.2010.08.004http://doi.org/10.1016/j.progpolymsci.2010.08.004 .
Korolev, V. G.; Bubnova, M. L., in Giperrazvetvlennye polimery – novyj moshchnyj stimul dal'nejshego razvitiya oblasti trekhmernoj polimerizacii i revolyuciya v polimernom materialovedenie [Hyperbranched polymers - a powerful new stimulus for further development of the field of three-dimensional polymerization and a revolution in polymer materials science] (in Russian), Institut problem himicheskoj fiziki RAN, CHernogolovka, 2006, p. 100.
Katritzky, A. R.; Song, Y.; Sakhuja, R.; Gyanda, R.; Meher, N. K.; Wang, L.; Duran, R. S.; Ciaramitaro, D. A.; Bedford, C. D . Synthesis of Boltorn 1,2,3-triazole dendrimers by click chemistry . J. Polym. Sci., Part A: Polym. Chem. , 2009 . 47 3748 -3756 . DOI:10.1002/pola.23427http://doi.org/10.1002/pola.23427 .
Žagar, E.; Huskić, M.; Žigon, M . Structure-to-properties relationship of aliphatic hyperbranched polyesters . Macromol. Chem. Phys. , 2007 . 208 1379 -1387 . DOI:10.1002/macp.200600672http://doi.org/10.1002/macp.200600672 .
Žagar, E.; Žigon, M . Characterization of a commercial hyperbranched aliphatic polyester based on 2,2-bis(methylol)propionic acid . Macromolecules , 2002 . 35 9913 -9925 . DOI:10.1021/ma021070ohttp://doi.org/10.1021/ma021070o .
Žagar, E.; Huskić, M.; Grdadolnik, J.; Žigon, M.; Zupančič-Valant, A . Effect of annealing on the rheological and thermal properties of aliphatic hyperbranched polyester based on 2,2-bis(methylol)propionic acid . Macromolecules , 2005 . 38 3933 -3942 . DOI:10.1021/ma0475434http://doi.org/10.1021/ma0475434 .
Gao, C.; Yan, D . Hyperbranched polymers: from synthesis to applications . Prog. Polym. Sci. , 2004 . 29 183 -275 . DOI:10.1016/j.progpolymsci.2003.12.002http://doi.org/10.1016/j.progpolymsci.2003.12.002 .
Bondar, O. V.; Gataulina, A. R.; Ulakhovich, N. A.; Kutyreva, M. P . Synthesis and complexing ability of hyperbranched polyester polyols containing carboxylic acid fragments . Russ. J. Org. Chem. , 2018 . 54 1301 -1306 . DOI:10.1134/S1070428018090051http://doi.org/10.1134/S1070428018090051 .
Bondar', O. V.; Gataulina, A. R.; Ulahovich, N. A.; Kutyreva, M. P . Synthesis and complexing properties of hyperbranched polyester polyols containing carboxylic acid fragments . Russ. J. Org. Chem. , 2018 . 54 1290 -1295 . DOI:10.1134/S1070428018090038http://doi.org/10.1134/S1070428018090038 .
Kutyreva, M. P.; Ulakhovich, N. A.; Gataulina, A. R.; Khannanov, A. A.; Malinovskikh, O. A.; Yurtaeva, S. V.; Medyantseva, E. P . Synthesis and properties of hyperbranched polyester polyacrylic acids and their metal complexes . Russ. Chem. Bull. , 2014 . 63 239 -246 . DOI:10.1007/s11172-014-0419-8http://doi.org/10.1007/s11172-014-0419-8 .
Kutyreva, M. P.; Ulahovich, N. A.; Gataulina, A. R.; Hannanov, A. A.; Malinovskih, O. A.; YUrtaeva, S. V.; Medyanceva, E. P . Synthesis and properties of hyperbranched polyester-polyacrylic acids and their metal complexes . Russ. Chem. Bull. , 2014 . 239 .
Yurtaeva, S. V.; Gilmutdinov, I. F.; Rodionov, A. A.; Zaripov, R. B.; Kutyreva, M. P.; Bondar, O. V.; Nedopekin, O. V.; Khafizov, N. R.; Kadkin, O. N . Ferromagnetically coupled copper(II) clusters incorporated in functionalized Boltorn H30 hyperbranched polymer architecture: ESR, magnetic susceptibility measurements, and quantum-chemical calculations . ACS Omega , 2019 . 4 16450 -16461 . DOI:10.1021/acsomega.9b02048http://doi.org/10.1021/acsomega.9b02048 .
Ararat, C. A.; Murillo, E. A . Functionalized low density polyethylene with maleinized hyperbranched polyester polyol . Ingeniería y Ciencia , 2016 . 12 127 -144. .
Nova, M.; Arévalo, Y.; Murillo, E. A . Functionalization in solution of polypropylene with a maleinized hyperbranched polyol polyester: structural, thermal, rheological, and mechanical properties . J. Appl. Polym. Sci. , 2019 . 136 46932 DOI:10.1002/app.46932http://doi.org/10.1002/app.46932 .
Caicedo, C.; Murillo, E. A . Structural, thermal, rheological, morphological and mechanical properties of polypropylene functionalized in molten state with maleinized hyperbranched polyol polyester . Eur. Polym. J. , 2019 . 118 254 -264 . DOI:10.1016/j.eurpolymj.2019.06.005http://doi.org/10.1016/j.eurpolymj.2019.06.005 .
Chaffraix, T.; Voda, A. S.; Dumée, L. F.; Magniez, K . Surface ionic charge dependence on the molecular mobility and self-assembly behavior of ionomers produced from carboxylic acid-terminated dendrimers . Polym. J. , 2017 . 49 245 -254 . DOI:10.1038/pj.2016.93http://doi.org/10.1038/pj.2016.93 .
Dunjic, B.; Tasic, S.; Bozic, B.; Aleksandrovic-Bondzic, V.; Nikolic, M. S.; Djonlagic, J . Rheological properties of hydroxyl-terminated and end-capped aliphatic hyperbranched polyesters . J. Appl. Polym. Sci. , 2014 . 132 41479 .
Pérocheau Arnaud, S.; Hashemi, P.; Mischnick, P.; Robert, T . Optimized synthesis of highly reactive UV-curable hyperbranched polyester acrylates . J. Coat. Technol. Res. , 2020 . 17 127 -143 . DOI:10.1007/s11998-019-00247-whttp://doi.org/10.1007/s11998-019-00247-w .
Wei, D.; Huang, X.; Zeng, J.; Deng, S.; Xu, J . Facile synthesis of a castor oil-based hyperbranched acrylate oligomer and its application in UV-curable coatings . J. Appl. Polym. Sci. , 2020 . 137 49054 DOI:10.1002/app.49054http://doi.org/10.1002/app.49054 .
Wei, D.; Liao, B; Yong, Q.; Wang, H.; Li, T.; Huang, J.; Pang, H . Castor oil-based waterborne hyperbranched polyurethane acrylate emulsion for UV-curable coatings with excellent chemical resistance and high hardness . J. Coat. Technol. Res. , 2019 . 16 415 -428 . DOI:10.1007/s11998-018-0120-1http://doi.org/10.1007/s11998-018-0120-1 .
Ichimura, K . J-aggregation and photodimerisation behaviour of cinnamoyloxy side chains of hyper-branched polymers determined by higher-order derivative spectra . J. Mater. Chem. C , 2014 . 2 641 -650 . DOI:10.1039/C3TC31820Fhttp://doi.org/10.1039/C3TC31820F .
Liu, R.; Zhu, G.; Li, Z.; Liu, X.; Chen, Z.; Ariyasivam, S . Cardanol-based oligomers with “hard core, flexible shell” structures: from synthesis to UV curing applications . Green Chem. , 2015 . 17 3319 -3325 . DOI:10.1039/C5GC00366Khttp://doi.org/10.1039/C5GC00366K .
Michalski, A.; Brzezinski, M.; Lapienis, G.; Biela, T . Star-shaped and branched polylactides: Synthesis, characterization, and properties . Prog. Polym. Sci. , 2018 . 89 159 -212. .
Imsombut, T.; Srisa-Ard, M.; Baimark, Y . Synthesis of star-shaped ε-caprolactone oligomers for use as plasticizers of poly(L-lactide) bioplastic films . Orient. J. Chem. , 2017 . 33 654 -663 . DOI:10.13005/ojc/330213http://doi.org/10.13005/ojc/330213 .
Parzuchowski, P. G.; Gregorowicz, J.; Wawrzyńska, E . P.; Wiącek, D.; Rokicki, G. The phase behavior in supercritical carbon dioxide of hyperbranched copolymers with architectural variations . J. Supercrit. Fluids. , 2016 . 107 657 -668 . DOI:10.1016/j.supflu.2015.07.028http://doi.org/10.1016/j.supflu.2015.07.028 .
Khannanov, A. A.; Kutyreva, M. P.; Ulakhovich, N. A.; Gataulina, A. R.; Bondar, O. V.; Zakharova, L. Y.; Kutyrev, G. A . Hyperbranched polyester polyacids and their binary systems with surfactants for doxorubicin encapsulation . Fluid Phase Equilib. , 2016 . 411 93 -100 . DOI:10.1016/j.fluid.2015.12.023http://doi.org/10.1016/j.fluid.2015.12.023 .
Kavand, A.; Anton, N.; Vandamme, T.; Serra, C. A.; Chan-Seng, D . Synthesis and functionalization of hyperbranched polymers for targeted drug delivery . J. Control. Rel. , 2020 . 321 285 -311 . DOI:10.1016/j.jconrel.2020.02.019http://doi.org/10.1016/j.jconrel.2020.02.019 .
Zhang, Z. H.; Qiao, C. Y.; Zhang, J.; Zhang, W. M.; Yin, J.; Wu, Z. Q . Synthesis of unimolecular micelles with incorporated hyperbranched Boltorn H30 polyester modified with hyperbranched helical poly(phenyl isocyanide) chains and their enantioselective crystallization performance . Macromol. Rapid Commun. , 2017 . 38 1700315 DOI:10.1002/marc.201700315http://doi.org/10.1002/marc.201700315 .
Yang, H.; Zhao, X.; Zhang, X.; Ma, L.; Wang, B.; Wei, H . Optimization of bioreducible micelles self-assembled from amphiphilic hyperbranched block copolymers for drug delivery . J. Polym. Sci., Part A: Polym. Chem. , 2018 . 56 1383 -1394 . DOI:10.1002/pola.29019http://doi.org/10.1002/pola.29019 .
Gomzyak, V. I.; Sedush, N. G.; Puchkov, A. A.; Polyakov, D. K.; Chvalun, S. N . Linear and branched lactide polymers for targeted drug delivery systems . Polym. Sci. Ser. B , 2021 . 63 257 -271 . DOI:10.1134/S1560090421030064http://doi.org/10.1134/S1560090421030064 .
Zhang, S.; Xu, J.; Chen, H.; Song, Z.; Wu, Y.; Dai, X.; Kong, J . Acid-cleavable unimolecular micelles from amphiphilic star copolymers for triggered release of anticancer drugs . Macromol. Biosci. , 2016 . 17 1600258 .
Chen, G.; Wang, L.; Cordie, T.; Vokoun, C.; Eliceiri, K. W.; Gong, S . Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging . Biomaterials , 2015 . 47 41 -50 . DOI:10.1016/j.biomaterials.2015.01.006http://doi.org/10.1016/j.biomaterials.2015.01.006 .
Bal Öztürk, A.; Cevher, E.; Pabuccuoğlu, S.; Özgümüş, S . pH sensitive functionalized hyperbranched polyester based nanoparticulate system for the receptor-mediated targeted cancer therapy . Int. J. Polym. Mater. , 2018 . 68 1 -16. .
Bhat, S . I.; Ahmadi, Y.; Ahmad, S. Recent advances in structural modifications of hyperbranched polymers and their applications . Ind. Eng. Chem. Res. , 2018 . 57 10754 -10785 . DOI:10.1021/acs.iecr.8b01969http://doi.org/10.1021/acs.iecr.8b01969 .
Bai, T.; Zhu, B.; Du, Z.; Shi, J.; Shao, D.; Kong, J . Amphiphilic star copolymers-mediated co-delivery of doxorubicin and avasimibe for effective combination chemotherapy . J. Mater. Sci. , 2020 . 55 9525 -9537 . DOI:10.1007/s10853-020-04759-4http://doi.org/10.1007/s10853-020-04759-4 .
Jaskula-Sztul, R.; Xu, W.; Chen, G.; Harrison, A.; Dammalapati, A.; Nair, R.; Cheng, Y.; Gong, S.; Chen, H . Thailandepsin A-loaded and octreotide-functionalized unimolecular micelles for targeted neuroendocrine cancer therapy . Biomaterials , 2016 . 91 1 -10 . DOI:10.1016/j.biomaterials.2016.03.010http://doi.org/10.1016/j.biomaterials.2016.03.010 .
Ovchinnikova, Yu. V.; Simakova, G. A.; Simakov, A. Yu.; Grickova, I. A.; Gomzyak, V. I . Surface Active Properties of BOLTORN Block Copolymers . Chem. Technol. , 2020 . 21 111 -117. .
Weigl, S., Nanomaterials used for immobilization of polymer antioxidants/eingereicht von DI Sabrina Weigl, Thesis, Universität Linz, 2016.
Kutyrev, G. A.; SHigabieva, Yu. A.; Bogdanova, S. A.; Gajnutdinova, R. R.; Ziyatdinova, G. K.; Kutyreva, M. P.; Bondar', O. V.; Gataulina, A. R . 3,5-Di-tert-butyl-4-hydroxybenzyl derivatives of hyperbranched polyesters. Synthesis and antioxidant activity . Butlerov Commun. , 2017 . 49 108 -113. .
Kutyrev, G. A.; Gayazova, E. R.; CHerezova, E. N.; Kutyreva, M. P.; Gataulina, A. R . 3,5-Di-tert-butyl-4-hydroxybenzyl derivatives of hyperbranched polyester polyols . Bull. of Technol. Univ. , 2015 . 18 30 -33. .
Wang, L.; Ji, S.; Wang, N.; Zhang, R.; Zhang, G.; Li, J. R . One-step self-assembly fabrication of amphiphilic hyperbranched polymer composite membrane from aqueous emulsion for dye desalination . J. Membr. Sci. , 2014 . 452 143 -151 . DOI:10.1016/j.memsci.2013.10.034http://doi.org/10.1016/j.memsci.2013.10.034 .
Yang, Y.; Zhao, Y. F.; Zhan, M. S.; Wang, J. Y.; Zhao, C.; Liu, X. Y.; Zhang, J. H . Nitrile rubber/hindered phenol exterminated hyperbranched polyester materials with improved damping and mechanical performance . J. Appl. Polym. Sci. , 2015 . 132 42605 .
Ren, L.; Niu, Q.; Zhao, J.; Qiang, T . Amphiphilic hyperbranched polymers: synthesis, characterization and self-assembly performance . J. Leather Sci. Eng. , 2020 . 2 4 DOI:10.1186/s42825-019-0015-7http://doi.org/10.1186/s42825-019-0015-7 .
Chen, S.; Xu, Z.; Zhang, D . Synthesis and application of epoxy-ended hyperbranched polymers . Chem. Eng. J. , 2018 . 343 283 -302 . DOI:10.1016/j.cej.2018.03.014http://doi.org/10.1016/j.cej.2018.03.014 .
Stra burg, A.; Lűtzen, H.; Hartwig, A . Crystallinity as new toughening concept for epoxy resins: influence of branching of integrated polyester . J. Adhesion Society Japan , 2015 . 51 286 -292 . DOI:10.11618/adhesion.51.286http://doi.org/10.11618/adhesion.51.286 .
Brocks, T.; Ambrogi, V.; Cioffi, M. O. H. Comparison between commercial and synthesized hyperbranched polyesters regarding fracture toughness of epoxy matrix. Appl. Mech. Mater. 2015, 719-720, 110-113.
Shi, Z.; Zhou, Y.; Yan, D . Facile fabrication of pH-responsive and size-controllable polymer vesicles from a commercially available hyperbranched polyester . Macromol. Rapid Commun. , 2008 . 29 412 -418 . DOI:10.1002/marc.200700673http://doi.org/10.1002/marc.200700673 .
Zhou, Y.; Yan, D . Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectives . Chem. Commun. , 2009 . 10 1172 -1188. .
Zhou, Y.; Huang, W.; Liu, J.; Zhu, X.; Yan, D . Self-assembly of hyperbranched polymers and its biomedical applications . Adv. Mater. , 2010 . 22 4567 -4590 . DOI:10.1002/adma.201000369http://doi.org/10.1002/adma.201000369 .
Gataulina, A. R.; Sidorov, P. O.; Yurtaeva, S. V.; Prytkov, V. A.; Ulakhovich, N. A.; Kutyrev, G. A.; Kutyreva, M. P . Ionization and complexing properties of hyperbranched polyester poly[3-(2-aminoethyl)amino)]propionate . Russ. J. Gen. Chem. , 2020 . 90 425 -433 . DOI:10.1134/S1070363220030159http://doi.org/10.1134/S1070363220030159 .
Gataulina, A. R.; Khasanova, E. M.; Basalaev, A. S.; Ulakhovich, N. A.; Kutyrev, G. A.; Yurtaeva, S. V.; Kutyreva, M. P . Hyperbranched polyester poly[3-(morpholin-4-yl)propionates] and their copper(II) complexes . Russ. J. Gen. Chem. , 2017 . 87 1995 -2005 . DOI:10.1134/S1070363217090158http://doi.org/10.1134/S1070363217090158 .
Gataulina, A. R.; Khasanova, E. M.; Ulakhovich, N. A.; Kutyrev, G. A.; Kutyreva, M. P . Synthesis and properties of water-soluble branched polyester poly{3-[3-(morpholin-4-yl)propyl]amino}propionate and its copper(II) complex . Russ. J. Gen. Chem. , 2018 . 88 1874 -1879 . DOI:10.1134/S1070363218090189http://doi.org/10.1134/S1070363218090189 .
Gataulina, A. R.; Rahmatullina, L. R.; Kutyreva, M. P.; Busygina, A. A.; Kutyrev, G. A . Synthesis of hyperbranched polyester polycarbamates . Bull. Technol. Univ. , 2015 . 18 48 .
Gataulina, A. R.; Kutyreva, M. P.; Ulakhovich, N. A.; Shigapov, M. Y.; Khasanova, E. M.; Kutyrev, G. A . Synthesis and spectral characteristics of a hyperbranched polyester poly(phenylcarbamate) . Russ. J. Org. Chem. , 2015 . 51 1499 -1501 . DOI:10.1134/S1070428015100243http://doi.org/10.1134/S1070428015100243 .
Kutyreva, M. P.; Gataulina, A. R.; Kutyrev, G. A.; Ulakhovich, N. A.; Surnova, A. V.; Yurtaeva, S. V . Hyperbranched polyester poly(3-diethylamino)propionates and their copper(II) complexes . Russ. Chem. Bull. , 2015 . 64 2667 DOI:10.1007/s11172-015-1206-xhttp://doi.org/10.1007/s11172-015-1206-x .
Kutyreva, M. P.; Gataulina, A. R.; Kutyrev, G. A.; Ulakhovich, N. A.; Newman, T.; Khasanova, E. M.; Bondar, O. V.; Yuraeva, S. V.; Ziganshina, S. A.; Khaldeeva, E. V . Hyperbranched polyester poly(3-diethylaminepropionate)s and their copper(II) complexes: synthesis, characterization and biological investigation . Inorganica Chim. Acta , 2016 . 450 101 -111 . DOI:10.1016/j.ica.2016.04.013http://doi.org/10.1016/j.ica.2016.04.013 .
Kutyreva, M. P.; Gataulina, A. R.; Surnova, A. V.; Kutyrev, G. A.; Fadeeva, K. S.; Haldeeva, E. V.; Ulahovich, N. A . Synthesis, complexing and fungicidal properties of amino-modified 2,2-di(hydroxymethyl)methylpropionate . Bull. Technol. Univ. , 2014 . 17 143 .
Kutyrev, G. A.; Rahmatullina, L. R.; Kutyreva, M. P.; Gataulina, A. R . Synthesis and properties of hyperbranched polyester polyols containing terminal quaternary ammonium groups . Bull. Technol. Univ. , 2015 . 18 42 .
Zhang, J.; Ren, H.; Chen, P.; Zhang, Z.; Hu, C . Preparation and properties of waterborne polyurethane with star-shaped hyperbranched structure . Polymer , 2019 . 180 121690 DOI:10.1016/j.polymer.2019.121690http://doi.org/10.1016/j.polymer.2019.121690 .
Zhang, J.; Tian, H. T.; Zhang, Y. T.; Hu, C. P.; Zhang, Z. P . Synthesis and characterization of an isocyanate-terminated hyperbranched polymer and its waterborne study . J. Polym. Res. , 2021 . 28 1 -12 . DOI:10.1007/s10965-020-02155-9http://doi.org/10.1007/s10965-020-02155-9 .
Džunuzović, J. V.; Stefanović, I. S.; Džunuzović, E. S.; Dapčević, A.; Šešlija, S. I.; Balanč, B. D.; Lama, G. C . Polyurethane networks based on polycaprolactone and hyperbranched polyester: structural, thermal and mechanical investigation . Prog. Org. Coat. , 2019 . 137 105305 DOI:10.1016/j.porgcoat.2019.105305http://doi.org/10.1016/j.porgcoat.2019.105305 .
Stefanović, I. S.; Džunuzović, J. V.; Džunuzović, E. S.; Dapčević, A.; Šešlija, S. I.; Balanč, B . D.; Dobrzyńska-Mizera, M. Composition-property relationship of polyurethane networks based on polycaprolactone diol . Polym. Bull. , 2021 . 78 7103 -7128 . DOI:10.1007/s00289-020-03473-0http://doi.org/10.1007/s00289-020-03473-0 .
Maurya, S. D.; Kurmvanshi, S. K.; Mohanty, S.; Nayak, S. K. A review on acrylate-terminated urethane oligomers and polymers: synthesis and applications Polym. Plast. Technol. Eng. 2017, 57, 625.
Zhang, Q.; Huang, C.; Wang, H.; Hu, M.; Li, H.; Liu, X . UV-curable coating crosslinked by a novel hyperbranched polyurethane acrylate with excellent mechanical properties and hardness . RSC Adv. , 2016 . 6 107942 -107942 . DOI:10.1039/C6RA21081Chttp://doi.org/10.1039/C6RA21081C .
Bednarek, M . Branched aliphatic polyesters by ring-opening (co)polymerization . Prog. Polym. Sci. , 2016 . 58 27 -58 . DOI:10.1016/j.progpolymsci.2016.02.002http://doi.org/10.1016/j.progpolymsci.2016.02.002 .
Emamikia, M.; Barikani, M.; Bakhshandeh, G . Relationship between structure and aromatic solvent permeability of crosslinked polyurethanes based on hyperbranched polyesters . Polym. Int. , 2015 . 64 1142 -1154 . DOI:10.1002/pi.4882http://doi.org/10.1002/pi.4882 .
Du, X.; Wang, H.; Wu, Y.; Du, Z.; Cheng, X . Solid-solid phase-change materials based on hyperbranched polyurethane for thermal energy storage . J. Appl. Polym. Sci. , 2017 . 134 45014 DOI:10.1002/app.45014http://doi.org/10.1002/app.45014 .
Korolovych, V. F.; Erwin, A.; Stryutsky, A.; Lee, H.; Heller, W. T.; Shevchenko, V. V.; Bulavin, L. A.; Tsukruk, V. V . Thermally responsive hyperbranched poly(ionic liquid)s: assembly and phase transformations . Macromolecules , 2018 . 51 4923 -4937 . DOI:10.1021/acs.macromol.8b00845http://doi.org/10.1021/acs.macromol.8b00845 .
Medyantseva, E. P.; Brusnitsyn, D. V.; Varlamova, R. M.; Konovalova, O. A.; Budnikov, H. K . Nanostructured composites based on graphene and cobalt nanoparticles in monoamine oxidase biosensors for determining antidepressants . Inorg. Mater. , 2019 . 55 1390 -1398 . DOI:10.1134/s0020168519140103http://doi.org/10.1134/s0020168519140103 .
Dai, Y.; Yu, P.; Zhang, X.; Zhuo, R . Gold nanoparticles stabilized by amphiphilic hyperbranched polymers for catalytic reduction of 4-nitrophenol . J. Catal. , 2016 . 337 65 -71 . DOI:10.1016/j.jcat.2016.01.014http://doi.org/10.1016/j.jcat.2016.01.014 .
Saranya, N.; Jayapriya, J.; Ramamurthy, V . Unsaturated polyesters in microbial fuel cells and biosensors . Unsaturated Polyester Resins. , 2019 . 557 -578 . DOI:10.1016/b978-0-12-816129-6.00021-1http://doi.org/10.1016/b978-0-12-816129-6.00021-1 .
Androulaki, K.; Chrissopoulou, K.; Labardi, M.; Anastasiadis, S. H . Effect of interfacial interactions on static and dynamic behavior of hyperbranched polymers: comparison between different layered nanoadditives . Polymer , 2021 . 222 123646 DOI:10.1016/j.polymer.2021.123646http://doi.org/10.1016/j.polymer.2021.123646 .
Twibanire, J.; Grindley, T. B . Polyester dendrimers: smart carriers for drug delivery . Polymers , 2014 . 6 179 -213 . DOI:10.3390/polym6010179http://doi.org/10.3390/polym6010179 .
Gajbhiye, V.; Escalante, L.; Chen, G.; Laperle, A.; Zheng, Q.; Steyer, B.; Gong, S. Saha, K . Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives . Nanoscale , 2014 . 6 521 -531 . DOI:10.1039/c3nr04794fhttp://doi.org/10.1039/c3nr04794f .
Chen, K.; Zhou, X.; Wang, X . Synthesis and application of a hyperbranched polyester quaternary ammonium surfactant . J. Surfactants Deterg. , 2014 . 17 1081 -1088 . DOI:10.1007/s11743-014-1624-zhttp://doi.org/10.1007/s11743-014-1624-z .
Bafkary, R.; Ahmadi, S.; Fayazi, F.; Karimi, M.; Fatahi, Y.; Ebrahimi, S. M.; Dinarvand, R . Amphiphilic hyperbranched polyester coated rod mesoporous silica nanoparticles for pH-responsive doxorubicin delivery . DARU , 2020 . 28 171 -180 . DOI:10.1007/s40199-020-00328-xhttp://doi.org/10.1007/s40199-020-00328-x .
Wang, J.; Yao, Y.; Ji, B.; Huang, W.; Zhou, Y. F.; Yan, D. Y . The amphiphilic multiarm copolymers based on hyperbranched polyester and lysine: synthesis and self-assembly . Chinese J. Polym. Sci. , 2011 . 29 241 -250 . DOI:10.1007/s10118-011-1030-1http://doi.org/10.1007/s10118-011-1030-1 .
Houel, A.; Galy, J.; Charlot, A.; Gérard, J. F . Synthesis and characterization of hybrid films from hyperbranched polyester using a sol-gel process . J. Appl. Polym. Sci. , 2013 . 131 39830 DOI:10.1002/app.39830http://doi.org/10.1002/app.39830 .
Meyers, K. P.; Decker, J. J.; Olson, B. G.; Lin, J.; Jamieson, A. M.; Nazarenko, S . Probing the confining effect of clay particles on an amorphous intercalated dendritic polyester . Polymer , 2017 . 112 76 -86 . DOI:10.1016/j.polymer.2017.01.065http://doi.org/10.1016/j.polymer.2017.01.065 .
Chrissopoulou, K.; Androulaki, K.; Prevosto, D.; Labardi, M.; Anastasiadis, S. H . Effect of confinement and molecular architecture on interfacial dynamics . AIP Conf. Proc. , 2016 . 1736 020049 DOI:10.1063/1.4949624http://doi.org/10.1063/1.4949624 .
Androulaki, K.; Chrissopoulou, K.; Prevosto, D.; Labardi, M.; Anastasiadis, S. H . Dynamics of hyperbranched polymers under confinement: a dielectric relaxation study . ACS Appl. Mater. Interfaces. , 2015 . 7 12387 -12398 . DOI:10.1021/am507571yhttp://doi.org/10.1021/am507571y .
Chrissopoulou, K.; Androulaki, K.; Anastasiadis, S . H.; Prevosto, D.; Labardi, M. Dynamics of hyperbranched polymers in the bulk and under confinement: effect of dendritic generation . APS March Meeting. , 2014 . 22 4 .
Pan, Y.; Cui, X.; Zhang, Y . Preparation of dendrimer polyol/mesoporous silica nanocomposite for reversible CO2 adsorption: Effect of pore size and polyol content . IOP Conference Series: Materials Science and Engineering , 2017 . 167 012026 DOI:10.1088/1757-899X/167/1/012026http://doi.org/10.1088/1757-899X/167/1/012026 .
K. Ghomari, B. Boukoussa, R. Hamacha, A. Bengueddach, R. Roy, A . Azzouz . Sep. Sci. Technol. , 2017 . 52 2421 -2428 . DOI:10.1080/01496395.2017.1367810http://doi.org/10.1080/01496395.2017.1367810 .
Ghomari, K.; Benhamou, A.; Hamacha, R.; Bengueddach, A.; Nousir, S.; Shiao, T . C.; Roy, R.; Azzouz, A. TPD and DSC insights in the basicity of MCM-48-like silica and modified counterparts . Thermochim. Acta , 2015 . 600 52 -61 . DOI:10.1016/j.tca.2014.11.014http://doi.org/10.1016/j.tca.2014.11.014 .
Terrab, I.; Boukoussa, B.; Hamacha, R.; Bouchiba, N.; Roy, R.; Bengueddach, A.; Azzouz, A . Insights in CO2 interaction on zeolite omega-supported polyol dendrimers . Thermochim. Acta , 2016 . 624 95 -101 . DOI:10.1016/j.tca.2015.11.004http://doi.org/10.1016/j.tca.2015.11.004 .
Istratov, V. V.; Vasnev, V. A.; Markova, G. D . Biodegradable and Biocompatible Silatrane Polymers . Molecules , 2021 . 26 1893 DOI:10.3390/molecules26071893http://doi.org/10.3390/molecules26071893 .
Olofsson, K.; Andrén, O. C. J.; Malkoch, M . Recent advances on crosslinked dendritic networks . J. Appl. Polym. Sci. , 2013 . 131 39876 DOI:10.1002/app.39876http://doi.org/10.1002/app.39876 .
Flores, M.; Foix, D.; Serra, A.; Ramis, X.; Sangermano, M . Versatile thiol-ene/sol–gel two-stage curing process based on a hyperbranched polyester with different degrees of 10-U ndecenoyl modification . Macromol. Mater. Eng. , 2014 . 299 495 -503 . DOI:10.1002/mame.201300264http://doi.org/10.1002/mame.201300264 .
Gayazova, E. R.; Davlyatova, L. S.; Kutyrev, G. A.; Haldeeva, E. V.; Kutyreva, M. P.; Ulahovich, N. A . Tosylate modification of hyperbranched polyester polyols . Bull. Technol. Univ. , 2014 . 17 182 -185. .
Kutyrev, G. A.; Busygina, A. A.; Ahmadulina, E. N.; Rahmatullina, L. R.; Kutyreva, M. P.; Gataulina, A. R . Synthesis, structure and fungicidal properties of hyperbranched polyesterpoly(N-phenylthiocarbamates) . Bull. Technol. Univ. , 2016 . 19 15 -18. .
Busygina, A. A.; Rahmatullina, L. R.; Ahmadulina, E. N.; Kutyrev, G. A . Synthesis, structure and fungicidal activity of hyperbranched polyesteropol(N-phenylthiocarbamates)] . Fundamental Mathematics And Its Applications In Natural Science , 2016 . 431 -432. .
Lee, H.; Stryutsky, A.; Mahmood, A. U.; Singh, A.; Shevchenko, V. V.; Yingling, Y. G.; Tsukruk, V. V . Weakly ionically bound thermosensitive hyperbranched polymers . Langmuir , 2021 . 37 2913 -2927 . DOI:10.1021/acs.langmuir.0c03487http://doi.org/10.1021/acs.langmuir.0c03487 .
Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.; Gumenna, M. A.; Fomenko, A. A.; Bliznyuk, V. N.; Davydenko, V. V.; Tsukruk, V. V . Protic and aprotic anionic oligomeric ionic liquids . Polymer , 2014 . 55 3349 -3359 . DOI:10.1016/j.polymer.2014.04.020http://doi.org/10.1016/j.polymer.2014.04.020 .
Xu, W.; Ledin, P. A.; Shevchenko, V. V.; Tsukruk, V. V . Architecture, assembly, and emerging applications of branched functional polyelectrolytes and poly(ionic liquid)s . ACS Appl. Mater. Interfaces , 2015 . 7 12570 -12596 . DOI:10.1021/acsami.5b01833http://doi.org/10.1021/acsami.5b01833 .
Resetco, C.; Hendriks, B.; Badi, N.; Du Prez, F . Thiol-ene chemistry for polymer coatings and surface modification—building in sustainability and performance . Mater. Horiz. , 2017 . 4 1041 -1053 . DOI:10.1039/c7mh00488ehttp://doi.org/10.1039/c7mh00488e .
Guan, X. X.; Gan, J. Q.; Chen, G. K.; Huang, X. M.; Lu, M. G.; Wu, K.; Ling, L. Y.; Shi, J . UV-cured hyperbranched polyester polythiol(H20-SH)-epoxy acrylate networks: preparation, thermal and mechanical properties . J. Macromol. Sci. A , 2017 . 54 662 -668 . DOI:10.1080/10601325.2017.1317212http://doi.org/10.1080/10601325.2017.1317212 .
Korolovych, V. F.; Ledin, P. A.; Stryutsky, A.; Shevchenko, V. V.; Sobko, O.; Xu, W.; Bulavin, L. A.; Tsukruk, V. V . Assembly of amphiphilic hyperbranched polymeric ionic liquids in aqueous media at different pH and ionic strength . Macromolecules , 2016 . 49 8697 -8710 . DOI:10.1021/acs.macromol.6b01562http://doi.org/10.1021/acs.macromol.6b01562 .
Lee, H.; Stryutsky, A. V.; Korolovych, V. F.; Mikan, E.; Shevchenko, V. V.; Tsukruk, V. V . Transformations of thermosensitive hyperbranched poly(ionic liquid) s monolayers . Langmuir , 2019 . 35 11809 -11820 . DOI:10.1021/acs.langmuir.9b01905http://doi.org/10.1021/acs.langmuir.9b01905 .
Tambe, P.; Kumar, P.; Paknikar, K. M.; Gajbhiye, V . Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: advancement pertaining to architecture and biomedical applications . J. Control. Rel. , 2019 . 299 64 -89 . DOI:10.1016/j.jconrel.2019.02.026http://doi.org/10.1016/j.jconrel.2019.02.026 .
Kutyrev, G. A.; Maksimov, A. F.; Ernandes, A. M. P.; Kutyreva, M. P.; Gataulina, A. R . Hyperbranched polyesters containing terminal benzoyl and benzoylthiocarbamate groups . Bull. Technol. Univ. , 2018 . 21 69 -73. .
Kutyreva, M. P.; Gataulina, A. R.; Maksimov, A. F.; Ernandes, A. M. P.; Zhukova, A. A.; Kutyrev, G. A . Interaction of poly (benzoyl thiocarbamate)-modified hyperbranched polyester with Co(II) and Cu(II) nitrates . Russ. J. Gen. Chem. , 2020 . 90 268 -273 . DOI:10.31857/S0044460X2002016Xhttp://doi.org/10.31857/S0044460X2002016X .
Maksimov, A.; Vagapova, A.; Kutyreva, M.; Kutyrev, G . Polymer metal-organic clusters based on hyperbranched polyester polybenzoylthiocarbamate and Cu(II) and Co(II) ions . J. Mol. Struct. , 2022 . 1258 132575 DOI:10.1016/j.molstruc.2022.132575http://doi.org/10.1016/j.molstruc.2022.132575 .
Maksimov, A. F.; Zhukova, A. A.; Ernandes, A. M. P.; Kutyreva, M. P.; Gataulina, A. R.; Kutyrev, G. A . Synthesis of ethyl 2,2-bis{[(benzoylcarbamothioyl)oxy]methyl}propanoate and its complexes with copper(II) and cobalt(II) ions . Russ. J. Gen. Chem. , 2020 . 90 1285 -1291 . DOI:10.1134/S1070363220070142http://doi.org/10.1134/S1070363220070142 .
Maksimov, A.; Vagapova, A.; Kutyreva, M.; Kutyrev, G . Hybrid adsorbent based on Zeolite NaX modified with hyperbranched polyester poly(N-benzoylthiocarbamate) . Macromol. Res. , 2022 . 30 26 DOI:10.1007/s13233-022-0002-3http://doi.org/10.1007/s13233-022-0002-3 .
Maksimov, A. F.; Kutyrev, G. A.; Zhukova, A. A.; Kudryashova, D. A.; Kutyreva, M. P . New adsorbent based on zeolite modified with hyperbranched polyesterpolybenzoylthiocarbamate . Russ. Chem. Bull. , 2021 . 70 672 -676 . DOI:10.1007/s11172-021-3135-1http://doi.org/10.1007/s11172-021-3135-1 .
Ernandes, A.-M. P.; Maksimov, A. F.; ZHukova, A. A.; Kudryashova, D. A.; Momzyakova, K. S.; Kutyreva, M. P.; Gataulina, A. R.; Kutyrev, G. A . Polydentate adsorbent based on flax cellulose modified with hyperbranched polyesterpolybenzoylthiocarbamate] . Chem. Plant Raw Mater. , 2021 . 79 -85. .
Maksimov, A. F.; ZHukova, A. A.; Momzyakova, K. S.; Deberdeev, T. R.; Kutyrev, G. A . Biodegradable adsorbent based on cellulose chemically modified with hyperbranched polyester poly(N-benzoylthiocarbamate) . All Materials. Encyclopedic Reference , 2021 . 28 -34 . DOI:10.31044/1994-6260-2021-0-10-28-34http://doi.org/10.31044/1994-6260-2021-0-10-28-34 .
Gataulina, A. R.; Kutyrev, G. A.; Maksimov, A. F.; Ernandes, A.-M. P.; Kutyreva, M. P . Synthesis and complexing properties of p-toluensulfonylamido and phosphorylamido derivatives of second-generation hyperbranched polyester . Russ. J. Gen. Chem. , 2018 . 88 2300 -2306 . DOI:10.1134/S1070363218110099http://doi.org/10.1134/S1070363218110099 .
Pang, Y.; Liu, J.; Su, Y.; Zhu, B.; Huang, W.; Zhou, Y.; Zhu, Y.; Yan, D . Bioreducible unimolecular micelles based on amphiphilic multiarm hyperbranched copolymers for triggered drug release . Sci. China Chem. , 2010 . 53 2497 -2508 . DOI:10.1007/s11426-010-4163-0http://doi.org/10.1007/s11426-010-4163-0 .
Loza, S. A.; Dotsenko, V. V.; Bespalov, A. V.; Aksenov, N. A.; Utin, S. V.; Zabolotskii, V. I . Synthesis of new hyperbranched dendrimers with terminal cationic groups based on Boltorn H20 polyester polyol . Russ. J. Gen. Chem. , 2020 . 90 624 -629 . DOI:10.1134/s1070363220040118http://doi.org/10.1134/s1070363220040118 .
Utin, S. V.; Loza, S. A.; Bespalov, A. V.; Zabolotsky, V. I . Effect of functionalization and the nature of ionogenic groups of hyperbranched polymers on the electrochemical characteristics of asymmetric bipolar membranes . Pet. Chem. , 2018 . 58 137 -144 . DOI:10.1134/s0965544118020068http://doi.org/10.1134/s0965544118020068 .
Zabolotsky, V.; Utin, S.; Bespalov, A.; Strelkov, V . Modification of asymmetric bipolar membranes by functionalized hyperbranched polymers and their investigation during pH correction of diluted electrolytes solutions by electrodialysis . J. Membr. Sci. , 2015 . 494 188 -195 . DOI:10.1016/j.memsci.2015.07.057http://doi.org/10.1016/j.memsci.2015.07.057 .
Nizamov, I. S.; Shamilov, R. R.; Sergeenko, G. G.; Kutyrev, G. A.; Cherkasov, R. A . Phosphorus-containing hyperbranched structures: I. Thiophosphorylation of hyperbranched polyols with 2,4-bis(3,5-di-tert-butyl-4-hydroxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide . Russ. J. Gen. Chem. , 2007 . 77 2205 -2207 . DOI:10.1134/s1070363207120213http://doi.org/10.1134/s1070363207120213 .
Nizamov, I. S.; Shamilov, R. R.; Mart’yanov, E. M.; Sergeenko, G. G.; Kutyrev, G. A.; Cherkasov, R. A . Phosphorus-containing hyperbranched structures. Phosphorylation of hyperbranched polyols with 2-(diethylamino)-1,2,3-dioxaphosphinan . Russ. J. Gen. Chem. , 2018 . 78 1338 -1340 . DOI:10.1134/s107036320807008http://doi.org/10.1134/s107036320807008 .
Dhevi, D. M.; Anand Prabu, A.; Kim, K. J . Hyperbranched polyester as a crosslinker in polyurethane formation: real-time monitoring using in situ FTIR . Polym. Bull. , 2016 . 73 2867 -2888 . DOI:10.1007/s00289-016-1629-zhttp://doi.org/10.1007/s00289-016-1629-z .
Ling, C.; Guo, L . A novel, eco-friendly and durable flame-retardant cotton-based hyperbranched polyester derivative . Cellulose , 2019 . 27 2357 -2368 . DOI:10.1007/s10570-019-02923-xhttp://doi.org/10.1007/s10570-019-02923-x .
Kutyrev, G. A.; Maksimov, A. F.; Ernandes, A-M. P.; Idiyatov, I. I.; Valiullin, L. R.; Gallyamova, S. R.; Biryulya, V. V.; Gataulina, A. R.; Kutyreva, M. P . Hyperbranched polyesters containing terminal silicon and organophosphorus groups . Bull. Technol. Univ. , 2017 . 20 16 -21. .
Kutyrev, G. A.; Maksimov, A. F.; Busygina, A. A.; Idiyatov, I. I.; Valiullin; Gallyamova, S. R.; Biryulya, V. V.; Gataulina, A. R.; Kutyreva, M. P . Synthesis, complexing and fungicidal properties of hyperbranched polyester polyphosphates . Bull. Technol. Univ. , 2017 . 20 5 -11. .
Liu, J.; Huang, W.; Pang, Y.; Zhu, X.; Zhou, Y.; Yan, D . Self-assembled micelles from an amphiphilic hyperbranched copolymer with polyphosphate arms for drug delivery . Langmuir , 2010 . 26 10585 -10592 . DOI:10.1021/la1006988http://doi.org/10.1021/la1006988 .
0
Views
18
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution