a.Key Laboratory of Surface modification of Polymer Materials, Wenzhou Polytechnic, Wenzhou 325035, China
b.Department of Physics, Wenzhou University, Wenzhou 325035, China
c.Department of Mechanical Engineering, Shanghai Technical Institute of Electronics & Information, Shanghai 201411, China
wangxianghong@stiei.edu.cn
Scan for full text
Ji Wu, Shang-Ting Chen, Shi-Ben Li, et al. Simulation of Surface-Induced Morphology Transition and Phase Diagram of Linear Triblock Copolymers under Spherical Confinement. [J]. Chinese Journal of Polymer Science 41(1):166-178(2023)
Ji Wu, Shang-Ting Chen, Shi-Ben Li, et al. Simulation of Surface-Induced Morphology Transition and Phase Diagram of Linear Triblock Copolymers under Spherical Confinement. [J]. Chinese Journal of Polymer Science 41(1):166-178(2023) DOI: 10.1007/s10118-022-2812-3.
The nanostructures of ABC linear triblock copolymers confined in spherical cavities are investigated by self-consistent field theory, and we design a Janus adsorption field to explore unpredictable microphase behavior. Results show that the confinement disrupts the influence of adsorption on the complexity and transformation activity of self-assembled structures.
In this work, the nanostructures and phase diagrams of lamella-forming and cylinder-forming ABC linear triblock copolymers confined in spherical cavities are investigated on the basis of real-space self-consistent field theory. We designate specific monomer-monomer interactions and block composition and study morphology transformation under spherical confinement with a neutral surface. Various potentially valuable morphological structures, such as two- or three-colored spheres, rotational structures, and biconcave disklike structures, are identified in the phase diagrams constructed on confining diameters. Single confinement induces an obvious transformation of self-assembled structures, which still retain some of the conformational properties of bulk structures. We then focus on phase morphology under preferential surfaces. Absorption can smooth out differences in block ratios, and similar structures can be assembled from block copolymers with different proportions. We incorporate a non-centrosymmetric feature into our spherical confinement model and design a Janus adsorption field to explore unpredictable microphase behavior. Results show that the unbalance of the block ratio causes adsorption to exert a stable shaping effect on conformation. The influence of confinement on the degree of freedom of polymer chains disrupts the influence of adsorption on the complexity and transformation activity of self-assembled structures. The theoretical results correspond to recent experimental observations and contribute to the field functional material synthesis.
Triblock copolymerSelf-assembly structurePhase transitionThree-dimensional confinementSurface adsorption
Yoon, J.; Lee, W.; Thomas, E. L . Self-assembly of block copolymers for photonic-bandgap materials . MRS Bull. , 2005 . 30 721 -726 . DOI:10.1557/mrs2005.270http://doi.org/10.1557/mrs2005.270 .
Ma, M.; Krikorian, V.; Yu, J. H.; Thomas, E. L.; Rutledge, G. C . Electrospun polymer nanofibers with internal periodic structure obtained by microphase separation of cylindrically confined block copolymers . Nano Lett. , 2006 . 6 2969 -2972 . DOI:10.1021/nl062311zhttp://doi.org/10.1021/nl062311z .
Zhang, S.; Chan, K. H.; Prud'homme, R. K.; Link, A. J . Synthesis and evaluation of clickable block copolymers for targeted nanoparticle drug delivery . Mol. Pharm. , 2012 . 9 2228 -2236 . DOI:10.1021/mp3000748http://doi.org/10.1021/mp3000748 .
Derby, B . Printing and prototyping of tissues and scaffolds . Science , 2012 . 338 921 -926 . DOI:10.1126/science.1226340http://doi.org/10.1126/science.1226340 .
Otsuka, H.; Nagasaki, Y.; Kataoka, K . PEGylated nanoparticles for biological and pharmaceutical applications . Adv. Drug Deliv. Rev. , 2003 . 55 403 -419 . DOI:10.1016/S0169-409X(02)00226-0http://doi.org/10.1016/S0169-409X(02)00226-0 .
Register, R. A . Nanolithography: painting with block copolymers . Nat. Nanotechnol. , 2013 . 8 618 -619 . DOI:10.1038/nnano.2013.175http://doi.org/10.1038/nnano.2013.175 .
Nunes, S. P . Block copolymer membranes for aqueous solution applications . Macromolecules , 2016 . 49 2905 -2916 . DOI:10.1021/acs.macromol.5b02579http://doi.org/10.1021/acs.macromol.5b02579 .
Tan, K. W.; Wiesner, U . Block copolymer self-assembly directed hierarchically structured materials from nonequilibrium transient laser heating . Macromolecules , 2019 . 52 395 -409 . DOI:10.1021/acs.macromol.8b01766http://doi.org/10.1021/acs.macromol.8b01766 .
Higuchi, T.; Sugimori, H.; Jiang, X.; Hong, S.; Matsunaga, K.; Kaneko, T.; Abetz, V.; Takahara, A.; Jinnai, H . Morphological control of helical structures of an ABC-type triblock terpolymer by distribution control of a blending homopolymer in a block copolymer microdomain . Macromolecules , 2013 . 46 6991 -6997 . DOI:10.1021/ma401193uhttp://doi.org/10.1021/ma401193u .
Gido, S. P.; Schwark, D. W.; Thomas, E. L . Observation of a non-constant mean curvature interface in an ABC triblock copolymer . Macromolecules , 1993 . 26 2636 -2640 . DOI:10.1021/ma00062a040http://doi.org/10.1021/ma00062a040 .
Matsen, M. W.; Schick, M . Stable and unstable phases of a diblock copolymer melt . Phys. Rev. Lett. , 1994 . 72 2660 -2663 . DOI:10.1103/PhysRevLett.72.2660http://doi.org/10.1103/PhysRevLett.72.2660 .
Khandpur, A. K.; Ftirster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A . J.; Bras, W.; Almdal, K.; Mortensen, K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition . Macromolecules , 1995 . 28 8796 -8806 . DOI:10.1021/ma00130a012http://doi.org/10.1021/ma00130a012 .
Zheng, W.; Wang, Z. G . Morphology of ABC triblock copolymers . Macromolecules , 1995 . 28 7215 -7223 . DOI:10.1021/ma00125a026http://doi.org/10.1021/ma00125a026 .
Bita, I.; Yang, J. K.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K . Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates . Science , 2008 . 321 939 -943 . DOI:10.1126/science.1159352http://doi.org/10.1126/science.1159352 .
Pinna, M.; Zvelindovsky, A. V.; Todd, S.; Goldbeck-Wood, G. Cubic phases of block copolymers under shear and electric fields by cell dynamics simulation. I . Spherical phase . J. Chem. Phys. , 2006 . 125 154905 DOI:10.1063/1.2356468http://doi.org/10.1063/1.2356468 .
Ly, D. Q.; Pinna, M.; Honda, T.; Kawakatsu, T.; Zvelindovsky, A. V. M . Kinetic pathways of sphere-to-cylinder transition in diblock copolymer melt under electric field . J. Chem. Phys. , 2013 . 138 074904 DOI:10.1063/1.4791639http://doi.org/10.1063/1.4791639 .
Jaramillo-Cano, D.; Formanek, M.; Likos, C. N.; Camargo, M . Star block-copolymers in shear flow . J. Phys. Chem. B , 2018 . 122 4149 -4158 . DOI:10.1021/acs.jpcb.7b12229http://doi.org/10.1021/acs.jpcb.7b12229 .
Pester, C . W.; Liedel, C.; Ruppel, M.; Böker, A. Block copolymers in electric fields . Prog. Polym. Sci. , 2017 . 64 182 -214 . DOI:10.1016/j.progpolymsci.2016.04.005http://doi.org/10.1016/j.progpolymsci.2016.04.005 .
Ma, M.; Thomas, E. L.; Rutledge, G . C.; Yu, B.; Li, B.; Jin, Q.; Ding, D.; Shi, A.-C. Gyroid-Forming diblock copolymers confined in cylindrical geometry: a case of extreme akeover for domain morphology . Macromolecules , 2010 . 43 3061 -3071 . DOI:10.1021/ma9022586http://doi.org/10.1021/ma9022586 .
Yu, B.; Li, B.; Jin, Q.; Ding, D.; Shi, A. C . Confined self-assembly of cylinder-forming diblock copolymers: effects of confining geometries . Soft Matter , 2011 . 7 10227 -10240 . DOI:10.1039/c1sm05947ehttp://doi.org/10.1039/c1sm05947e .
Li, S.; Jiang, Y.; Chen, J. Z. Y . Morphologies and phase diagrams of ABC star triblock copolymers confined in a spherical cavity . Soft Matter , 2013 . 9 4843 -4854 . DOI:10.1039/c3sm27770dhttp://doi.org/10.1039/c3sm27770d .
Hou, P.; Fan, H.; Jin, Z . Spiral and mesoporous block polymer nanofibers generated in confined nanochannels . Macromolecules , 2015 . 48 272 -278 . DOI:10.1021/ma501933shttp://doi.org/10.1021/ma501933s .
Guan, Z.; Wang, L.; Zhu, X.; Lin, J . Striped patterns self-assembled from rod–coil diblock copolymers on spherical substrates . Mater. Chem. Front. , 2017 . 1 697 -708 . DOI:10.1039/C6QM00137Hhttp://doi.org/10.1039/C6QM00137H .
Maniadis, P.; Rasmussen, K. O.; Thompson, R. B.; Kober, E. M . Ordering and reverse ordering mechanisms of triblock copolymers in the presence of solvent . Int. J. Mol. Sci. , 2009 . 10 805 -816 . DOI:10.3390/ijms10030805http://doi.org/10.3390/ijms10030805 .
Chou, S. H.; Wu, D. T.; Tsao, H. K.; Sheng, Y. J . Morphology and internal structure control of rod-coil copolymer aggregates by mixed selective solvents . Soft Matter , 2011 . 7 9119 -9129 . DOI:10.1039/c1sm05808hhttp://doi.org/10.1039/c1sm05808h .
Hinestrosa, J. P.; Uhrig, D.; Pickel, D. L.; Mays, J. W.; Kilbey Ii, S. M . Hydrodynamics of polystyrene–polyisoprene miktoarm star copolymers in a selective and a non-selective solvent . Soft Matter , 2012 . 8 10061 -10071 . DOI:10.1039/c2sm25882jhttp://doi.org/10.1039/c2sm25882j .
Hou, X.; Li, Q.; Cao, A . In situ aggregates of enantiomeric poly(styrene)-block-poly(lactide) diblock copolymers via stereocomplexation in a non-selective solvent . Macromol. Chem. Phys. , 2013 . 214 1569 -1579 . DOI:10.1002/macp.201300216http://doi.org/10.1002/macp.201300216 .
Chen, S.; Geng, Z.; Zheng, X.; Xu, J.; Binder, W. H.; Zhu, J . Engineering the morphology of hydrogen-bonded comb-shaped supramolecular polymers: from solution self-assembly to confined assembly . Polym. Chem. , 2020 . 11 4022 -4028 . DOI:10.1039/D0PY00570Chttp://doi.org/10.1039/D0PY00570C .
Ye, X.; Khomami, B . Self-assembly of linear diblock copolymers in selective solvents: from single micelles to particles with tri-continuous inner structures . Soft Matter , 2020 . 16 6056 -6062 . DOI:10.1039/D0SM00402Bhttp://doi.org/10.1039/D0SM00402B .
Deng, R.; Zheng, L.; Mao, X.; Li, B.; Zhu, J . Transformable colloidal polymer particles with ordered internal structures . Small , 2021 . 17 2006132 DOI:10.1002/smll.202006132http://doi.org/10.1002/smll.202006132 .
Matsen, M. W.; Bates, F. S . Origins of complex self-assembly in block copolymers . Macromolecules , 1996 . 29 7641 -7644 . DOI:10.1021/ma960744qhttp://doi.org/10.1021/ma960744q .
Matsen, M. W . The standard Gaussian model for block copolymer melts . J. Phys.: Condens. Matter , 2002 . 14 R21 -R47 . DOI:10.1088/0953-8984/14/2/201http://doi.org/10.1088/0953-8984/14/2/201 .
Matsen, M. W . Thin films of block copolymer . J. Chem. Phys. , 1997 . 106 7781 -7791 . DOI:10.1063/1.473778http://doi.org/10.1063/1.473778 .
Mishra, V.; Fredrickson, G. H.; Kramer, E. J . SCFT simulations of an order–order transition in thin films of diblock and triblock copolymers . Macromolecules , 2011 . 44 5473 -5480 . DOI:10.1021/ma200297fhttp://doi.org/10.1021/ma200297f .
Linse, P., in Amphiphilic Block Copolymers: Self Assembly and Applications, Elsevier Science, Amsterdam, 2000, p.13−40.
Li, W.; Liu, M.; Qiu, F.; Shi, A. C . Phase diagram of diblock copolymers confined in thin films . J. Phys. Chem. B , 2013 . 117 5280 -5288 . DOI:10.1021/jp309546qhttp://doi.org/10.1021/jp309546q .
Cheng, M. H.; Hsu, Y. C.; Chang, C. W.; Ko, H. W.; Chung, P. Y.; Chen, J. T . Blending homopolymers for controlling the morphology transitions of block copolymer nanorods confined in cylindrical nanopores . ACS Appl. Mater. Interfaces , 2017 . 9 21010 -21016 . DOI:10.1021/acsami.7b05415http://doi.org/10.1021/acsami.7b05415 .
Sheng, Y.; Zhu, Y.; Jiang, W.; Dong, Z . Self-assembly of AB diblock copolymer solutions confined in cylindrical nanopores . Mater. Chem. Front. , 2017 . 1 487 -494 . DOI:10.1039/C6QM00091Fhttp://doi.org/10.1039/C6QM00091F .
Li, H.; Mao, X.; Wang, H.; Geng, Z.; Xiong, B.; Zhang, L.; Liu, S.; Xu, J.; Zhu, J . Kinetically dependent self-assembly of chiral block copolymers under 3D confinement . Macromolecules , 2020 . 53 4214 -4223 . DOI:10.1021/acs.macromol.0c00406http://doi.org/10.1021/acs.macromol.0c00406 .
Xiang, H.; Shin, K.; Kim, T.; Moon, S. I.; McCarthy, T. J.; Russell, T. P . Block copolymers under cylindrical confinement . Macromolecules , 2004 . 37 5660 -5664 . DOI:10.1021/ma049299mhttp://doi.org/10.1021/ma049299m .
Arsenault, A. C.; Rider, D. A.; Tétreault, N.; Chen, J. I.-L.; Coombs, N.; Ozin, G. A.; Manners, I . Block copolymers under periodic, strong three-dimensional confinement . J. Am. Chem. Soc. , 2005 . 127 9954 -9955 . DOI:10.1021/ja052483ihttp://doi.org/10.1021/ja052483i .
Yu, B.; Li, B.; Jin, Q.; Ding, D.; Shi, A. C . Self-assembly of symmetric diblock copolymers confined in spherical nanopores . Macromolecules , 2007 . 40 9133 -9142 . DOI:10.1021/ma071624thttp://doi.org/10.1021/ma071624t .
Shi, A.-C.; Li, B . Self-assembly of diblock copolymers under confinement . Soft Matter , 2013 . 9 1398 -1413 . DOI:10.1039/C2SM27031Ehttp://doi.org/10.1039/C2SM27031E .
Liu, M.; Li, W.; Qiu, F . Segmented helical structures formed by ABC star copolymers in nanopores . J. Chem. Phys. , 2013 . 138 104904 DOI:10.1063/1.4794785http://doi.org/10.1063/1.4794785 .
Jin, Z.; Fan, H . Self-assembly of nanostructured block copolymer nanoparticles . Soft Matter , 2014 . 10 9212 -9219 . DOI:10.1039/C4SM02064Bhttp://doi.org/10.1039/C4SM02064B .
Yan, N.; Liu, H.; Zhu, Y.; Jiang, W.; Dong, Z . Entropy-driven hierarchical nanostructures from cooperative self-assembly of gold nanoparticles/block copolymers under three-dimensional confinement . Macromolecules , 2015 . 48 5980 -5987 . DOI:10.1021/acs.macromol.5b01219http://doi.org/10.1021/acs.macromol.5b01219 .
Steinhaus, A.; Chakroun, R.; Mullner, M.; Nghiem, T. L.; Hildebrandt, M.; Groschel, A. H . Confinement assembly of ABC triblock terpolymers for the high-yield synthesis of Janus nanorings . ACS Nano , 2019 . 13 6269 -6278 . DOI:10.1021/acsnano.8b09546http://doi.org/10.1021/acsnano.8b09546 .
Werner, J. G.; Lee, H.; Wiesner, U.; Weitz, D. A . Ordered mesoporous microcapsules from double emulsion confined block copolymer self-assembly . ACS Nano , 2021 . 15 3490 -3499 . DOI:10.1021/acsnano.1c00068http://doi.org/10.1021/acsnano.1c00068 .
Tran, N.; Mulet, X.; Hawley, A. M.; Conn, C. E.; Zhai, J.; Waddington, L. J.; Drummond, C. J . First direct observation of stable internally ordered Janus nanoparticles created by lipid self-assembly . Nano Lett. , 2015 . 15 4229 -4233 . DOI:10.1021/acs.nanolett.5b01751http://doi.org/10.1021/acs.nanolett.5b01751 .
Steinhaus, A.; Srivastva, D.; Qiang, X.; Franzka, S.; Nikoubashman, A.; Gröschel, A. H . Controlling Janus nanodisc topology through ABC triblock terpolymer/homopolymer blending in 3D confinement . Macromolecules , 2021 . 54 1224 -1233 . DOI:10.1021/acs.macromol.0c02769http://doi.org/10.1021/acs.macromol.0c02769 .
Rasmussen, K . Ø.; Kalosakas, G. Improved numerical algorithm for exploring block copolymer mesophases . J. Polym. Sci., Part B: Polym. Phys. , 2002 . 40 1777 -1783 . DOI:10.1002/polb.10238http://doi.org/10.1002/polb.10238 .
Tzeremes, G.; Rasmussen, K . Ø.; Lookman, T.; Saxena, A. Efficient computation of the structural phase behavior of block copolymers . Phys. Rev. E , 2002 . 65 041806 DOI:10.1103/PhysRevE.65.041806http://doi.org/10.1103/PhysRevE.65.041806 .
Khanna, V.; Cochran, E. W.; Stein, G. E.; Fredrickson, G. H.; Kramer, E. J.; Li, X.; Wang, J.; Hahn, S. F . Effect of chain architecture and surface energies on the ordering behavior of lamellar and cylinder forming block copolymers . Macromolecules , 2006 . 39 9346 -9356 . DOI:10.1021/ma0609228http://doi.org/10.1021/ma0609228 .
Bohbot-Raviv, Y.; Wang, Z. G . Discovering new ordered phases of block copolymers . Phys. Rev. Lett. , 2000 . 85 3428 -3431 . DOI:10.1103/PhysRevLett.85.3428http://doi.org/10.1103/PhysRevLett.85.3428 .
Chen, P.; Liang, H . Monte Carlo simulations of cylinder-forming ABC triblock terpolymer thin films . J. Phys. Chem. B , 2006 . 110 18212 -18224 . DOI:10.1021/jp061957chttp://doi.org/10.1021/jp061957c .
Yan, N.; Liu, X.; Zhang, Y.; Sun, N.; Jiang, W.; Zhu, Y . Confined co-assembly of AB/BC diblock copolymer blends under 3D soft confinement . Soft Matter , 2018 . 14 4679 -4686 . DOI:10.1039/C8SM00486Bhttp://doi.org/10.1039/C8SM00486B .
Yu, B.; Deng, J.; Li, B.; Shi, A. C . Patchy nanoparticles self-assembled from linear triblock copolymers under spherical confinement: a simulated annealing study . Soft Matter , 2014 . 10 6831 -6843 . DOI:10.1039/C4SM00967Chttp://doi.org/10.1039/C4SM00967C .
Huang, Y. C.; Fan, P. W.; Lee, C. W.; Chu, C. W.; Tsai, C. C.; Chen, J. T . Transformation of polymer nanofibers to nanospheres driven by the Rayleigh instability . ACS Appl. Mater. Interfaces , 2013 . 5 3134 -3142 . DOI:10.1021/am400029jhttp://doi.org/10.1021/am400029j .
Xu, J.; Wang, K.; Liang, R.; Yang, Y.; Zhou, H.; Xie, X.; Zhu, J . Structural transformation of diblock copolymer/homopolymer assemblies by tuning cylindrical confinement and interfacial interactions . Langmuir , 2015 . 31 12354 -12361 . DOI:10.1021/acs.langmuir.5b03146http://doi.org/10.1021/acs.langmuir.5b03146 .
Yan, N.; Zhu, Y.; Jiang, W . Self-assembly of AB diblock copolymer confined in a soft nano-droplet: a combination study by Monte Carlo simulation and experiment . J. Phys. Chem. B , 2016 . 120 12023 -12029 . DOI:10.1021/acs.jpcb.6b10170http://doi.org/10.1021/acs.jpcb.6b10170 .
Yan, N.; Zhu, Y.; Jiang, W . Self-assembly of ABC triblock copolymers under 3D soft confinement: a Monte Carlo study . Soft Matter , 2016 . 12 965 -972 . DOI:10.1039/C5SM02079Dhttp://doi.org/10.1039/C5SM02079D .
Liu, Z.; Wang, Z.; Yin, Y.; Jiang, R.; Li, B . A simulation study of the self-assembly of ABC star terpolymers confined between two parallel surfaces . Soft Matter , 2021 . 17 5336 -5348 . DOI:10.1039/D1SM00271Fhttp://doi.org/10.1039/D1SM00271F .
Tian, Y.; Tian, Z.; Dong, Y.; Wang, X.; Zhan, L . Current advances in nanomaterials affecting morphology, structure, and function of erythrocytes . RSC Adv. , 2021 . 11 6958 -6971 . DOI:10.1039/D0RA10124Ahttp://doi.org/10.1039/D0RA10124A .
Higuchi, T.; Tajima, A.; Motoyoshi, K.; Yabu, H.; Shimomura, M . Suprapolymer structures from nanostructured polymer particles . Angew. Chem. Int. Ed. , 2009 . 48 5125 -5128 . DOI:10.1002/anie.200900002http://doi.org/10.1002/anie.200900002 .
Higuchi, T . Microphase-separated structures under spherical 3D confinement . Polym. J. , 2017 . 49 467 -475 . DOI:10.1038/pj.2017.13http://doi.org/10.1038/pj.2017.13 .
Han, W.; Tang, P.; Li, X.; Qiu, F.; Zhang, H.; Yang, Y . Self-assembly of star ABC triblock copolymer thin films: self-consistent field theory . J. Phys. Chem. B , 2008 . 112 13738 -13748 . DOI:10.1021/jp801675zhttp://doi.org/10.1021/jp801675z .
Chen, P.; Liang, H . Cylinder-forming triblock terpolymer in nanopores: a Monte Carlo simulation study . J. Phys. Chem. B , 2008 . 112 1918 -1925 . DOI:10.1021/jp072942xhttp://doi.org/10.1021/jp072942x .
Li, W.; Wickham, R. A . Influence of the surface field on the self-assembly of a diblock copolymer melt confined in a cylindrical nanopore . Macromolecules , 2009 . 42 7530 -7536 . DOI:10.1021/ma900667whttp://doi.org/10.1021/ma900667w .
Higuchi, T.; Motoyoshi, K.; Sugimori, H.; Jinnai, H.; Yabu, H.; Shimomura, M . Three-dimensional observation of confined phase-separated structures in block copolymer nanoparticles . Soft Matter , 2012 . 8 3791 -3797 . DOI:10.1039/c2sm07139hhttp://doi.org/10.1039/c2sm07139h .
Avalos, E.; Higuchi, T.; Teramoto, T.; Yabu, H.; Nishiura, Y . Frustrated phases under three-dimensional confinement simulated by a set of coupled Cahn-Hilliard equations . Soft Matter , 2016 . 12 5905 -5914 . DOI:10.1039/C6SM00429Fhttp://doi.org/10.1039/C6SM00429F .
Higuchi, T.; Pinna, M.; Zvelindovsky, A . V.; Jinnai, H.; Yabu, H. Multipod structures of lamellae-forming diblock copolymers in three-dimensional confinement spaces: experimental observation and computer simulation . J. Polym. Sci., Part B: Polym. Phys. , 2016 . 54 1702 -1709 . DOI:10.1002/polb.24072http://doi.org/10.1002/polb.24072 .
Liu, X.; Zhou, C.; Xia, H.; Zhou, Y.; Jiang, W . Dissipative particle dynamics simulation on the self-assembly of linear ABC triblock copolymers under rigid spherical confinements . e-Polymers , 2017 . 17 321 -331 . DOI:10.1515/epoly-2016-0306http://doi.org/10.1515/epoly-2016-0306 .
Walther, A.; Muller, A. H. E . Janus particles . Soft Matter , 2008 . 4 663 -668 . DOI:10.1039/b718131khttp://doi.org/10.1039/b718131k .
Higuchi, T.; Tajima, A.; Motoyoshi, K.; Yabu, H.; Shimomura, M . Frustrated phases of block copolymers in nanoparticles . Angew. Chem. Int. Ed. , 2008 . 47 8044 -8046 . DOI:10.1002/anie.200803003http://doi.org/10.1002/anie.200803003 .
0
Views
12
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution