a.School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
b.i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
cqma2011@sinano.ac.cn
Scan for full text
Bo-Wen Liu, Ze-Rui Li, Ling-Peng Yan, et al. ZnO Surface Passivation with Glucose Enables Simultaneously Improving Efficiency and Stability of Inverted Polymer: Non-fullerene Solar Cells. [J]. Chinese Journal of Polymer Science 40(12):1594-1603(2022)
Bo-Wen Liu, Ze-Rui Li, Ling-Peng Yan, et al. ZnO Surface Passivation with Glucose Enables Simultaneously Improving Efficiency and Stability of Inverted Polymer: Non-fullerene Solar Cells. [J]. Chinese Journal of Polymer Science 40(12):1594-1603(2022) DOI: 10.1007/s10118-022-2819-9.
ZnO Surface Passivation with Glucose Enables Simultaneously Improving Efficiency and Stability of Inverted Polymer: Non-fullerene Solar Cells
The power conversion efficiency (PCE) of polymer solar cells (PSCs) has exceeded 19% due to the rapid progress of photoactive organic materials, including conjugated polymer donors and the matched non-fullerene acceptors (NFAs). Due to the high density of oxygen vacancies and the consequent photocatalytic reactivity of ZnO, structure inverted polymer solar cells with the ZnO electron transport layer (ETL) usually suffer poor device photostability. In this work, the eco-friendly glucose (Glu) is found to simultaneously improve the efficiency and stability of polymer:NFA solar cells. Under the optimal conditions, we achieved improved PCEs from 14.77% to 15.86% for the PM6:Y6 solar cells. Such a PCE improvement was attributed to the improvement in ,J,SC, and FF, which is ascribed to the smoother and more hydrophobic surface of the ZnO/Glu surface, thereby enhancing the charge extraction efficiency and inhibiting charge recombination. Besides, UV-Vis absorption spectra analysis revealed that glucose modification could significantly inhibit the photodegradation of Y6, resulting in a significant improvement in the stability of the device with 92% of its initial PCE after aging for 1250 h. The application of natural interface materials in this work brings hope for the commercial application of organic solar cells and provides new ideas for developing new interface materials.
Polymer solar cellsGlucoseSurface passivationCharge injectionStability improvement
Li, Y.; Xu, G.; Cui, C.; Li, Y . Flexible and semitransparent organic solar cells . Adv. Energy Mater. , 2018 . 8 1701791 DOI:10.1002/aenm.201701791http://doi.org/10.1002/aenm.201701791 .
Zhang, K.; Hu, Z.; Sun, C.; Wu, Z.; Huang, F.; Cao, Y . Toward solution-processed high-performance polymer solar cells: from material design to device engineering . Chem. Mater. , 2017 . 29 141 -148 . DOI:10.1021/acs.chemmater.6b02802http://doi.org/10.1021/acs.chemmater.6b02802 .
Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H.; Lee, K . Bulk-heterojunction organic solar cells: five core technologies for their commercialization . Adv. Mater. , 2016 . 28 7821 -7861 . DOI:10.1002/adma.201601197http://doi.org/10.1002/adma.201601197 .
Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J . Single-junction organic photovoltaic cell with 19% efficiency . Adv. Mater. , 2021 . 33 2102420 DOI:10.1002/adma.202102420http://doi.org/10.1002/adma.202102420 .
An, C.; Zheng, Z.; Hou, J . Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics . Chem. Commun. , 2020 . 56 4750 -4760 . DOI:10.1039/D0CC01038Chttp://doi.org/10.1039/D0CC01038C .
Fu, H.; Wang, Z.; Sun, Y . Polymer donors for high-performance non-fullerene organic solar cells . Angew. Chem. Int. Ed. , 2019 . 58 4442 -4453 . DOI:10.1002/anie.201806291http://doi.org/10.1002/anie.201806291 .
Sun, H.; Chen, F.; Chen, Z. K . Recent progress on non-fullerene acceptors for organic photovoltaics . Mater. Today , 2019 . 24 94 -118 . DOI:10.1016/j.mattod.2018.09.004http://doi.org/10.1016/j.mattod.2018.09.004 .
Zhang, G.; Zhao, J.; Chow, P . C.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells . Chem. Rev. , 2018 . 118 3447 -3507 . DOI:10.1021/acs.chemrev.7b00535http://doi.org/10.1021/acs.chemrev.7b00535 .
Cheng, P.; Li, G.; Zhan, X.; Yang, Y . Next-generation organic photovoltaics based on non-fullerene acceptors . Nat. Photon. , 2018 . 12 131 -142 . DOI:10.1038/s41566-018-0104-9http://doi.org/10.1038/s41566-018-0104-9 .
Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z. G.; Bo, Z . Recent progress in organic solar cells (Part I material science) . Sci. China Chem. , 2022 . 65 224 -268 . DOI:10.1007/s11426-021-1180-6http://doi.org/10.1007/s11426-021-1180-6 .
Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J . A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance . Adv. Mater. , 2015 . 27 4655 -4660 . DOI:10.1002/adma.201502110http://doi.org/10.1002/adma.201502110 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P . A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1140 -1151 . DOI:10.1016/j.joule.2019.01.004http://doi.org/10.1016/j.joule.2019.01.004 .
Chen, H.; Zhang, R.; Chen, X.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W.; Xu, G.; Oh, J . A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents . Nat. Energy , 2021 . 6 1045 -1053 . DOI:10.1038/s41560-021-00923-5http://doi.org/10.1038/s41560-021-00923-5 .
Zhang, M.; Zhu, L.; Zhou, G.; Hao, T.; Qiu, C.; Zhao, Z.; Hu, Q.; Larson, B. W.; Zhu, H.; Ma, Z.; Tang, Z.; Feng, W.; Zhang, Y.; Russell, T. P.; Liu, F . Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies . Nat. Commun. , 2021 . 12 309 DOI:10.1038/s41467-020-20580-8http://doi.org/10.1038/s41467-020-20580-8 .
Li, G.; Chu, C.-W.; Shrotriya, V.; Huang, J.; Yang, Y . Efficient inverted polymer solar cells . Appl. Phys. Lett. , 2006 . 88 253503 DOI:10.1063/1.2212270http://doi.org/10.1063/1.2212270 .
Zhang, H.; Li, Y.; Zhang, X.; Zhang, Y.; Zhou, H . Role of interface properties in organic solar cells: from substrate engineering to bulk-heterojunction interfacial morphology . Mater. Chem. Front. , 2020 . 4 2863 -2880 . DOI:10.1039/D0QM00398Khttp://doi.org/10.1039/D0QM00398K .
Tran, H. N.; Park, S.; Wibowo, F. T. A.; Krishna, N. V.; Kang, J. H.; Seo, J. H.; Nguyen-Phu, H.; Jang, S. Y.; Cho, S. 17% Non-fullerene organic solar cells with annealing-free aqueous MoOx. Adv. Sci. 2020, 7, 2002395.
Lee, B. R.; Jung, E. D.; Nam, Y. S.; Jung, M.; Park, J. S.; Lee, S.; Choi, H.; Ko, S. J.; Shin, N. R.; Kim, Y. K . Amine-based polar solvent treatment for highly efficient inverted polymer solar cells . Adv. Mater. , 2014 . 26 494 -500 . DOI:10.1002/adma.201302991http://doi.org/10.1002/adma.201302991 .
Liang, Z.; Zhang, Q.; Jiang, L.; Cao, G . ZnO cathode buffer layers for inverted polymer solar cells . Energy Environ. Sci. , 2015 . 8 3442 -3476 . DOI:10.1039/C5EE02510Ahttp://doi.org/10.1039/C5EE02510A .
Sekine, N.; Chou, C.-H.; Kwan, W. L.; Yang, Y . ZnO nano-ridge structure and its application in inverted polymer solar cell . Org. Electron. , 2009 . 10 1473 -1477 . DOI:10.1016/j.orgel.2009.08.011http://doi.org/10.1016/j.orgel.2009.08.011 .
Li, D.; Qin, W.; Zhang, S.; Liu, D.; Yu, Z.; Mao, J.; Wu, L.; Yang, L.; Yin, S . Effect of UV-ozone process on the ZnO interlayer in the inverted organic solar cells . RSC advances , 2017 . 7 6040 -6045 . DOI:10.1039/C6RA25177Chttp://doi.org/10.1039/C6RA25177C .
Liu, B.; Han, Y.; Li, Z.; Gu, H.; Yan, L.; Lin, Y.; Luo, Q.; Yang, S.; Ma, C. Q . Visible light-induced degradation of inverted polymer: nonfullerene acceptor solar cells: initiated by the light absorption of ZnO layer . Sol. RRL , 2021 . 5 2000638 DOI:10.1002/solr.202000638http://doi.org/10.1002/solr.202000638 .
Bao, Q.; Liu, X.; Xia, Y.; Gao, F.; Kauffmann, L.-D.; Margeat, O.; Ackermann, J.; Fahlman, M . Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells . J. Mater. Chem. A , 2014 . 2 17676 -17682 . DOI:10.1039/C4TA02695Khttp://doi.org/10.1039/C4TA02695K .
Wang, Y.; Yan, L.; Ji, G.; Wang, C.; Gu, H.; Luo, Q.; Chen, Q.; Chen, L.; Yang, Y.; Ma, C. Q . Synthesis of N,S-doped carbon quantum dots for use in organic solar cells as the ZnO modifier to eliminate the light-soaking effect . ACS Appl. Mater. Interfaces , 2018 . 11 2243 -2253. .
Hu, L.; Jiang, Y.; Sun, L.; Xie, C.; Qin, F.; Wang, W.; Zhou, Y . Significant enhancement of illumination stability of nonfullerene organic solar cells via an aqueous polyethylenimine modification . J. Phys. Chem. Lett. , 2021 . 12 2607 -2614 . DOI:10.1021/acs.jpclett.1c00276http://doi.org/10.1021/acs.jpclett.1c00276 .
Liu, B.; Su, X.; Lin, Y.; Li, Z.; Yan, L.; Han, Y.; Luo, Q.; Fang, J.; Yang, S.; Tan, H . Simultaneously achieving highly efficient and stable polymer: non-fullerene solar cells enabled by molecular structure optimization and surface passivation . Adv. Sci. , 2022 . 9 2104588 .
Bai, S.; Jin, Y.; Liang, X.; Ye, Z.; Wu, Z.; Sun, B.; Ma, Z.; Tang, Z.; Wang, J.; Würfel, U . Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics . Adv. Energy Mater. , 2015 . 5 1401606 DOI:10.1002/aenm.201401606http://doi.org/10.1002/aenm.201401606 .
Han, Y.; Dong, H.; Pan, W.; Liu, B.; Chen, X.; Huang, R.; Li, Z.; Li, F.; Luo, Q.; Zhang, J . An Efficiency of 16.46% and a T 80 lifetime of over 4000 h for the PM6:Y6 inverted organic solar cells enabled by surface acid treatment of the zinc oxide electron transporting layer . ACS Appl. Mater. Interfaces , 2021 . 13 17869 -17881 . DOI:10.1021/acsami.1c02613http://doi.org/10.1021/acsami.1c02613 .
Lin, P. C.; Wong, Y. T.; Su, Y. A.; Chen, W. C.; Chueh, C. C . Interlayer modification using eco-friendly glucose-based natural polymers in polymer solar cells . ACS Sustain. Chem. Eng. , 2018 . 6 14621 -14630 . DOI:10.1021/acssuschemeng.8b03219http://doi.org/10.1021/acssuschemeng.8b03219 .
Qian, L.; Zheng, Y.; Choudhury, K. R.; Bera, D.; So, F.; Xue, J.; Holloway, P. H . Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages . Nano Today , 2010 . 5 384 -389 . DOI:10.1016/j.nantod.2010.08.010http://doi.org/10.1016/j.nantod.2010.08.010 .
Reese, M. O.; Gevorgyan, S. A.; Jørgensen, M.; Bundgaard, E.; Kurtz, S. R.; Ginley, D. S.; Olson, D. C.; Lloyd, M. T.; Morvillo, P.; Katz, E. A . Consensus stability testing protocols for organic photovoltaic materials and devices . Sol. Energ. Mat. Sol. C. , 2011 . 95 1253 -1267 . DOI:10.1016/j.solmat.2011.01.036http://doi.org/10.1016/j.solmat.2011.01.036 .
Polydorou, E.; Zeniou, A.; Tsikritzis, D.; Soultati, A.; Sakellis, I.; Gardelis, S.; Papadopoulos, T. A.; Briscoe, J.; Palilis, L . C.; Kennou, S.; Gogolides, E.; Argitis, P.; Davazoglou, D.; Vasilopoulou, M. Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells . J. Mater. Chem. A , 2016 . 4 11844 -11858 . DOI:10.1039/C6TA03594Ahttp://doi.org/10.1039/C6TA03594A .
Jeong, S.; Ha, Y. G.; Moon, J.; Facchetti, A.; Marks, T. J . Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors . Adv. Mater. , 2010 . 22 1346 -1350 . DOI:10.1002/adma.200902450http://doi.org/10.1002/adma.200902450 .
Ischenko, V.; Polarz, S.; Grote, D.; Stavarache, V.; Fink, K.; Driess, M . Zinc oxide nanoparticles with defects . Adv. Funct. Mater. , 2005 . 15 1945 -1954 . DOI:10.1002/adfm.200500087http://doi.org/10.1002/adfm.200500087 .
Janotti, A.; Van de Walle, C. G . Native point defects in ZnO . Phys. Rev. B , 2007 . 76 165202 DOI:10.1103/PhysRevB.76.165202http://doi.org/10.1103/PhysRevB.76.165202 .
Comyn, J . Contact angles and adhesive bonding . Int. J. Adhes. Adhesiv. , 1992 . 12 145 -149 . DOI:10.1016/0143-7496(92)90045-Whttp://doi.org/10.1016/0143-7496(92)90045-W .
Liu, C.; Zhang, L.; Xiao, L.; Peng, X.; Cao, Y . Doping ZnO with water/alcohol-soluble small molecules as electron transport layers for inverted polymer solar cells . ACS Appl. Mater. Interfaces , 2016 . 8 28225 -28230 . DOI:10.1021/acsami.6b10264http://doi.org/10.1021/acsami.6b10264 .
Wetzelaer, G.; Kuik, M.; Lenes, M.; Blom, P . Origin of the dark-current ideality factor in polymer: fullerene bulk heterojunction solar cells . Appl. Phys. Lett. , 2011 . 99 153506 DOI:10.1063/1.3651752http://doi.org/10.1063/1.3651752 .
Cowan, S. R.; Wang, J.; Yi, J.; Lee, Y.-J.; Olson, D. C.; Hsu, J. W . Intensity and wavelength dependence of bimolecular recombination in P3HT:PCBM solar cells: a white-light biased external quantum efficiency study . J. Appl. Phys. , 2013 . 113 154504 DOI:10.1063/1.4801920http://doi.org/10.1063/1.4801920 .
Yu, R.; Wei, X.; Wu, G.; Zhang, T.; Gong, Y.; Zhao, B.; Hou, J.; Yang, C.; Tan, Z. A . Efficient interface modification via multi-site coordination for improved efficiency and stability in organic solar cells . Energy Environ. Sci. , 2022 . 15 822 -829. .
Mihailetchi, V. D.; Koster, L. J. A.; Hummelen, J. C.; Blom, P. W. M . Photocurrent generation in polymer-fullerene bulk heterojunctions . Phys. Rev. Lett. , 2004 . 93 216601 DOI:10.1103/PhysRevLett.93.216601http://doi.org/10.1103/PhysRevLett.93.216601 .
Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E . Device physics of polymer:fullerene bulk heterojunction solar cells . Adv. Mater. , 2007 . 19 1551 -1566 . DOI:10.1002/adma.200601093http://doi.org/10.1002/adma.200601093 .
Gao, Y.; Yip, H.-L.; Hau, S. K.; O’Malley, K. M.; Cho, N. C.; Chen, H.; Jen, A. K. Y . Anode modification of inverted polymer solar cells using graphene oxide . Appl. Phys. Lett. , 2010 . 97 251 .
Shi, J.; Dong, J.; Lv, S.; Xu, Y.; Zhu, L.; Xiao, J.; Xu, X.; Wu, H.; Li, D.; Luo, Y.; Meng, Q . Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property . Appl. Phys. Lett. , 2014 . 104 063901 DOI:10.1063/1.4864638http://doi.org/10.1063/1.4864638 .
Chen, X.; Zhu, B.; Kan, B.; Gao, K.; Peng, X.; Cao, Y . Cathode interlayer-free organic solar cells with enhanced device performance upon alcohol treatment . J. Mater. Chem. C , 2019 . 7 7947 -7952 . DOI:10.1039/C9TC01039Dhttp://doi.org/10.1039/C9TC01039D .
Kim, J. S.; Chung, W. S.; Kim, K.; Kim, D. Y.; Paeng, K. J.; Jo, S. M.; Jang, S. Y . Performance optimization of polymer solar cells using electrostatically sprayed photoactive layers . Adv. Funct. Mater. , 2010 . 20 3538 -3546 . DOI:10.1002/adfm.201000433http://doi.org/10.1002/adfm.201000433 .
Yin, Z.; Zheng, Q.; Chen, S. C.; Cai, D.; Ma, Y . Controllable ZnMgO electron-transporting layers for long-term stable organic solar cells with 8. 06% efficiency after one-year storage . Adv. Energy Mater. , 2016 . 6 1501493 DOI:10.1002/aenm.201501493http://doi.org/10.1002/aenm.201501493 .
Seitkhan, A.; Neophytou, M.; Kirkus, M.; Abou-Hamad, E.; Hedhili, M . N.; Yengel, E.; Firdaus, Y.; Faber, H.; Lin, Y.; Tsetseris, L. Use of the phen-NaDPO:Sn (SCN)2 blend as electron transport layer results to consistent efficiency improvements in organic and hybrid perovskite solar cells . Adv. Funct. Mater. , 2019 . 29 1905810 DOI:10.1002/adfm.201905810http://doi.org/10.1002/adfm.201905810 .
Jiang, K.; Wei, Q.; Lai, J. Y. L.; Peng, Z.; Kim, H . K.; Yuan, J.; Ye, L.; Ade, H.; Zou, Y.; Yan, H. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells . Joule , 2019 . 3 3020 -3033 . DOI:10.1016/j.joule.2019.09.010http://doi.org/10.1016/j.joule.2019.09.010 .
Johnston, D . Stretched exponential relaxation arising from a continuous sum of exponential decays . Phys. Rev. B , 2006 . 74 184430 DOI:10.1103/PhysRevB.74.184430http://doi.org/10.1103/PhysRevB.74.184430 .
Doumon, N. Y.; Houard, F. V.; Dong, J.; Yao, H.; Portale, G.; Hou, J.; Koster, L. J. A . Energy level modulation of ITIC derivatives: effects on the photodegradation of conventional and inverted organic solar cells . Org. Electron. , 2019 . 69 255 -262 . DOI:10.1016/j.orgel.2019.03.037http://doi.org/10.1016/j.orgel.2019.03.037 .
Gu, H.; Yan, L.; Saxena, S.; Shi, X.; Zhang, X.; Li, Z.; Luo, Q.; Zhou, H.; Yang, Y.; Liu, X.; Wong, W. W. H.; Ma, C. Q . Revealing the interfacial photoreduction of MoO3 with P3HT from the molecular weight-dependent “burn-in” degradation of P3HT:PC61BM solar cells . ACS Appl. Energy Mater. , 2020 . 3 9714 -9723 . DOI:10.1021/acsaem.0c01325http://doi.org/10.1021/acsaem.0c01325 .
0
Views
19
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution