a.Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b.State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo 256401, China
fengliu82@sjtu.edu.cn
Scan for full text
Lei Zhu, Quan-Zeng Zhang, Hong Ding, et al. Unraveling the Effect of Solvent Additive and Fullerene Component on Morphological Control in Organic Solar Cells. [J]. Chinese Journal of Polymer Science 40(12):1604-1612(2022)
Lei Zhu, Quan-Zeng Zhang, Hong Ding, et al. Unraveling the Effect of Solvent Additive and Fullerene Component on Morphological Control in Organic Solar Cells. [J]. Chinese Journal of Polymer Science 40(12):1604-1612(2022) DOI: 10.1007/s10118-022-2807-0.
This work shows the effect of solvent additives and fullerene third components on the film morphology of organic solar cells and points to the importance of the balance between material crystallization and phase separation.
The manipulation of the morphology of the active layers is crucial for improving the performance of organic photovoltaic (OPV) devices. In particular, the development of non-fullerene acceptors (NFAs) has led to a large number of new materials with more complex interactions. Therefore, the investigation on the morphology control mechanism is the key aspect in providing guidance for material design and device optimization. In this study, the film morphology optimization using 1,8-diiodooctane (DIO) additive and a ternary fullerene acceptor strategy have been carried out based on the PCE10:ITIC blends. It is seen that suitable amount of DIO helps to increase the crystallization of the blended thin film. However, excessive DIO elevates the crystallization-induced phase separation and the domain size can exceed the exciton diffusion length, leading to efficiency drop. The addition of fullerene acceptor can improve the carrier transport of the blends, and its presence could retard the excessive phase separation induced by DIO additive. Under the joint optimization of the solvent additive and PC,71,BM acceptor, the film morphology achieves a balance between crystallization and phase separation scales, the exciton diffusion and carrier transport are also optimized, and the short-circuit current (,J,SC,) and fill factor (FF) of the device can be improved significantly.
Organic solar cellsMorphologySolvent additiveCrystallization-induced phase separation
Lu, L.; Zheng, T.; Wu, Q.; Schneider, A . M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells . Chem. Rev. , 2015 . 115 12666 -12731 . DOI:10.1021/acs.chemrev.5b00098http://doi.org/10.1021/acs.chemrev.5b00098 .
Li, G.; Zhu, R.; Yang, Y . Polymer solar cells . Nat. Photon. , 2012 . 6 153 -161 . DOI:10.1038/nphoton.2012.11http://doi.org/10.1038/nphoton.2012.11 .
Fukuda, K.; Yu, K.; Someya, T . The future of flexible organic solar cells . Adv. Energy Mater. , 2020 . 10 2000765 DOI:10.1002/aenm.202000765http://doi.org/10.1002/aenm.202000765 .
Sun, Y.; Liu, T.; Kan, Y.; Gao, K.; Tang, B.; Li, Y . Flexible organic solar cells: progress and challenges . Small Sci. , 2021 . 1 2100001 DOI:10.1002/smsc.202100001http://doi.org/10.1002/smsc.202100001 .
Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J . Single-junction organic photovoltaic cell with 19% efficiency . Adv. Mater. , 2021 . 33 2102420 DOI:10.1002/adma.202102420http://doi.org/10.1002/adma.202102420 .
Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. . Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination . Adv. Mater. , 2022 . 34 2109516 DOI:10.1002/adma.202109516http://doi.org/10.1002/adma.202109516 .
Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C.-C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F . Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology . Nat. Mater. , 2022 . 21 656 -663 . DOI:10.1038/s41563-022-01244-yhttp://doi.org/10.1038/s41563-022-01244-y .
Benanti, T. L.; Venkataraman, D . Organic solar cells: an overview focusing on active layer morphology . Photosynth. Res. , 2006 . 87 73 -81 . DOI:10.1007/s11120-005-6397-9http://doi.org/10.1007/s11120-005-6397-9 .
Zhao, F.; Wang, C.; Zhan, X . Morphology control in organic solar cells . Adv. Energy Mater. , 2018 . 8 1703147 DOI:10.1002/aenm.201703147http://doi.org/10.1002/aenm.201703147 .
Zhu, L.; Zhang, M.; Zhong, W.; Leng, S.; Zhou, G.; Zou, Y.; Su, X.; Ding, H.; Gu, P.; Liu, F.; Zhang, Y . Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells . Energy Environ. Sci. , 2021 . 14 4341 -4357 . DOI:10.1039/D1EE01220Ghttp://doi.org/10.1039/D1EE01220G .
Cui, C.; Li, Y . Morphology optimization of photoactive layers in organic solar cells . Aggregate , 2021 . 2 e31 .
McDowell, C.; Abdelsamie, M.; Toney, M. F.; Bazan, G. C . Solvent additives: key morphology-directing agents for solution-processed organic solar cells . Adv. Mater. , 2018 . 30 1707114 DOI:10.1002/adma.201707114http://doi.org/10.1002/adma.201707114 .
Liao, H. C.; Ho, C. C.; Chang, C. Y.; Jao, M. H.; Darling, S. B.; Su, W. F . Additives for morphology control in high-efficiency organic solar cells . Mater. Today , 2013 . 16 326 -336 . DOI:10.1016/j.mattod.2013.08.013http://doi.org/10.1016/j.mattod.2013.08.013 .
Song, J.; Zhu, L.; Li, C.; Xu, J.; Wu, H.; Zhang, X.; Zhang, Y.; Tang, Z.; Liu, F.; Sun, Y . High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy . Matter , 2021 . 4 2542 -2552 . DOI:10.1016/j.matt.2021.06.010http://doi.org/10.1016/j.matt.2021.06.010 .
Gasparini, N.; Salleo, A.; McCulloch, I.; Baran, D . The role of the third component in ternary organic solar cells . Nat. Rev. Mater. , 2019 . 4 229 -242 . DOI:10.1038/s41578-019-0093-4http://doi.org/10.1038/s41578-019-0093-4 .
Xie, Y.; Yang, F.; Li, Y.; Uddin, M. A.; Bi, P.; Fan, B.; Cai, Y.; Hao, X.; Woo, H . Y.; Li, W.; Liu, F.; Sun, Y. Morphology control enables efficient ternary organic solar cells . Adv. Mater. , 2018 . 30 1803045 DOI:10.1002/adma.201803045http://doi.org/10.1002/adma.201803045 .
Zhao, C.; Wang, J.; Zhao, X.; Du, Z.; Yang, R.; Tang, J . Recent advances, challenges and prospects in ternary organic solar cells . Nanoscale , 2021 . 13 2181 -2208 . DOI:10.1039/D0NR07788Ghttp://doi.org/10.1039/D0NR07788G .
Ameri, T.; Khoram, P.; Min, J.; Brabec, C. J . Organic ternary solar cells: a review . Adv. Mater. , 2013 . 25 4245 -4266 . DOI:10.1002/adma.201300623http://doi.org/10.1002/adma.201300623 .
Mai, J.; Lau, T. K.; Li, J.; Peng, S. H.; Hsu, C. S.; Jeng, U . S.; Zeng, J.; Zhao, N.; Xiao, X.; Lu, X. Understanding morphology compatibility for high-performance ternary organic solar cells . Chem. Mater. , 2016 . 28 6186 -6195 . DOI:10.1021/acs.chemmater.6b02264http://doi.org/10.1021/acs.chemmater.6b02264 .
Zhang, L.; Ma, W . Morphology optimization in ternary organic solar cells . Chinese J. Polym. Sci. , 2017 . 35 184 -197 . DOI:10.1007/s10118-017-1898-5http://doi.org/10.1007/s10118-017-1898-5 .
Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; Xiao, Y.; Dela Peña, T. A.; Li, Y.; Zou, X.; Xing, Z.; Luo, Z.; Wong, K . S.; Lu, X.; Ye, L.; Yan, H.; Gao, K. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors . Matter , 2022 . 5 725 -734 . DOI:10.1016/j.matt.2021.12.002http://doi.org/10.1016/j.matt.2021.12.002 .
Yi, Z.; Ni, W.; Zhang, Q.; Li, M.; Kan, B.; Wan, X.; Chen, Y . Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells . J. Mater. Chem. C , 2014 . 2 7247 -7255 . DOI:10.1039/C4TC00994Khttp://doi.org/10.1039/C4TC00994K .
Zhu, L.; Zhong, W.; Qiu, C.; Lyu, B.; Zhou, Z.; Zhang, M.; Song, J.; Xu, J.; Wang, J.; Ali, J.; Feng, W.; Shi, Z.; Gu, X.; Ying, L.; Zhang, Y.; Liu, F . Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication . Adv. Mater. , 2019 . 31 1902899 DOI:10.1002/adma.201902899http://doi.org/10.1002/adma.201902899 .
Zheng, Y.; Li, S.; Zheng, D.; Yu, J . Effects of different polar solvents for solvent vapor annealing treatment on the performance of polymer solar cells . Org. Electron. , 2014 . 15 2647 -2653 . DOI:10.1016/j.orgel.2014.07.026http://doi.org/10.1016/j.orgel.2014.07.026 .
S. Gurney, R.; Li, W.; Yan, Y.; Liu, D.; J. Pearson, A.; Wang, T . Morphology and efficiency enhancements of PTB7-Th:ITIC nonfullerene organic solar cells processed via solvent vapor annealing . J. Energy Chem. , 2019 . 37 148 -156 . DOI:10.1016/j.jechem.2018.12.015http://doi.org/10.1016/j.jechem.2018.12.015 .
Grob, S.; Bartynski, A. N.; Opitz, A.; Gruber, M.; Grassl, F.; Meister, E.; Linderl, T.; Hörmann, U.; Lorch, C.; Moons, E.; Schreiber, F.; Thompson, M. E.; Brütting, W . Solvent vapor annealing on perylene-based organic solar cells . J. Mater. Chem. A , 2015 . 3 15700 -15709 . DOI:10.1039/C5TA02806Jhttp://doi.org/10.1039/C5TA02806J .
Peet, J.; Soci, C.; Coffin, R. C.; Nguyen, T. Q.; Mikhailovsky, A.; Moses, D.; Bazan, G. C . Method for increasing the photoconductive response in conjugated polymer/fullerene composites . Appl. Phys. Lett. , 2006 . 89 252105 DOI:10.1063/1.2408661http://doi.org/10.1063/1.2408661 .
Rogers, J. T.; Schmidt, K.; Toney, M. F.; Kramer, E. J.; Bazan, G. C . Structural order in bulk heterojunction films prepared with solvent additives . Adv. Mater. , 2011 . 23 2284 -2288 . DOI:10.1002/adma.201003690http://doi.org/10.1002/adma.201003690 .
Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J . Processing additives for improved efficiency from bulk heterojunction solar cells . J. Am. Chem. Soc. , 2008 . 130 3619 -3623 . DOI:10.1021/ja710079whttp://doi.org/10.1021/ja710079w .
Peet, J.; Cho, N. S.; Lee, S. K.; Bazan, G. C . Transition from solution to the solid state in polymer solar cells cast from mixed solvents . Macromolecules , 2008 . 41 8655 -8659 . DOI:10.1021/ma801945hhttp://doi.org/10.1021/ma801945h .
Wang, W.; Yan, C.; Lau, T. K.; Wang, J.; Liu, K.; Fan, Y.; Lu, X.; Zhan, X . Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency . Adv. Mater. , 2017 . 29 1701308 DOI:10.1002/adma.201701308http://doi.org/10.1002/adma.201701308 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P . A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1140 -1151 . DOI:10.1016/j.joule.2019.01.004http://doi.org/10.1016/j.joule.2019.01.004 .
Liang, N.; Sun, K.; Zheng, Z.; Yao, H.; Gao, G.; Meng, X.; Wang, Z.; Ma, W.; Hou, J . Perylene diimide trimers based bulk heterojunction organic solar cells with efficiency over 7% . Adv. Energy Mater. , 2016 . 6 1600060 DOI:10.1002/aenm.201600060http://doi.org/10.1002/aenm.201600060 .
Reddy, S. S.; Aryal, U. K.; Jin, H.; Gokulnath, T.; Rajalapati, D. G.; Kranthiraja, K.; Shin, S. T.; Jin, S. H . A new benzodithiophene based donor-acceptor π-conjugated polymer for organic solar cells . Macromol. Res. , 2020 . 28 179 -183 . DOI:10.1007/s13233-020-8079-zhttp://doi.org/10.1007/s13233-020-8079-z .
Chen, S.; Ye, J.; Yang, Q.; Oh, J.; Hu, D.; Yang, K.; Odunmbaku, G . O.; Li, F.; Yu, Q.; Kan, Z.; Xiao, Z.; Yang, C.; Lu, S.; Sun, K. Molecular ordering and phase segregation induced by a volatile solid additive for highly efficient all-small-molecule organic solar cells . J. Mater. Chem. A , 2021 . 9 2857 -2863 . DOI:10.1039/D0TA10649Fhttp://doi.org/10.1039/D0TA10649F .
Song, X.; Gasparini, N.; Baran, D . The influence of solvent additive on polymer solar cells employing fullerene and non-fullerene acceptors . Adv. Electr. Mater. , 2018 . 4 1700358 DOI:10.1002/aelm.201700358http://doi.org/10.1002/aelm.201700358 .
Lee, H. S.; Ahn, H.; Jo, J. W.; Kim, B.; Son, H. J . Synergistic effects of solvent and polymer additives on solar cell performance and stability of small molecule bulk heterojunction solar cells . J. Mater. Chem. A , 2016 . 4 18383 -18391 . DOI:10.1039/C6TA08278Ehttp://doi.org/10.1039/C6TA08278E .
Xu, J.; Jo, S. B.; Chen, X.; Zhou, G.; Zhang, M.; Shi, X.; Lin, F.; Zhu, L.; Hao, T.; Gao, K.; Zou, Y.; Su, X.; Feng, W.; Jen, A. K . Y.; Zhang, Y.; Liu, F. The molecular ordering and double-channel carrier generation of nonfullerene photovoltaics within multi-length-scale morphology . Adv. Mater. , 2022 . 34 2108317 DOI:10.1002/adma.202108317http://doi.org/10.1002/adma.202108317 .
Grancini, G.; Polli, D.; Fazzi, D.; Cabanillas-Gonzalez, J.; Cerullo, G.; Lanzani, G . Transient absorption imaging of P3HT:PCBM photovoltaic blend: evidence for interfacial charge transfer state . J. Phys. Chem. Lett. , 2011 . 2 1099 -1105 . DOI:10.1021/jz200389bhttp://doi.org/10.1021/jz200389b .
Bakulin Artem, A.; Rao, A.; Pavelyev Vlad, G.; van Loosdrecht Paul, H . M.; Pshenichnikov Maxim, S.; Niedzialek, D.; Cornil, J.; Beljonne, D.; Friend Richard, H. The role of driving energy and delocalized states for charge separation in organic semiconductors . Science , 2012 . 335 1340 -1344 . DOI:10.1126/science.1217745http://doi.org/10.1126/science.1217745 .
Rao, A.; Chow, P. C. Y.; Gélinas, S.; Schlenker, C. W.; Li, C. Z.; Yip, H. L.; Jen, A. K. Y.; Ginger, D. S.; Friend, R. H . The role of spin in the kinetic control of recombination in organic photovoltaics . Nature , 2013 . 500 435 -439 . DOI:10.1038/nature12339http://doi.org/10.1038/nature12339 .
Blom, P. W. M.; Tanase, C.; de Leeuw, D. M.; Coehoorn, R . Thickness scaling of the space-charge-limited current in poly(p-phenylene vinylene) . Appl. Phys. Lett. , 2005 . 86 092105 DOI:10.1063/1.1868865http://doi.org/10.1063/1.1868865 .
Carbone, A.; Kotowska, B. K.; Kotowski, D . Space-charge-limited current fluctuations in organic semiconductors . Phys. Rev. Lett. , 2005 . 95 236601 DOI:10.1103/PhysRevLett.95.236601http://doi.org/10.1103/PhysRevLett.95.236601 .
Song, J.; Zhang, M.; Yuan, M.; Qian, Y.; Sun, Y.; Liu, F . Morphology characterization of bulk heterojunction solar cells . Small Meth. , 2018 . 2 1700229 DOI:10.1002/smtd.201700229http://doi.org/10.1002/smtd.201700229 .
Müller-Buschbaum, P . The active layer morphology of organic solar cells probed with grazing incidence scattering techniques . Adv. Mater. , 2014 . 26 7692 -7709 . DOI:10.1002/adma.201304187http://doi.org/10.1002/adma.201304187 .
Liu, F.; Brady, M. A.; Wang, C . Resonant soft X-ray scattering for polymer materials . Eur. Polym. J. , 2016 . 81 555 -568 . DOI:10.1016/j.eurpolymj.2016.04.014http://doi.org/10.1016/j.eurpolymj.2016.04.014 .
Wang, C.; Lee, D. H.; Hexemer, A.; Kim, M. I.; Zhao, W.; Hasegawa, H.; Ade, H.; Russell, T. P . Defining the nanostructured morphology of triblock copolymers using resonant soft X-ray scattering . Nano Lett. , 2011 . 11 3906 -3911 . DOI:10.1021/nl2020526http://doi.org/10.1021/nl2020526 .
0
Views
7
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution