1.National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei 230026, China
lbli@ustc.edu.cn
Scan for full text
Liang-Bin Li. Chain Flexibility and Connectivity: The Uniqueness of Polymer Crystallization. [J]. Chinese Journal of Polymer Science 41(1):7-13(2023)
Liang-Bin Li. Chain Flexibility and Connectivity: The Uniqueness of Polymer Crystallization. [J]. Chinese Journal of Polymer Science 41(1):7-13(2023) DOI: 10.1007/s10118-022-2804-3.
Chain flexibility and connectivity are two peculiar characteristics of polymers. For chain connectivity, entanglement free energy theory makes a step forward in bridging crystallization with entanglement network. How entanglement affect nucleation in polymer network and why interlamellar amorphous layer always accompany the formation of crystal layer may be better understood.
Theory of polymer crystallization is listed as one of the top ten current challenges in polymer community. Clarifying the uniqueness of polymer crystallization should be the first step to search for the roadmap for targeting this challenge. Chain flexibility and connectivity are two peculiar characteristics of polymers, which differentiate their dynamics and structures from that of small molecules. The uniqueness of polymer crystallization must also stem from these two peculiar characteristics, which, however, has not been attracted significant attention. A local structure order may be essential in assisting the transformation of flexible chain to rigid segment with conformational ordering. The entanglement pressure and entanglement free energy may help to understand how entanglement affect nucleation in polymer network and why the interlamellar amorphous layer always accompany the formation of crystal layer. Some recommendations will be given for future study.
Polymer crystallizationChain flexibilityChain connectivityNucleation
Wunderlich, B. Macromolecular physics, volume II: crystal nucleation, growth, annealing. Academic Press: New York, 1976, Vol. II.
Lodge, T. P. Celebrating 50 Years of Macromolecules. Macromolecules 2017, 50, 9525–9527.
Flory, P. J. in Statistical Mechanics of Chain Molecules, Oxford University Press, 1989.
Doi, M.; Edwards, S. F. in The Theory of Polymer Dynamics (International Series of Monographs on Physics, 73), Oxford University Press, 1988.
Mark, J. E.; Erman, B.; Roland, M. in The Science and Technology of Rubber, Academic Press, 2013.
Meijer, H. E.; Govaert, L. E . Mechanical performance of polymer systems: the relation between structure and properties . Prog. Polym. Sci. , 2005 . 30 915 -938 . DOI:10.1016/j.progpolymsci.2005.06.009http://doi.org/10.1016/j.progpolymsci.2005.06.009 .
Xu, T.; Nie, C.; Peng, F.; Sheng, J.; Li, L . Bond Orientation-Assisted Enthalpic Stress in Polymer Glasses: A Simulation Study on Elastic Yielding . Macromolecules , 2022 . 55 883 -896 . DOI:10.1021/acs.macromol.1c02124http://doi.org/10.1021/acs.macromol.1c02124 .
Tang, X.; Chen, W.; Li, L . The tough journey of polymer crystallization: battling with chain flexibility and connectivity . Macromolecules , 2019 . 52 3575 -3591 . DOI:10.1021/acs.macromol.8b02725http://doi.org/10.1021/acs.macromol.8b02725 .
Hoffman, J. D.; Miller, R. L . Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment . Polymer , 1997 . 38 3151 -3212 . DOI:10.1016/S0032-3861(97)00071-2http://doi.org/10.1016/S0032-3861(97)00071-2 .
Hoffman, J. D.; Miller, R. L.; Marand, H.; Roitman, D. B . Relationship between the lateral surface free energy σ and the chain structure of melt-crystallized polymers . Macromolecules , 1992 . 25 2221 -2229 . DOI:10.1021/ma00034a025http://doi.org/10.1021/ma00034a025 .
Strobl, G . Colloquium: laws controlling crystallization and melting in bulk polymers . Rev. Modern Phys. , 2009 . 81 1287 -1300 . DOI:10.1103/RevModPhys.81.1287http://doi.org/10.1103/RevModPhys.81.1287 .
Cui, K.; Ma, Z.; Tian, N.; Su, F.; Liu, D.; Li, L . Multiscale and multistep ordering of flow-induced nucleation of polymers . Chem. Rev. , 2018 . 118 1840 -1886 . DOI:10.1021/acs.chemrev.7b00500http://doi.org/10.1021/acs.chemrev.7b00500 .
Wang, Z.; Ma, Z.; Li, L . Flow-induced crystallization of polymers: molecular and thermodynamic considerations . Macromolecules , 2016 . 49 1505 -1517 . DOI:10.1021/acs.macromol.5b02688http://doi.org/10.1021/acs.macromol.5b02688 .
Cong, Y.; Hong, Z.; Qi, Z.; Zhou, W.; Li, H.; Liu, H.; Chen, W.; Wang, X.; Li, L . Conformational ordering in growing spherulites of isotactic polypropylene . Macromolecules , 2010 . 43 9859 -9864 . DOI:10.1021/ma1019686http://doi.org/10.1021/ma1019686 .
Xie, C.; Tang, X.; Yang, J.; Xu, T.; Tian, F.; Li, L . Stretch-induced coil-helix transition in isotactic polypropylene: a molecular dynamics simulation . Macromolecules , 2018 . 51 3994 -4002 . DOI:10.1021/acs.macromol.8b00325http://doi.org/10.1021/acs.macromol.8b00325 .
An, H. N.; Zhao, B. J.; Ma, Z.; Shao, C . G.; Wang, X.; Fang, Y.; Li, L.; Li, Z. Shear-induced conformational ordering in the melt of isotactic polypropylene . Macromolecules , 2007 . 40 4740 -4743 . DOI:10.1021/ma071021hhttp://doi.org/10.1021/ma071021h .
Su, F.; Ji, Y.; Meng, L.; Wang, Z.; Qi, Z.; Chang, J.; Ju, J.; Li, L . Coupling of multiscale orderings during flow-induced crystallization of isotactic polypropylene . Macromolecules , 2017 . 50 1991 -1997. .
Li, L. B . In situ synchrotron radiation techniques: watching deformation-induced structural evolutions of polymers . Chinese J. Polym. Sci. , 2018 . 36 1093 -1102 . DOI:CNKI:SUN:GFZK.0.2018-10-001http://doi.org/CNKI:SUN:GFZK.0.2018-10-001 .
Nie, C.; Peng, F.; Xu, T. Y.; Sheng, J . F.; Chen, W.; Li, L. B, A unified thermodynamic model of flow-induced crystallization of polymer . Chinese J. Polym. Sci. , 2021 . 39 1489 -1495 . DOI:10.1007/s10118-021-2622-zhttp://doi.org/10.1007/s10118-021-2622-z .
Olmsted, P. D.; Poon, W. C. K.; McLeish, T. C. B.; Terrill, N. J.; Ryan, A. J . Spinodal-assisted crystallization in polymer melts . Phys. Rev. Lett. , 1998 . 81 373 -376 . DOI:10.1103/PhysRevLett.81.373http://doi.org/10.1103/PhysRevLett.81.373 .
Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M . Icosahedral bond orientational order in supercooled liquids . Phys. Rev. Lett. , 1981 . 47 1297 -1300 . DOI:10.1103/PhysRevB.28.784http://doi.org/10.1103/PhysRevB.28.784 .
Tang, X.; Yang, J.; Xu, T.; Tian, F.; Xie, C.; Li, L . Local structure order assisted two-step crystal nucleation in polyethylene . Phys. Rev. Mater. , 2017 . 1 073401 DOI:10.1103/PhysRevMaterials.1.073401http://doi.org/10.1103/PhysRevMaterials.1.073401 .
Lauritzen, J. I.; Hoffman, J. D . Theory of formation of polymer crystals with folded chains in dilute solution . J. Res. Natl. Bureau Standards - A , 1960 . 64 73 -102 . DOI:10.1063/1.1730678http://doi.org/10.1063/1.1730678 .
Point, J. J.; Rault, J.; Hoffman, J. D.; Kovacs, A. J.; Mandelkern, L.; Wunderlich, B.; DiMarzio, E. A.; de Gennes, P. G.; Klein, J.; Ball, R. C.; Flory, P. J.; Yoon, D. Y.; Guttman, C. M.; Khoury, F.; Voigt-Martin, I.; Bassett, D. C.; Frank, W. F. X.; Atkins, E. D. T.; Booth, C.; Uhlmann, D. R.; Grubb, D. T.; Magill, J. H.; Vesely, D.; Sadler, D. M.; Keller, A.; Krimm, S.; Samulski, E. T.; Calvert, P. D.; Fischer, E. W.; Stamm, M.; Geil, P. H.; Ullman, R.; Ballard, D. G. H. Rys, F.; Rigby, D.; Stepto, R. F. T.; Windle, A. H.; Dill, K. A. Hearle, J. W. S.; Hendra, P. J.; Ward, I. M.; Stejny, J.; Barham, P. J. Pennings, A. J.; Posthuma de Boer, A. . General discussion . Faraday Discuss. Chem. Soc. , 1979 . 68 365 -490 . DOI:10.1039/DC9796800365http://doi.org/10.1039/DC9796800365 .
Sadler, D. M.; Gilmer, G. H . Rate-theory model of polymer crystallization . Phys. Rev. Lett. , 1985 . 56 2708 .
Hu, W. B.; Frenkel D.; Mathot, V. B. F . Intramolecular nucleation model for polymer crystallization . Macromolecules , 2003 . 36 8178 -8183 . DOI:10.1021/ma0344285http://doi.org/10.1021/ma0344285 .
Muthukumar, M . Nucleation in polymer crystallization . Adv. Chem. Phys. , 2004 . 128 1 -64. .
Shen T. T.; Li, Ch. Y.; Strachan, A . Novel mode of noncrystallographic branching in the initial stages of polymer fibril growth . Phys. Rev. Lett. , 2020 . 125 247801 DOI:10.1103/PhysRevLett.125.247801http://doi.org/10.1103/PhysRevLett.125.247801 .
Peng, F.; Nie, C.; Xu, T.; Chen, W.; Yu, W.; Sheng, J.; Li, L. . Entanglement on nucleation barrier of polymer crystal . Chinese J. Polym. Sci. , 2022 . doi: 10.1007/s10118-022-2780-7 DOI:10.1007/s10118-022-2780-7http://doi.org/10.1007/s10118-022-2780-7 .
0
Views
66
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution