a.College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, China
b.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, CAS, Ningbo 315000, China
wangxu@scu.edu.cn (X.W.)
lxy6912@sina.com (X.Y.L.)
Scan for full text
Jian Liu, Zhuang Nie, Rui Qin, et al. Structural Optimization of Polyimide Foam
Jian Liu, Zhuang Nie, Rui Qin, et al. Structural Optimization of Polyimide Foam
Hyperbranched polymer modified fluorinated multi-walled carbon nanotube (HPMCNT-F) was prepared and used to composite with PI foams, resulting in the enhancement of the PI bulk and the optimization of the foam’s cellular structure. The obtained composite foam has great compression performance and heat-insulating property due to optimized structure.
The key to improve the foam’s performance is to optimize the cellular structure and its bulk-material composition. Here, the hyperbranched polymer modified fluorinated multi-walled carbon nanotube (HPMCNT-F) based on the nucleophilic reactions of MCNT-F was successfully prepared and used to composite with PI foams. The pristine MCNT shows a poor dispersity and weak interfacial interaction with PI matrix. While HPMCNT-F exhibits an excellent dispersity and effectively forms covalent/non-covalent interaction with PI matrix due to the surface-structure engineering, resulting in the enhancement of the PI bulk. Furthermore, HPMCNT-F works as a heterogeneous nucleation agent in PI foam to optimize the cellular structure. The enhancement of PI bulk and the optimizing of cellular structure result in the increase of compressive special strength of composite foam by 58.9% with a low loading of 1.6 wt% HPMCNT-F. Moreover, the hyperbranched polymers effectively prevent the thermal conduction among HPMCNT-F, and the isolated MCNTs effectively block thermal radiation through absorption and reflection the infrared waves. Thus, the thermal conductivity was reduced by 8.0% simultaneously.
FoamsNanocompositesMechanical propertiesThermal properties
Apostolopoulou-Kalkavoura, V.; Munier, P.; Bergström. L . Thermally insulating nanocellulose-based materials . Adv. Mater. , 2021 . 33 2001839 DOI:10.1002/adma.202001839http://doi.org/10.1002/adma.202001839 .
Adhikary, S. K.; Ashish, D . K.; Rudžionis, Ž. Aerogel based thermal insulating cementitious composites: a review . Energy Build. , 2021 . 245 111058 DOI:10.1016/j.enbuild.2021.111058http://doi.org/10.1016/j.enbuild.2021.111058 .
He, X.; Wang, Y. Highly thermally conductive polyimide composite films with excellent thermal and electrical insulating properties. Ind. Eng. Chem. Res. 2020, 59, 5, 1925–1933.
Xiao, Y.; Li, L.; Zhang, S.; Feng, J.; Jiang, Y.; Feng, J . Thermal insulation characteristics of polybenzoxazine aerogels . Macromol. Mater. Eng. , 2019 . 304 1900137 DOI:10.1002/mame.201900137http://doi.org/10.1002/mame.201900137 .
Zhang, W.; Aguila, B.; Ma, S . Retracted article: potential applications of functional porous organic polymer materials . J. Mater. Chem. A , 2017 . 5 8795 -8824 . DOI:10.1039/C6TA11168Hhttp://doi.org/10.1039/C6TA11168H .
Taylor, D.; Dalgarno, S . J.; Xu, Z.; Vilela, F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications . Chem. Soc. Rev. , 2020 . 49 3981 -4042 . DOI:10.1039/C9CS00315Khttp://doi.org/10.1039/C9CS00315K .
Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D . Porous polymers as multifunctional material platforms toward task-specific applications . Adv. Mater. , 2019 . 31 1802922 DOI:10.1002/adma.201802922http://doi.org/10.1002/adma.201802922 .
Yang, S.; Yan, D. X.; Li, Y.; Lei, J.; Li, Z. M. Flexible poly(vinylidene fluoride)-MXene/silver nanowire electromagnetic shielding films with joule heating performance. Ind. Eng. Chem. Res. 2021, 60, 27, 9824–9832.
Huang, L.; Huang, Y.; Liang, J.; Wan, X.; Chen, Y . Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors . Nano Res. , 2011 . 4 675 -684 . DOI:10.1007/s12274-011-0123-zhttp://doi.org/10.1007/s12274-011-0123-z .
Ghaffari Mosanenzadeh, S.; Alshrah, M.; Saadatnia, Z.; Park, C. B.; Naguib, H. E . Double dianhydride backbone polyimide aerogels with enhanced thermal insulation for high-temperature applications . Macromol. Mater. Eng. , 2020 . 305 1900777 DOI:10.1002/mame.201900777http://doi.org/10.1002/mame.201900777 .
Qu, L.; Tang, L.; Bei, R.; Zhao, J.; Chi, Z.; Liu, S.; Chen, X.; Aldred, M. P.; Zhang, Y.; Xu, R. J . Flexible multifunctional aromatic polyimide film: highly efficient photoluminescence, resistive switching characteristic, and electroluminescence . ACS Appl. Mater. Interfaces , 2018 . 10 11430 -11435 . DOI:10.1021/acsami.8b02712http://doi.org/10.1021/acsami.8b02712 .
Liu, H.; Tian, H.; Yao, Y.; Xiang, A.; Qi, H.; Wu, Q.; Rajulu, A. V . Polyimide foams with outstanding flame resistance and mechanical properties by the incorporation of noncovalent bond modified graphene oxide . New J. Chem. , 2020 . 44 12068 -12078 . DOI:10.1039/D0NJ01983Fhttp://doi.org/10.1039/D0NJ01983F .
Ma, J.; Zhan, M.; Wang, K . Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding . ACS Appl. Mater. Interfaces , 2015 . 7 563 -576 . DOI:10.1021/am5067095http://doi.org/10.1021/am5067095 .
Huang, C.; Li, J.; Xie, G.; Han, F.; Huang, D.; Zhang, F.; Zhang, B.; Zhang, G. P.; Sun, R.; Wong, C. P . Low-dielectric constant and low-temperature curable polyimide/POSS nanocomposites . Macromol. Mater. Eng. , 2019 . 304 1900505 DOI:10.1002/mame.201900505http://doi.org/10.1002/mame.201900505 .
Gu, W.; Wang, G.; Zhou, M.; Zhang, T.; Ji, G . Polyimide-based foams: fabrication and multifunctional applications . ACS Appl. Mater. Interfaces , 2020 . 12 48246 -48258 . DOI:10.1021/acsami.0c15771http://doi.org/10.1021/acsami.0c15771 .
Wang, L. L.; Hu, A. J.; Fan L.; Yang, S. Y . Approach to produce rigid closed-cell polyimide foams . High Perform. Polym. , 2013 . 25 956 -965 . DOI:10.1177/0954008313492550http://doi.org/10.1177/0954008313492550 .
Sun, G.; Liu, L.; Wang, J.; Wang, H.; Wang, W.; Han, S . Effects of hydrotalcites and tris (1-chloro-2-propyl) phosphate on thermal stability, cellular structure and fire resistance of isocyanate-based polyimide foams . Polym. Degrad. Stabil. , 2015 . 115 1 -15 . DOI:10.1016/j.polymdegradstab.2015.01.021http://doi.org/10.1016/j.polymdegradstab.2015.01.021 .
Kausar, A. . Advances in polymer-anchored carbon nanotube foam: a review . Polym. Plast. Technol. Eng. , 2019 . 58 1956 -1978 . DOI:10.1080/25740881.2019.1599945http://doi.org/10.1080/25740881.2019.1599945 .
Wang, S.; Huang, Y.; Chang, E.; Zhao, C.; Ameli, A.; Naguib, H. E.; Park, B. C . Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks . Chem. Eng. J. , 2021 . 411 128382 DOI:10.1016/j.cej.2020.128382http://doi.org/10.1016/j.cej.2020.128382 .
Xi, S.; Wang, X.; Liu, T.; Zhang, Z.; Zhang, X.; Shen, J . Moisture-resistant and mechanically strong polyimide-polymethylsilsesquioxane hybrid aerogels with tunable microstructure . Macromol. Mater. Eng. , 2021 . 306 200061 DOI:10.1002/mame.202000612http://doi.org/10.1002/mame.202000612 .
Yang, L.; Jiang, C.; Yan, J.; Shen, Y.; Chen, Y.; Xu, L.; Zhu, H . Structuring the reduced graphene oxide/polyHIPE foam for piezoresistive sensing via emulsion-templated polymerization . Compos. Part A , 2020 . 134 105898 DOI:10.1016/j.compositesa.2020.105898http://doi.org/10.1016/j.compositesa.2020.105898 .
Feng, W.; Long, P.; Feng, Y.; Li, Y . Two-dimensional fluorinated graphene: synthesis, structures, properties and applications . Adv. Sci. , 2016 . 3 1500413 DOI:10.1002/advs.201500413http://doi.org/10.1002/advs.201500413 .
Wang, X.; Wang, W.; Liu, Y.; Ren, M.; Xiao, H.; Liu ,X . Controllable defluorination of fluorinated graphene and weakening of C-F bonding under the action of nucleophilic dipolar solvent . Phys. Chem. Chem. Phys. , 2016 . 18 3285 -3293 . DOI:10.1039/C5CP06914Ahttp://doi.org/10.1039/C5CP06914A .
Lee, T. H.; Park, I.; Oh, J. Y.; Jang, J. K.; Park, H. B . Facile preparation of polyamide thin-film nanocomposite membranes using spray-assisted nanofiller predeposition . Ind. Eng. Chem. Res. , 2019 . 58 4248 -4256 . DOI:10.1021/acs.iecr.9b00029http://doi.org/10.1021/acs.iecr.9b00029 .
Zeng, C.; Hossieny, N.; Zhang, C.; Wang, B.; Walsh, S. M . Morphology and tensile properties of PMMA carbon nanotubes nanocomposites and nanocomposites foams . Compos. Sci. Technol. , 2013 . 82 29 -37 . DOI:10.1016/j.compscitech.2013.03.024http://doi.org/10.1016/j.compscitech.2013.03.024 .
Madaleno, L.; Pyrz, R.; Crosky, A.; Jensen, L. R.; Rauhe, J. C. M.; Dolomanova, V.; de Barros Timmons, A. M. M. V.; Cruz Pinto, J. J.; Norman, J . Processing and characterization of polyurethane nanocomposite foam reinforced with montmorillonite–carbon nanotube hybrids . Compos. Part A , 2013 . 44 1 -7. .
Xu, L.; Jiang, S.; Li, B.; Hou, W.; Li, G.; Memon, M . A.; Huang, Y.; Geng, J. Graphene oxide: a versatile agent for polyimide foams with improved foaming capability and enhanced flexibility . Chem. Mater. , 2015 . 27 4358 -4367 . DOI:10.1021/acs.chemmater.5b00981http://doi.org/10.1021/acs.chemmater.5b00981 .
Suh, K. W.; Park, C. P.; Maurer, M. J.; Tusim, M. H.; De Genova, R.; Broos, R.; Sophiea, D. P. . Lightweight cellular plastics . Adv. Mater. , 2000 . 12 1779 -1789 . DOI:10.1002/1521-4095(200012)12:23<1779::AID-ADMA1779>3.3.CO;2-Vhttp://doi.org/10.1002/1521-4095(200012)12:23<1779::AID-ADMA1779>3.3.CO;2-V .
Wang, G.; Wang, L.; Mark, L. H.; Shaayegan, V.; Wang, G.; Li, H.; Zhao, G.; Park, C. B . Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications . ACS Appl. Mater. Interfaces , 2018 . 10 1195 -1203 . DOI:10.1021/acsami.7b14111http://doi.org/10.1021/acsami.7b14111 .
Sasidharan, S.; Anand, A . Epoxy-based hybrid structural composites with nanofillers: a review . Ind. Eng. Chem. Res. , 2020 . 59 12617 -12631 . DOI:10.1021/acs.iecr.0c01711http://doi.org/10.1021/acs.iecr.0c01711 .
Punetha, V. D.; Rana, S.; Yoo H. J.; Chaurasia, A.; McLeskey, J. T.; Ramasamy, M. S.; Sahoo, N. G.; Cho, J. W . Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene . Prog. Polym. Sci. , 2017 . 67 1 -47 . DOI:10.1016/j.progpolymsci.2016.12.010http://doi.org/10.1016/j.progpolymsci.2016.12.010 .
Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C . Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties . Prog. Polym. Sci. , 2010 . 35 357 -401 . DOI:10.1016/j.progpolymsci.2009.09.003http://doi.org/10.1016/j.progpolymsci.2009.09.003 .
Sahoo, N. G.; Rana, S.; Cho, J. W.; Li, L.; Chan, S. H . Polymer nanocomposites based on functionalized carbon nanotubes . Prog. Polym. Sci. , 2010 . 35 837 -867 . DOI:10.1016/j.progpolymsci.2010.03.002http://doi.org/10.1016/j.progpolymsci.2010.03.002 .
Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V, Ruch, D . Review of thermal conductivity in composites: mechanisms, parameters and theory . Prog. Polym. Sci. , 2016 . 61 1 -28 . DOI:10.1016/j.progpolymsci.2016.05.001http://doi.org/10.1016/j.progpolymsci.2016.05.001 .
Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A . Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping . Acc. Chem. Res. , 2014 . 47 2446 -2456 . DOI:10.1021/ar500141jhttp://doi.org/10.1021/ar500141j .
Li, T. T.; Dai, W.; Huang, S. Y.; Wang, H.; Lin, Q.; Lin, J. H.; Lou, C. W . Spring-like sandwich foam composites reinforced by 3D Concave-Convex structured fabric: manufacturing and low-velocity cushion response . Compos. Part B: Eng. , 2020 . 197 108171 DOI:10.1016/j.compositesb.2020.108171http://doi.org/10.1016/j.compositesb.2020.108171 .
Marșavina, L.; Linul, E . Fracture toughness of rigid polymeric foams: A review . Fatigue Fract. Eng. Mater. Struct. , 2020 . 43 2483 -2514 . DOI:10.1111/ffe.13327http://doi.org/10.1111/ffe.13327 .
Kong, L.; Li, Y.; Feng, W . Strategies to solve lithium battery thermal runaway: from mechanism to modification . Electrochem. Energy Rev. , 2021 . 4 633 -679 . DOI:10.1007/s41918-021-00109-3http://doi.org/10.1007/s41918-021-00109-3 .
Andrieux, S.; Quell, A.; Stubenrauch, C.; Drenckhan, W . Liquid foam templating - A route to tailor-made polymer foams . Adv. Colloid Interface Sci. , 2018 . 256 276 -290 . DOI:10.1016/j.cis.2018.03.010http://doi.org/10.1016/j.cis.2018.03.010 .
He, G.; Wang, P.; Dai, Y.; Sun, Y.; Zhang, J.; Yang, Z . Carbon nanofillers repair strategy for high-efficiency thermal conductivity enhancement of PBX composites at ultralow mass fraction . Compos. Part A , 2021 . 48 106492 DOI:10.1016/j.compositesa.2021.106492http://doi.org/10.1016/j.compositesa.2021.106492 .
Gilbert, D. A.; Burks, E. C.; Ushakov, S. V.; Abellan, P.; Arslan, I.; Felter, T . E.; Navrosky, A.; Liu, K. Tunable low density palladium nanowire foams . Chem. Mater. , 2017 . 29 9814 -9818 . DOI:10.1021/acs.chemmater.7b03978http://doi.org/10.1021/acs.chemmater.7b03978 .
Oakdale, J. S.; Smith, R. F.; Forien, J. B.; Smith, W. L.; Ali, S. J.; Bayu Aji, L. B.; Willey, T. M.; Ye, J.; van Buuren, A. W.; Worthington, M. W.; Prisbrey, S. T.; Park, H. S.; Amendt, P. A.; Baumann, T. F.; Biener, J . Direct laser writing of low-density interdigitated foams for plasma drive shaping . Adv. Funct. Mater. , 2017 . 27 170242 DOI:10.1002/adfm.201702425http://doi.org/10.1002/adfm.201702425 .
Jozwiak, B.; Dzido, G.; Zorebski, E.; Kolanowska, A.; Jedrysiak, R.; Dziadosz, J.; Libera, M.; Boncel, S.; Dzida, M. . Remarkable thermal conductivity enhancement in carbon-based ionanofluids: effect of nanoparticle morphology . ACS Appl. Mater. Interfaces , 2020 . 12 38113 -38123 . DOI:10.1021/acsami.0c09752http://doi.org/10.1021/acsami.0c09752 .
Kim, S. Y.; Jang, H. G.; Yang, C. M.; Yang, B. J . Multiscale prediction of thermal conductivity for nanocomposites containing crumpled carbon nanofillers with interfacial characteristics . Compos. Sci. Technol. , 2018 . 155 169 -176 . DOI:10.1016/j.compscitech.2017.12.011http://doi.org/10.1016/j.compscitech.2017.12.011 .
Li M.; Ali Z.; Wei X.; Li L.; Song G.; Hou X.; Do, H.; Greer, J. C.; Pan, Z.; Lin, C . T.; Jiang, N.; Yu, J. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites . Compos. Part B , 2021 . 208 108599 DOI:10.1016/j.compositesb.2020.108599http://doi.org/10.1016/j.compositesb.2020.108599 .
Peng, C.; Kong, L.; Li, Y.; Fu, H.; Sun, L.; Feng, Y.; Feng, W . Fluorinated graphene nanoribbons from unzipped single-walled carbon nanotubes for ultrahigh energy density lithium-fluorinated carbon batteries . Sci. China Mater. , 2021 . 64 1367 -1377 . DOI:10.1007/s40843-020-1551-xhttp://doi.org/10.1007/s40843-020-1551-x .
Oluwalowo, A.; Nguyen, N.; Zhang, S.; Park, J. G.; Liang, R . Electrical and thermal conductivity improvement of carbon nanotube and silver composites . Carbon , 2019 . 146 224 -231 . DOI:10.1016/j.carbon.2019.01.073http://doi.org/10.1016/j.carbon.2019.01.073 .
Gong, P.; Buahom, P.; Tran, M. P.; Saniei, M.; Park, C. B.; Pötschke, P . Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams . Carbon , 2015 . 93 819 -829 . DOI:10.1016/j.carbon.2015.06.003http://doi.org/10.1016/j.carbon.2015.06.003 .
Wang, G.; Wang, C.; Zhao, J.; Wang, G.; Park, C. B.; Zhao, G . Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material . Nanoscale , 2017 . 9 5996 -6009 . DOI:10.1039/C7NR00327Ghttp://doi.org/10.1039/C7NR00327G .
Ferkl, P.; Pokorný, R.; Kosek, J . Multiphase approach to coupled conduction–radiation heat transfer in reconstructed polymeric foams . Int. J. Therm. Sci. , 2014 . 83 68 -79 . DOI:10.1016/j.ijthermalsci.2014.04.013http://doi.org/10.1016/j.ijthermalsci.2014.04.013 .
Zhang, C.; Zhu, B.; Lee, L, J . Extrusion foaming of polystyrene/carbon particles using carbon dioxide and water as co-blowing agents . Polymer , 2011 . 52 1847 -1855 . DOI:10.1016/j.polymer.2011.02.016http://doi.org/10.1016/j.polymer.2011.02.016 .
Qin, M.; Xu, Y.; Cao, R.; Feng, W.; Chen, L . Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge . Adv. Funct. Mater. , 2018 . 28 1805053 DOI:10.1002/adfm.201805053http://doi.org/10.1002/adfm.201805053 .
0
Views
41
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution