a.College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang 330031, China
b.Institute of Advanced Scientific Research (iASR)/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
c.Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
happyhu@ncu.edu.cn (X.H.)
ywchen@ncu.edu.cn (Y.C.)
Scan for full text
Xiangchuan Meng, Zhi Xing, Xiaotian Hu, et al. Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. [J]. Chinese Journal of Polymer Science 40(12):1522-1566(2022)
Xiangchuan Meng, Zhi Xing, Xiaotian Hu, et al. Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. [J]. Chinese Journal of Polymer Science 40(12):1522-1566(2022) DOI: 10.1007/s10118-022-2803-4.
This review focuses on the technical challenges and rational modular design for the flexible organic solar cells, from the aspects of functional material selection, printing process research status and large-scale efficiency losses. These will promote the integrated applications of printable organic semiconductor materials for next-generation clean energy and wearable electronics.
Flexibility is the most prominent advantage of organic solar cells (OSCs) compared with traditional photovoltaic devices, showing an irreplaceable commercial potential. Currently, the maximum power conversion efficiencies (PCEs) of single-junction OSCs have been over 19% and 16% upon rigid and flexible substrates, respectively, which meet the criteria for commercial application. Extensive research efforts are under way, such as device configuration design, interface/photosensitive layer synthesis, transparent electrode modification and printing technology innovation, however, the reasonable selection of printing technologies, the huge performance loss of large-area printing process and the structural design of flexible modules are still the bottlenecks, limiting the commercialization of OSCs. This review focuses on the technical challenges and rational modular configuration design for printing preparation of flexible high-efficiency large-area organic devices, from the aspects of the functional layer material selection, printing process research status and large-scale efficiency losses. These will promote the integrated applications of printable organic semiconductor materials for next-generation clean energy and appeal extensive attentions in wearable electronics, building-integrated photovoltaics and Internet of Things,etc,.
Organic photovoltaicPrinting technologyFlexible deviceModular design
Yao, H.; Ye, L.; Zhang, H.; Li, S.; Zhang, S.; Hou, J . Molecular design of benzodithiophene-based organic photovoltaic materials . Chem. Rev. , 2016 . 116 7397 DOI:10.1021/acs.chemrev.6b00176http://doi.org/10.1021/acs.chemrev.6b00176 .
Li, Y . Molecular design of photovoltaic materials for polymer solar cells: towards suitable electronic energy levels and broad absorption . Acc. Chem. Res. , 2012 . 45 723 -733 . DOI:10.1021/ar2002446http://doi.org/10.1021/ar2002446 .
Li, G.; Zhu, R.; Yang, Y . Polymer solar cells . Nat. Photon. , 2012 . 6 153 -161 . DOI:10.1038/nphoton.2012.11http://doi.org/10.1038/nphoton.2012.11 .
Wang, G.; Adil, M . A.; Zhang, J.; Wei, Z. Large-area organic solar cells: material requirements, modular designs, and printing methods . Adv. Mater. , 2019 . 31 1805089 DOI:10.1002/adma.201805089http://doi.org/10.1002/adma.201805089 .
Li, Y.; Xu, G.; Cui, C.; Li, Y . Flexible and semitransparent organic solar cells . Adv. Energy Mater. , 2018 . 8 1701791 DOI:10.1002/aenm.201701791http://doi.org/10.1002/aenm.201701791 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P . A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1140 -1151 . DOI:10.1016/j.joule.2019.01.004http://doi.org/10.1016/j.joule.2019.01.004 .
Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J . Single-junction organic photovoltaic cells with approaching 18% efficiency . Adv. Mater. , 2020 . 32 1908205 DOI:10.1002/adma.201908205http://doi.org/10.1002/adma.201908205 .
An, Q.; Wang, J.; Gao, W.; Ma, X.; Hu, Z.; Gao, J.; Xu, C.; Hao, M.; Zhang, X.; Yang, C.; Zhang, F . Alloy-like ternary polymer solar cells with over 17.2% efficiency . Sci. Bull. , 2020 . 65 538 -545 . DOI:10.1016/j.scib.2020.01.012http://doi.org/10.1016/j.scib.2020.01.012 .
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L . 18% efficiency organic solar cells . Sci. Bull. , 2020 . 65 272 -275 . DOI:10.1016/j.scib.2020.01.001http://doi.org/10.1016/j.scib.2020.01.001 .
Chen, H.; Zhao, T.; Li, L.; Tan, P.; Lai, H.; Zhu, Y.; Lai, X.; Han, L.; Zheng, N.; Guo, L.; He, F . 17.6%-Efficient quasiplanar heterojunction organic solar cells from a chlorinated 3D network acceptor . Adv. Mater. , 2021 . 33 2102778 DOI:10.1002/adma.202102778http://doi.org/10.1002/adma.202102778 .
Ning, H.; Jiang, Q.; Han, P.; Lin, M.; Zhang, G.; Chen, J.; Chen, H.; Zeng, S.; Gao, J.; Liu, J.; He, F.; Wu, Q . Manipulating the solubility properties of polymer donors for high-performance layer-by-layer processed organic solar cells . Energy Environ. Sci. , 2021 . 14 5919 -5928 . DOI:10.1039/D1EE01336Jhttp://doi.org/10.1039/D1EE01336J .
Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J . Single-junction organic photovoltaic cell with 19% efficiency . Adv. Mater. , 2021 . 33 2102420 DOI:10.1002/adma.202102420http://doi.org/10.1002/adma.202102420 .
Sun, R.; Wu, Q.; Guo, J.; Wang, T.; Wu, Y.; Qiu, B.; Luo, Z.; Yang, W.; Hu, Z.; Guo, J.; Shi, M.; Yang, C.; Huang, F.; Li, Y.; Min, J . A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency . Joule , 2020 . 4 407 -419 . DOI:10.1016/j.joule.2019.12.004http://doi.org/10.1016/j.joule.2019.12.004 .
Zhang, L.; Lin, B.; Hu, B.; Xu, X.; Ma, W . Blade-cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability . Adv. Mater. , 2018 . 30 1800343 DOI:10.1002/adma.201800343http://doi.org/10.1002/adma.201800343 .
Meng, X.; Zhang, L.; Xie, Y.; Hu, X.; Xing, Z.; Huang, Z.; Liu, C.; Tan, L.; Zhou, W.; Sun, Y.; Ma, W.; Chen, Y . A general approach for lab-to-manufacturing translation on flexible organic solar cells . Adv. Mater. , 2019 . 1903649 1903649 .
Ye, L.; Xiong, Y.; Zhang, Q.; Li, S.; Wang, C.; Jiang, Z.; Hou, J.; You, W.; Ade, H . Surpassing 10% efficiency benchmark for nonfullerene organic solar cells by scalable coating in air from single nonhalogenated solvent . Adv. Mater. , 2018 . 30 1705485 DOI:10.1002/adma.201705485http://doi.org/10.1002/adma.201705485 .
Sun, R.; Guo, J.; Sun, C.; Wang, T.; Luo, Z.; Zhang, Z.; Jiao, X.; Tang, W.; Yang, C.; Li, Y.; Min, J . A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells . Energy Environ. Sci. , 2019 . 12 384 -395 . DOI:10.1039/C8EE02560Fhttp://doi.org/10.1039/C8EE02560F .
Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C . 2.5% Efficient organic plastic solar cells . Appl. Phys. Lett. , 2001 . 78 841 -843 . DOI:10.1063/1.1345834http://doi.org/10.1063/1.1345834 .
Yakimov, A.; Forrest, S. R . High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters . Appl. Phys. Lett. , 2002 . 80 1667 -1669 . DOI:10.1063/1.1457531http://doi.org/10.1063/1.1457531 .
Peumans, P.; Yakimov, A.; Forrest, S. R . Small molecular weight organic thin-film photodetectors and solar cells . J. Appl. Phys. , 2003 . 93 3693 -3723 . DOI:10.1063/1.1534621http://doi.org/10.1063/1.1534621 .
Uchida, S.; Xue, J.; Rand, B. P.; Forrest, S. R . Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer . Appl. Phys. Lett. , 2004 . 84 4218 -4220 . DOI:10.1063/1.1755833http://doi.org/10.1063/1.1755833 .
Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y . High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends . Nat. Mater. , 2005 . 4 864 -868 . DOI:10.1038/nmat1500http://doi.org/10.1038/nmat1500 .
Kawano, K.; Ito, N.; Nishimori, T.; Sakai, J . Open circuit voltage of stacked bulk heterojunction organic solar cells . Appl. Phys. Lett. , 2006 . 88 073514 DOI:10.1063/1.2177633http://doi.org/10.1063/1.2177633 .
Zhou, Y.; Wang, X.; Acauan, L.; Kalfon-Cohen, E.; Ni, X.; Stein, Y.; Gleason, K. K.; Wardle, B. L . Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays . Adv. Mater. , 2019 . 31 1901916 DOI:10.1002/adma.201901916http://doi.org/10.1002/adma.201901916 .
Thompson, B. C.; Fréchet, J. M. J . Polymer-fullerene composite solar cells . Angew. Chemie. Int. Ed. , 2008 . 47 58 -77 . DOI:10.1002/anie.200702506http://doi.org/10.1002/anie.200702506 .
Chen, H . Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency . Nat. Photonics , 2009 . 3 649 -653 . DOI:10.1038/nphoton.2009.192http://doi.org/10.1038/nphoton.2009.192 .
Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L . For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4% . Adv. Mater. , 2010 . 22 135 -138 . DOI:10.1002/adma.200990190http://doi.org/10.1002/adma.200990190 .
Price, S. C.; Stuart, A . C.; Yang, L.; Zhou, H.; You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells . J. Am. Chem. Soc. , 2011 . 133 4625 -4631 . DOI:10.1021/ja1112595http://doi.org/10.1021/ja1112595 .
He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y . Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure . Nat. Photon. , 2012 . 6 591 -595 . DOI:10.1038/nphoton.2012.190http://doi.org/10.1038/nphoton.2012.190 .
Liu, Y.; Chen, C . C.; Hong, Z.; Gao, J.; Michael Yang, Y.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency . Sci. Rep. , 2013 . 3 3356 DOI:10.1038/srep03356http://doi.org/10.1038/srep03356 .
Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H . Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells . Nat. Commun. , 2014 . 5 5293 DOI:10.1038/ncomms6293http://doi.org/10.1038/ncomms6293 .
Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H . Efficient organic solar cells processed from hydrocarbon solvents . Nat. Energy , 2016 . 1 15027 DOI:10.1038/nenergy.2015.27http://doi.org/10.1038/nenergy.2015.27 .
Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J . Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells . Adv. Mater. , 2016 . 28 9423 -9429 . DOI:10.1002/adma.201602776http://doi.org/10.1002/adma.201602776 .
Xiao, Z.; Jia, X.; Ding, L . Ternary organic solar cells offer 14% power conversion efficiency . Sci. Bull. , 2017 . 62 1562 -1564 . DOI:10.1016/j.scib.2017.11.003http://doi.org/10.1016/j.scib.2017.11.003 .
Che, X.; Li, Y.; Qu, Y.; Forrest, S. R . High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency . Nat. Energy , 2018 . 3 422 DOI:10.1038/s41560-018-0134-zhttp://doi.org/10.1038/s41560-018-0134-z .
Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J . Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages . Nat. Commun. , 2019 . 10 2515 DOI:10.1038/s41467-019-10351-5http://doi.org/10.1038/s41467-019-10351-5 .
Qin, J.; Chen, Z.; Bi, P.; Yang, Y.; Zhang, J.; Huang, Z.; Wei, Z.; An, C.; Yao, H.; Hao, X.; Zhang, T.; Cui, Y.; Hong, L.; Liu, C.; Zu, Y.; He, C.; Hou, J . 17% Efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure . Energy Environ. Sci. , 2021 . 14 5903 -5910 . DOI:10.1039/D1EE02124Ahttp://doi.org/10.1039/D1EE02124A .
Lin, Y.; Wang, J.; Zhang, Z . G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 . 27 1170 -1174 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317 .
Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y . Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit . J. Am. Chem. Soc. , 2013 . 135 8484 -8487 . DOI:10.1021/ja403318yhttp://doi.org/10.1021/ja403318y .
Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z . Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells . Nat. Commun. , 2016 . 7 13740 DOI:10.1038/ncomms13740http://doi.org/10.1038/ncomms13740 .
Krebs, F. C . Fabrication and processing of polymer solar cells: a review of printing and coating techniques . Sol. Energy Mater. Sol. Cells , 2009 . 93 394 -412 . DOI:10.1016/j.solmat.2008.10.004http://doi.org/10.1016/j.solmat.2008.10.004 .
Padinger, F.; Rittberger, R. S.; Sariciftci, N. S . Effects of postproduction treatment on plastic solar cells . Adv. Funct. Mater. , 2003 . 13 85 -88 . DOI:10.1002/adfm.200390011http://doi.org/10.1002/adfm.200390011 .
Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J . Molecular optimization enables over 13% efficiency in organic solar cells . J. Am. Chem. Soc. , 2017 . 139 7148 -7151 . DOI:10.1021/jacs.7b02677http://doi.org/10.1021/jacs.7b02677 .
Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J . Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability . Adv. Mater. , 2016 . 28 4734 -4739 . DOI:10.1002/adma.201600281http://doi.org/10.1002/adma.201600281 .
Fan, Q.; Su, W.; Wang, Y.; Guo, B.; Jiang, Y.; Guo, X.; Liu, F.; Russell, T. P.; Zhang, M.; Li, Y . Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency . Sci. China Chem. , 2018 . 61 531 -537 . DOI:10.1007/s11426-017-9199-1http://doi.org/10.1007/s11426-017-9199-1 .
Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y . Achieving over 16% efficiency for single-junction organic solar cells . Sci. China Chem. , 2019 . 62 746 -752 . DOI:10.1007/s11426-019-9457-5http://doi.org/10.1007/s11426-019-9457-5 .
Liu, M.; Fan, P.; Hu, Q.; Russell, T. P.; Liu, Y . Naphthalene-diimide-based ionenes as universal interlayers for efficient organic solar cells . Angew. Chem. Int. Ed. , 2020 . 59 18131 -18135 . DOI:10.1002/anie.202004432http://doi.org/10.1002/anie.202004432 .
Cui, Y.; Yao, H. F.; Yang, C. Y.; Zhang, S. Q.; Hou, J. H . Organic solar cells with an efficiency approaching 15% . Acta Polymerica Sinica (in Chinese) , 2018 . 223 -230 . DOI:10.11777/j.issn1000-3304.2018.17297http://doi.org/10.11777/j.issn1000-3304.2018.17297 .
Green, M. A.; Emery, K.; King, D . L.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 34) . Prog. Photovolt. Res. Appl. , 2009 . 17 320 -326 . DOI:10.1002/pip.911http://doi.org/10.1002/pip.911 .
Green, M . A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 36) . Prog. Photovolt. Res. Appl. , 2010 . 18 346 -352 . DOI:10.1002/pip.1021http://doi.org/10.1002/pip.1021 .
Green, M . A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 38) . Prog. Photovolt. Res. Appl. , 2011 . 19 565 -572 . DOI:10.1002/pip.1150http://doi.org/10.1002/pip.1150 .
Green, M . A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 40) . Prog. Photovolt. Res. Appl. , 2012 . 20 606 -614 . DOI:10.1002/pip.2267http://doi.org/10.1002/pip.2267 .
Green, M . A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 42) . Prog. Photovolt. Res. Appl. , 2013 . 21 827 -837 . DOI:10.1002/pip.2404http://doi.org/10.1002/pip.2404 .
Green, M . A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 32) . Prog. Photovolt. Res. Appl. , 2008 . 16 435 -440 . DOI:10.1002/pip.842http://doi.org/10.1002/pip.842 .
Green, M . A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 45) . Prog. Photovolt. Res. Appl. , 2015 . 23 1 -9 . DOI:10.1002/pip.2573http://doi.org/10.1002/pip.2573 .
Green, M . A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 47) . Prog. Photovolt. Res. Appl. , 2016 . 24 3 -11 . DOI:10.1002/pip.2728http://doi.org/10.1002/pip.2728 .
Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D . Solar cell efficiency tables (version 48) . Prog. Photovolt. Res. Appl. , 2016 . 24 905 -913 . DOI:10.1002/pip.2788http://doi.org/10.1002/pip.2788 .
Green, M . A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 29) . Prog. Photovolt. Res. Appl. , 2007 . 15 35 -40 . DOI:10.1002/pip.741http://doi.org/10.1002/pip.741 .
Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D . Solar cell efficiency tables (version 49) . Prog. Photovolt. Res. Appl. , 2017 . 25 3 -13 . DOI:10.1002/pip.2855http://doi.org/10.1002/pip.2855 .
Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. Y . Solar cell efficiency tables (version 51) . Prog. Photovolt. Res. Appl. , 2018 . 26 3 -12 . DOI:10.1002/pip.2978http://doi.org/10.1002/pip.2978 .
Lungenschmied, C.; Dennler, G.; Neugebauer, H.; Sariciftci, S . N.; Glatthaar, M.; Meyer, T.; Meyer, A. Flexible, long-lived, large-area, organic solar cells . Sol. Energy Mater. Sol. Cells , 2007 . 91 379 -384 . DOI:10.1016/j.solmat.2006.10.013http://doi.org/10.1016/j.solmat.2006.10.013 .
Krebs, F. C.; Gevorgyan, S. A.; Alstrup, J . A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies . J. Mater. Chem. , 2009 . 19 5442 -5451 . DOI:10.1039/b823001chttp://doi.org/10.1039/b823001c .
Zhao, F.; Zhang, H.; Zhang, R.; Yuan, J.; He, D.; Zou, Y.; Gao, F. . Emerging approaches in enhancing the efficiency and stability in non-fullerene organic solar cells . Adv. Energy Mater. , 2020 . 10 2002746 DOI:10.1002/aenm.202002746http://doi.org/10.1002/aenm.202002746 .
Yue, W.; Larsen-Olsen, T. T.; Hu, X.; Shi, M.; Chen, H.; Hinge, M.; Fojan, P.; Krebs, F. C.; Yu, D . Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor-acceptor polymers . J. Mater. Chem. A , 2013 . 1 1785 -1793 . DOI:10.1039/C2TA00695Bhttp://doi.org/10.1039/C2TA00695B .
Machui, F.; Lucera, L.; Spyropoulos, G. D.; Cordero, J.; Ali, A. S.; Kubis, P.; Ameri, T.; Voigt, M. M.; Brabec, C. J . Large area slot-die coated organic solar cells on flexible substrates with non-halogenated solution formulations . Sol. Energy Mater. Sol. Cells , 2014 . 128 441 -446 . DOI:10.1016/j.solmat.2014.06.017http://doi.org/10.1016/j.solmat.2014.06.017 .
Fan, X.; Xu, B.; Liu, S.; Cui, C.; Wang, J.; Yan, F . Transfer-printed PEDOT:PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells . ACS Appl. Mater. Interfaces , 2016 . 8 14029 -14036 . DOI:10.1021/acsami.6b01389http://doi.org/10.1021/acsami.6b01389 .
Gasparini, N.; Lucera, L.; Salvador, M.; Prosa, M.; Spyropoulos, G. D.; Kubis, P.; Egelhaaf, H. J.; Brabec, C. J.; Ameri, T . High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency . Energy Environ. Sci. , 2017 . 10 885 -892 . DOI:10.1039/C6EE03599Jhttp://doi.org/10.1039/C6EE03599J .
Song, S.; Lee, K. T.; Koh, C. W.; Shin, H.; Gao, M.; Woo, H. Y.; Vak, D.; Kim, J. Y . Hot slot die coating for additive-free fabrication of high performance roll-to-roll processed polymer solar cells . Energy Environ. Sci. , 2018 . 11 3248 -3255 . DOI:10.1039/C8EE02221Fhttp://doi.org/10.1039/C8EE02221F .
Sun, Y.; Chang, M.; Meng, L.; Wan, X.; Gao, H.; Zhang, Y.; Zhao, K.; Sun, Z.; Li, C.; Liu, S.; Wang, H.; Liang, J.; Chen, Y . Flexible organic photovoltaics based on water-processed silver nanowire electrodes . Nat. Electron. , 2019 . 2 513 -520 . DOI:10.1038/s41928-019-0315-1http://doi.org/10.1038/s41928-019-0315-1 .
Gillett, A. J.; Privitera, A.; Dilmurat, R.; Karki, A.; Qian, D.; Pershin, A.; Londi, G.; Myers, W. K.; Lee, J.; Yuan, J.; Ko, S. J.; Riede, M. K.; Gao, F.; Bazan, G. C.; Rao, A.; Nguyen, T. Q.; Beljonne, D.; Friend, R. H . The role of charge recombination to triplet excitons in organic solar cells . Nature , 2021 . 597 666 -671 . DOI:10.1038/s41586-021-03840-5http://doi.org/10.1038/s41586-021-03840-5 .
Sun, L.; Zeng, W.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Wang, W.; Liu, T.; Jiang, X.; Jiang, Y.; Zhou, Y . Flexible all-solution-processed organic solar cells with high-performance nonfullerene active layers . Adv. Mater. , 2020 . 32 1907840 DOI:10.1002/adma.201907840http://doi.org/10.1002/adma.201907840 .
Chen, Z.; Song, W.; Yu, K.; Ge, J.; Zhang, J.; Xie, L.; Peng, R.; Ge, Z . Small-molecular donor guest achieves rigid 18.5% and flexible 15.9% efficiency organic photovoltaic via fine-tuning microstructure morphology . Joule , 2021 . 5 2395 -2407 . DOI:10.1016/j.joule.2021.06.017http://doi.org/10.1016/j.joule.2021.06.017 .
Song, W.; Yu, K.; Zhou, E.; Xie, L.; Hong, L.; Ge, J.; Zhang, J.; Zhang, X.; Peng, R.; Ge, Z . Crumple durable ultraflexible organic solar cells with an excellent power-per-weight performance . Adv. Funct. Mater. , 2021 . 31 2102694 DOI:10.1002/adfm.202102694http://doi.org/10.1002/adfm.202102694 .
Wan, J.; Xia, Y.; Fang, J.; Zhang, Z.; Xu, B.; Wang, J.; Ai, L.; Song, W.; Hui, K. N.; Fan, X.; Li, Y . Solution-processed transparent conducting electrodes for flexible organic solar cells with 16. 61% efficiency . Nano-Micro Lett. , 2021 . 13 44 DOI:10.1007/s40820-020-00566-3http://doi.org/10.1007/s40820-020-00566-3 .
Yan, T.; Song, W.; Huang, J.; Peng, R.; Huang, L.; Ge, Z. 16.67% Rigid and 14 . 06% flexible organic solar cells enabled by ternary heterojunction strategy . Adv. Mater. , 2019 . 31 1902210 DOI:10.1002/adma.201902210http://doi.org/10.1002/adma.201902210 .
Song, M.; You, D. S.; Lim, K.; Park, S.; Jung, S.; Kim, C. S.; Kim, D. H.; Kim, D. G.; Kim, J. K.; Park, J.; Kang, Y. C.; Heo, J.; Jin, S. H.; Park, J. H.; Kang, J. W . Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes . Adv. Funct. Mater. , 2013 . 23 4177 -4184 . DOI:10.1002/adfm.201202646http://doi.org/10.1002/adfm.201202646 .
Qin, F.; Sun, L.; Chen, H.; Liu, Y.; Lu, X.; Wang, W.; Liu, T.; Dong, X.; Jiang, P.; Jiang, Y.; Wang, L.; Zhou, Y . 54 cm2 Large-area flexible organic solar modules with efficiency above 13% . Adv. Mater. , 2021 . 33 2103017 DOI:10.1002/adma.202103017http://doi.org/10.1002/adma.202103017 .
Han, Y.; Hu, Z.; Zha, W.; Chen, X.; Yin, L.; Guo, J.; Li, Z.; Luo, Q.; Su, W.; Ma, C. Q. . 12.42% Monolithic 25.42 cm2 flexible organic solar cells enabled by an amorphous ITO-modified metal grid electrode . Adv. Mater. , 2022 . 34 2110276 DOI:10.1002/adma.202110276http://doi.org/10.1002/adma.202110276 .
Dong, S.; Jia, T.; Zhang, K.; Jing, J.; Huang, F . Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14% . Joule , 2020 . 4 2004 -2016 . DOI:10.1016/j.joule.2020.07.028http://doi.org/10.1016/j.joule.2020.07.028 .
Wang, G.; Zhang, J.; Yang, C.; Wang, Y.; Xing, Y.; Adil, M . A.; Yang, Y.; Tian, L.; Su, M.; Shang, W.; Lu, K.; Shuai, Z.; Wei, Z. Synergistic optimization enables large-area flexible organic solar cells to maintain over 98% PCE of the small-area rigid devices . Adv. Mater. , 2020 . 32 2005153 DOI:10.1002/adma.202005153http://doi.org/10.1002/adma.202005153 .
Zhao, W.; Zhang, Y.; Zhang, S.; Li, S.; He, C.; Hou, J . Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules . J. Mater. Chem. C , 2019 . 7 3206 -3211 . DOI:10.1039/C8TC06513Fhttp://doi.org/10.1039/C8TC06513F .
Zhang, C.; Luo, Q.; Wu, H.; Li, H.; Lai, J.; Ji, G.; Yan, L.; Wang, X.; Zhang, D.; Lin, J.; Chen, L.; Yang, J.; Ma, C . Roll-to-roll micro-gravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells . Org. Electron. , 2017 . 45 190 -197 . DOI:10.1016/j.orgel.2017.03.015http://doi.org/10.1016/j.orgel.2017.03.015 .
Zhao, W.; Zhang, S.; Zhang, Y.; Li, S.; Liu, X.; He, C.; Zheng, Z.; Hou, J . Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method . Adv. Mater. , 2018 . 30 1704837 DOI:10.1002/adma.201704837http://doi.org/10.1002/adma.201704837 .
Mao, L.; Tong, J.; Xiong, S.; Jiang, F.; Qin, F.; Meng, W.; Luo, B.; Liu, Y.; Li, Z.; Jiang, Y.; Fuentes-Hernandez, C.; Kippelen, B.; Zhou, Y . Flexible large-area organic tandem solar cells with high defect tolerance and device yield . J. Mater. Chem. A , 2017 . 5 3186 -3192 . DOI:10.1039/C6TA10106Bhttp://doi.org/10.1039/C6TA10106B .
Gu, X.; Zhou, Y.; Gu, K.; Kurosawa, T.; Guo, Y.; Li, Y.; Lin, H.; Schroeder, B. C.; Yan, H.; Molina-Lopez, F.; Tassone, C. J.; Wang, C.; Mannsfeld, S. C. B.; Yan, H.; Zhao, D.; Toney, M. F.; Bao, Z . Roll-to-roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend . Adv. Energy Mater. , 2017 . 7 1602742 DOI:10.1002/aenm.201602742http://doi.org/10.1002/aenm.201602742 .
Shin, I.; Ahn, H. ju; Yun, J. H.; Jo, J. W.; Park, S.; Joe, S. Y.; Bang, J.; Son, H. J . High-performance and uniform 1 cm2 polymer solar cells with D1-A-D2-A-type random terpolymers . Adv. Energy Mater. , 2018 . 8 1870028 DOI:10.1002/aenm.201870028http://doi.org/10.1002/aenm.201870028 .
Dong, S.; Zhang, K.; Jia, T.; Zhong, W.; Wang, X.; Huang, F.; Cao, Y . Suppressing the excessive aggregation of nonfullerene acceptor in blade-coated active layer by using n-type polymer additive to achieve large-area printed organic solar cells with efficiency over 15% . EcoMat , 2019 . 1 e12006 .
Dong, S.; Zhang, K.; Xie, B.; Xiao, J.; Yip, H . L.; Yan, H.; Huang, F.; Cao, Y. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents . Adv. Energy Mater. , 2019 . 9 1802832 DOI:10.1002/aenm.201802832http://doi.org/10.1002/aenm.201802832 .
Guo, J.; Min, J . A cost analysis of fully solution-processed ITO-free organic solar modules . Adv. Energy Mater. , 2019 . 9 1802521 DOI:10.1002/aenm.201802521http://doi.org/10.1002/aenm.201802521 .
Ji, G.; Zhao, W.; Wei, J.; Yan, L.; Han, Y.; Luo, Q.; Yang, S.; Hou, J.; Ma, C. Q . 12.88% Efficiency in doctor-blade coated organic solar cells through optimizing the surface morphology of a ZnO cathode buffer layer . J. Mater. Chem. A , 2019 . 7 212 -220 . DOI:10.1039/C8TA08873Jhttp://doi.org/10.1039/C8TA08873J .
Xing, Z.; Meng, X.; Sun, R.; Hu, T.; Huang, Z.; Min, J.; Hu, X.; Chen, Y . An effective method for recovering nonradiative recombination loss in scalable organic solar cells . Adv. Funct. Mater. , 2020 . 30 2000417 DOI:10.1002/adfm.202000417http://doi.org/10.1002/adfm.202000417 .
Kang, Q.; Ye, L.; Xu, B.; An, C.; Stuard, S . J.; Zhang, S.; Yao, H.; Ade, H.; Hou, J. A printable organic cathode interlayer enables over 13% efficiency for 1-cm2 organic solar cells . Joule , 2019 . 3 227 -239 . DOI:10.1016/j.joule.2018.10.024http://doi.org/10.1016/j.joule.2018.10.024 .
Dong, X.; Shi, P.; Sun, L.; Li, J.; Qin, F.; Xiong, S.; Liu, T.; Jiang, X.; Zhou, Y . Flexible nonfullerene organic solar cells based on embedded silver nanowires with an efficiency up to 11. 6% . J. Mater. Chem. A , 2019 . 7 1989 -1995 . DOI:10.1039/C8TA11378Ehttp://doi.org/10.1039/C8TA11378E .
Chen, X.; Xu, G.; Zeng, G.; Gu, H.; Chen, H.; Xu, H.; Yao, H.; Li, Y.; Hou, J.; Li, Y . Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode . Adv. Mater. , 2020 . 32 1908478 DOI:10.1002/adma.201908478http://doi.org/10.1002/adma.201908478 .
Jia, Z.; Chen, Z.; Chen, X.; Yao, J.; Yan, B.; Sheng, R.; Zhu, H.; Yang, Y . 19.34 cm2 Large-area quaternary organic photovoltaic module with 12.36% certified efficiency . Photonics Res. , 2021 . 9 324 -330 . DOI:10.1364/PRJ.416229http://doi.org/10.1364/PRJ.416229 .
Dong, S.; Zhang, K.; Liu, X.; Yin, Q.; Yip, H . L.; Huang, F.; Cao, Y. Efficient organic-inorganic hybrid cathode interfacial layer enabled by polymeric dopant and its application in large-area polymer solar cells . Sci. China Chem. , 2019 . 62 67 -73 . DOI:10.1007/s11426-018-9350-4http://doi.org/10.1007/s11426-018-9350-4 .
Huang, K. M.; Lin, C. M.; Chen, S. H.; Li, C. S.; Hu, C. H.; Zhang, Y.; Meng, H. F.; Chang, C. Y.; Chao, Y. C.; Zan, H . W.; Huo, L.; Yu, P. Nonfullerene polymer solar cell with large active area of 216 cm2 and high power conversion efficiency of 7.7% . Sol. RRL , 2019 . 3 1900071 DOI:10.1002/solr.201900071http://doi.org/10.1002/solr.201900071 .
Jiang, X.; Sun, L.; Wang, W.; Qin, F.; Xie, C.; Hu, L.; Zhou, Y . 10 cm2 Nonfullerene solar cells with efficiency over 10% using H:XMoO3-assisted growth of silver electrodes with a low threshold thickness of 4 nm . J. Mater. Chem. A , 2020 . 8 69 -76 . DOI:10.1039/C9TA11939Fhttp://doi.org/10.1039/C9TA11939F .
Huang, K. M.; Wong, Y. Q.; Lin, M. C.; Chen, C. H.; Liao, C. H.; Chen, J. Y.; Huang, Y. H.; Chang, Y. F.; Tsai, P. T.; Chen, S. H.; Liao, C. T.; Lee, Y. C.; Hong, L.; Chang, C. Y.; Meng, H. F.; Ge, Z.; Zan, H. W.; Horng, S. F.; Chao, Y. C.; Wong, H. Y. Highly efficient and stable organic solar cell modules processed by blade coating with 5 . 6% module efficiency and active area of 216 cm2 . Prog. Photovolt. Res. Appl. , 2019 . 27 264 -274 . DOI:10.1002/pip.3078http://doi.org/10.1002/pip.3078 .
Strohm, S.; Machui, F.; Langner, S.; Kubis, P.; Gasparini, N.; Salvador, M.; McCulloch, I.; Egelhaaf, H. J.; Brabec, C. J . P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods . Energy Environ. Sci. , 2018 . 11 2225 -2234 . DOI:10.1039/C8EE01150Hhttp://doi.org/10.1039/C8EE01150H .
Heeger, A. J . 25th Anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation . Adv. Mater. , 2014 . 26 10 -28 . DOI:10.1002/adma.201304373http://doi.org/10.1002/adma.201304373 .
Chen, L. X . Organic solar cells: recent progress and challenges . ACS Energy Lett. , 2019 . 4 2537 -2539 . DOI:10.1021/acsenergylett.9b02071http://doi.org/10.1021/acsenergylett.9b02071 .
Song, Y.; Chang, S.; Gradecak, S.; Kong, J . Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes . Adv. Energy Mater. , 2016 . 6 1600847 DOI:10.1002/aenm.201600847http://doi.org/10.1002/aenm.201600847 .
Koo, D.; Jung, S.; Seo, J.; Jeong, G.; Choi, Y.; Lee, J.; Lee, S . M.; Cho, Y.; Jeong, M.; Lee, J.; Oh, J.; Yang, C.; Park, H. Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes . Joule , 2020 . 4 1021 -1034 . DOI:10.1016/j.joule.2020.02.012http://doi.org/10.1016/j.joule.2020.02.012 .
Zuo, L.; Zhang, S.; Li, H.; Chen, H . Toward highly efficient large-area ITO-free organic solar cells with a conductance-gradient transparent electrode . Adv. Mater. , 2015 . 27 6983 -6989 . DOI:10.1002/adma.201502827http://doi.org/10.1002/adma.201502827 .
Qin, J.; Lan, L.; Chen, S.; Huang, F.; Shi, H.; Chen, W.; Xia, H.; Sun, K.; Yang, C . Recent progress in flexible and stretchable organic solar cells . Adv. Funct. Mater. , 2020 . 30 2002529 DOI:10.1002/adfm.202002529http://doi.org/10.1002/adfm.202002529 .
Yin, L.; Li, Y.; Yao, X.; Wang, Y.; Jia, L.; Liu, Q.; Li, J.; Li, Y.; He, D . MXenes for solar cells . Nano-Micro Lett. , 2021 . 13 78 -94 . DOI:10.1007/s40820-021-00604-8http://doi.org/10.1007/s40820-021-00604-8 .
Zeng, G.; Chen, W.; Chen, X.; Hu, Y.; Chen, Y.; Zhang, B.; Chen, H.; Sun, W.; Shen, Y.; Li, Y.; Yan, F.; Li, Y. . Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes . J. Am. Chem. Soc. , 2022 . 144 8658 -8668 . DOI:10.1021/jacs.2c01503http://doi.org/10.1021/jacs.2c01503 .
Li, T.; Li, S.; Li, X.; Xu, Z.; Zhao, J.; Shi, Y.; Wang, Y.; Yu, R.; Liu, X.; Xu, Q.; Guo, W . A leaf vein-like hierarchical silver grids transparent electrode towards high-performance flexible electrochromic smart windows . Sci. Bull. , 2020 . 65 225 -232 . DOI:10.1016/j.scib.2019.11.028http://doi.org/10.1016/j.scib.2019.11.028 .
Zilberberg, K.; Gasse, F.; Pagui, R.; Polywka, A.; Behrendt, A.; Trost, S.; Heiderhoff, R.; Görrn, P.; Riedl, T . Highly robust Indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides . Adv. Funct. Mater. , 2014 . 24 1671 -1678 . DOI:10.1002/adfm.201303108http://doi.org/10.1002/adfm.201303108 .
Wu, J.; Agrawal, M.; Becerril, H . A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes . ACS Nano , 2010 . 4 43 -48 . DOI:10.1021/nn900728dhttp://doi.org/10.1021/nn900728d .
Cai, W.; Zhu, Y.; Li, X.; Piner, R. D.; Ruoff, R. S . Large area few-layer graphene/graphite films as transparent thin conducting electrodes . Appl. Phys. Lett. , 2009 . 95 2007 -2010. .
Pang, S.; Hernandez, Y.; Feng, X.; Müllen, K . Graphene as transparent electrode material for organic electronics . Adv. Mater. , 2011 . 23 2779 -2795 . DOI:10.1002/adma.201100304http://doi.org/10.1002/adma.201100304 .
Tung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y . Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors . Nano Lett. , 2009 . 9 1949 -1955 . DOI:10.1021/nl9001525http://doi.org/10.1021/nl9001525 .
Liu, Z.; Parvez, K.; Li, R.; Dong, R.; Feng, X.; Müllen, K . Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors . Adv. Mater. , 2015 . 27 669 -675 . DOI:10.1002/adma.201403826http://doi.org/10.1002/adma.201403826 .
Cai, G.; Darmawan, P.; Cui, M.; Wang, J.; Chen, J.; Magdassi, S.; Lee, P. S . Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors . Adv. Energy Mater. , 2016 . 6 1501882 DOI:10.1002/aenm.201501882http://doi.org/10.1002/aenm.201501882 .
Dong, Y.; Zou, Y.; Yuan, J.; Yang, H.; Wu, Y.; Cui, C.; Li, Y . Ternary polymer solar cells facilitating improved efficiency and stability . Adv. Mater. , 2019 . 31 1904601 DOI:10.1002/adma.201904601http://doi.org/10.1002/adma.201904601 .
Zhang, C.; Ji, C.; Park, Y. B.; Guo, L. J . Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications . Adv. Opt. Mater. , 2021 . 9 2001298 DOI:10.1002/adom.202001298http://doi.org/10.1002/adom.202001298 .
Pan, W.; Han, Y.; Wang, Z.; Gong, C.; Guo, J.; Lin, J.; Luo, Q.; Yang, S.; Ma, C. Q. An efficiency of 14.29% and 13 . 08% for 1 cm2 and 4 cm2 flexible organic solar cells enabled by sol-gel ZnO and ZnO nanoparticle bilayer electron transporting layers . J. Mater. Chem. A , 2021 . 9 16889 -16897 . DOI:10.1039/D1TA03308Ehttp://doi.org/10.1039/D1TA03308E .
Liu, T.; Sun, L.; Dong, X.; Jiang, Y.; Wang, W.; Xie, C.; Zeng, W.; Liu, Y.; Qin, F.; Hu, L.; Zhou, Y . Low-work-function PEDOT formula as a stable interlayer and cathode for organic solar cells . Adv. Funct. Mater. , 2021 . 31 2107250 DOI:10.1002/adfm.202107250http://doi.org/10.1002/adfm.202107250 .
Shao, S.; Liu, J.; Bergqvist, J.; Shi, S.; Veit, C.; Würfel, U.; Xie, Z.; Zhang, F . In situ formation of MoO3 in PEDOT:PSS matrix: a facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojunction solar cells . Adv. Energy Mater. , 2013 . 3 349 -355 . DOI:10.1002/aenm.201200609http://doi.org/10.1002/aenm.201200609 .
Rafique, S.; Abdullah, S. M.; Mahmoud, W. E.; Al-Ghamdi, A. A.; Sulaiman, K . Stability enhancement in organic solar cells by incorporating V2O5 nanoparticles in the hole transport layer . RSC Adv. , 2016 . 6 50043 -50052 . DOI:10.1039/C6RA07210Khttp://doi.org/10.1039/C6RA07210K .
Yang, H.; Song, Q.; Lu, Z.; Guo, C.; Gong, C.; Hu, W.; Li, C. M . Electrochemically polymerized nanostructured poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) buffer layer for a high performance polymer solar cell . Energy Environ. Sci. , 2010 . 3 1580 -1586 . DOI:10.1039/c0ee00117ahttp://doi.org/10.1039/c0ee00117a .
Yun, J. M.; Yeo, J. S.; Kim, J.; Jeong, H. G.; Kim, D. Y.; Noh, Y. J.; Kim, S. S.; Ku, B. C.; Na, S. I . Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable Polymer solar cells . Adv. Mater. , 2011 . 23 4923 -4928 . DOI:10.1002/adma.201102207http://doi.org/10.1002/adma.201102207 .
Kang, H.; Hong, S.; Lee, J.; Lee, K . Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells . Adv. Mater. , 2012 . 24 3005 -3009 . DOI:10.1002/adma.201200594http://doi.org/10.1002/adma.201200594 .
Pan, F.; Sun, C.; Li, Y.; Tang, D.; Zou, Y.; Li, X.; Bai, S.; Wei, X.; Lv, M.; Chen, X.; Li, Y . Solution-processable n-doped graphene-containing cathode interfacial materials for high-performance organic solar cells . Energy Environ. Sci. , 2019 . 12 3400 -3411 . DOI:10.1039/C9EE02433Fhttp://doi.org/10.1039/C9EE02433F .
Zhang, J.; Xu, G.; Tao, F.; Zeng, G.; Zhang, M.; Yang, Y . (Michael); Li, Y.; Li, Y. Highly efficient semitransparent organic solar cells with color rendering index approaching 100 . Adv. Mater. , 2019 . 31 1807159 DOI:10.1002/adma.201807159http://doi.org/10.1002/adma.201807159 .
Kwon, J.; Takeda, Y.; Shiwaku, R.; Tokito, S.; Cho, K.; Jung, S . Three-dimensional monolithic integration in flexible printed organic transistors . Nat. Commun. , 2019 . 10 54 DOI:10.1038/s41467-018-07904-5http://doi.org/10.1038/s41467-018-07904-5 .
Liu, S.; Yuan, J.; Deng, W.; Luo, M.; Xie, Y.; Liang, Q.; Zou, Y.; He, Z.; Wu, H.; Cao, Y . High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder . Nat. Photon. , 2020 . 14 300 -305. .
Liu, L.; Kan, Y.; Gao, K.; Wang, J.; Zhao, M.; Chen, H.; Zhao, C.; Jiu, T.; Jen, A. K. Y.; Li, Y . Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity . Adv. Mater. , 2020 . 32 1907604 DOI:10.1002/adma.201907604http://doi.org/10.1002/adma.201907604 .
Liao, Q.; Kang, Q.; Yang, Y.; An, C.; Xu, B.; Hou, J . Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells . Adv. Mater. , 2020 . 32 1906557 DOI:10.1002/adma.201906557http://doi.org/10.1002/adma.201906557 .
Gao, J.; Gao, W.; Ma, X.; Hu, Z.; Xu, C.; Wang, X.; An, Q.; Yang, C.; Zhang, X.; Zhang, F . Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers . Energy Environ. Sci. , 2020 . 13 958 -967 . DOI:10.1039/C9EE04020Jhttp://doi.org/10.1039/C9EE04020J .
Bao, S.; Yang, H.; Fan, H.; Zhang, J.; Wei, Z.; Cui, C.; Li, Y . Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80% . Adv. Mater. , 2021 . 33 2105301 DOI:10.1002/adma.202105301http://doi.org/10.1002/adma.202105301 .
Zhan, L.; Li, S.; Lau, T. K.; Cui, Y.; Lu, X.; Shi, M.; Li, C . Z.; Li, H.; Hou, J.; Chen, H. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model . Energy Environ. Sci. , 2020 . 13 635 -645 . DOI:10.1039/C9EE03710Ahttp://doi.org/10.1039/C9EE03710A .
Huang, W.; Jiang, Z.; Fukuda, K.; Jiao, X.; McNeill, C . R.; Yokota, T.; Someya, T. Efficient and mechanically robust ultraflexible organic solar cells based on mixed acceptors . Joule , 2020 . 4 128 -141 . DOI:10.1016/j.joule.2019.10.007http://doi.org/10.1016/j.joule.2019.10.007 .
Lee, D. Y.; Na, S. I.; Kim, S. S . Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells . Nanoscale , 2016 . 8 1513 -1522 . DOI:10.1039/C5NR05271Hhttp://doi.org/10.1039/C5NR05271H .
Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y . PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications . Adv. Sci. , 2019 . 6 1900813 DOI:10.1002/advs.201900813http://doi.org/10.1002/advs.201900813 .
Shen, T.; Binks, D.; Yuan, J.; Cao, G.; Tian, J . Enhanced-performance of self-powered flexible quantum dot photodetectors by a double hole transport layer structure . Nanoscale , 2019 . 11 9626 -9632 . DOI:10.1039/C9NR01096Chttp://doi.org/10.1039/C9NR01096C .
Feng, J.; Yang, Z.; Yang, D.; Ren, X.; Zhu, X.; Jin, Z.; Zi, W.; Wei, Q.; Liu, S . (Frank) E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells . Nano Energy , 2017 . 36 1 -8 . DOI:10.1016/j.nanoen.2017.04.010http://doi.org/10.1016/j.nanoen.2017.04.010 .
Zhang, J.; Xue, R.; Xu, G.; Chen, W.; Bian, G . Q.; Wei, C.; Li, Y.; Li, Y. Self-doping fullerene electrolyte-based electron transport layer for all-room-temperature-processed high-performance flexible polymer solar cells . Adv. Funct. Mater. , 2018 . 28 1705847 DOI:10.1002/adfm.201705847http://doi.org/10.1002/adfm.201705847 .
Zhao, H.; Lin, B.; Xue, J.; Naveed, H. B.; Zhao, C.; Zhou, X.; Zhou, K.; Wu, H.; Cai, Y.; Yun, D.; Tang, Z.; Ma, W. . Kinetics manipulation enables high-performance thick ternary organic solar cells via R2R-compatible slot-die coating . Adv. Mater. , 2022 . 34 2105114 DOI:10.1002/adma.202105114http://doi.org/10.1002/adma.202105114 .
Søndergaard, R.; Manceau, M.; Jørgensen, M.; Krebs, F. C . New low-bandgap materials with good stabilities and efficiencies comparable to P3HT in R2R-coated solar cells . Adv. Energy Mater. , 2012 . 2 415 -418 . DOI:10.1002/aenm.201100517http://doi.org/10.1002/aenm.201100517 .
Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C . Roll-to-roll fabrication of polymer solar cells . Mater. Today , 2012 . 15 36 -49 . DOI:10.1016/S1369-7021(12)70019-6http://doi.org/10.1016/S1369-7021(12)70019-6 .
Tavakoli, M. M.; Azzellino, G.; Hempel, M.; Lu, A. Y.; Martin-Martinez, F. J.; Zhao, J.; Yeo, J.; Palacios, T.; Buehler, M. J.; Kong, J . Synergistic roll-to-roll transfer and doping of CVD-graphene using parylene for ambient-stable and ultra-lightweight photovoltaics . Adv. Funct. Mater. , 2020 . 30 2001924 DOI:10.1002/adfm.202001924http://doi.org/10.1002/adfm.202001924 .
Jiang, Y.; Dong, X.; Sun, L.; Liu, T.; Qin, F.; Xie, C.; Jiang, P.; Hu, L.; Lu, X.; Zhou, X.; Meng, W.; Li, N.; Brabec, C. J.; Zhou, Y. . An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability . Nat. Energy , 2022 . 7 352 -359 . DOI:10.1038/s41560-022-00997-9http://doi.org/10.1038/s41560-022-00997-9 .
Fan, B.; Du, X.; Liu, F.; Zhong, W.; Ying, L.; Xie, R.; Tang, X.; An, K.; Xin, J.; Li, N.; Ma, W.; Brabec, C . J.; Huang, F.; Cao, Y. Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics . Nat. Energy , 2018 . 3 1051 DOI:10.1038/s41560-018-0263-4http://doi.org/10.1038/s41560-018-0263-4 .
Wang, D.; Zhou, G.; Li, Y.; Yan, K.; Zhan, L.; Zhu, H.; Lu, X.; Chen, H.; Li, C. . High-performance organic solar cells from non-halogenated solvents . Adv. Funct. Mater. , 2022 . 32 2107827 DOI:10.1002/adfm.202107827http://doi.org/10.1002/adfm.202107827 .
Krebs, F. C.; Fyenbo, J.; Tanenbaum, D. M.; Gevorgyan, S . A.; Andriessen, R.; Van Remoortere, B.; Galagan, Y.; Jørgensen, M. The OE-A OPV demonstrator anno domini 2011 . Energy Environ. Sci. , 2011 . 4 4116 -4123 . DOI:10.1039/c1ee01891dhttp://doi.org/10.1039/c1ee01891d .
Tang, X.; Wu, K.; Qi, X.; Kwon, H. J.; Wang, R.; Li, Z.; Ye, H.; Hong, J.; Choi, H. H.; Kong, H.; Lee, N. S.; Lim, S.; Jeong, Y. J.; Kim, S. . Screen printing of silver and carbon nanotube composite inks for flexible and reliable organic integrated devices . ACS Appl. Nano Mater. , 2022 . 5 4801 -4811 . DOI:10.1021/acsanm.1c04317http://doi.org/10.1021/acsanm.1c04317 .
Gevorgyan, S. A.; Madsen, M. V; Roth, B.; Corazza, M.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M.; Krebs, F. C . Lifetime of organic photovoltaics: status and predictions . Adv. Energy Mater. , 2016 . 6 1501208 DOI:10.1002/aenm.201501208http://doi.org/10.1002/aenm.201501208 .
Zhang, Y.; Liu, K.; Huang, J.; Xia, X.; Cao, J.; Zhao, G.; Fong, P. W . K.; Zhu, Y.; Yan, F.; Yang, Y.; Lu, X.; Li, G. Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating . Nat. Commun. , 2021 . 12 4815 DOI:10.1038/s41467-021-25148-8http://doi.org/10.1038/s41467-021-25148-8 .
Zhang, D.; Fan, B.; Ying, L.; Li, N.; Brabec, C . J.; Huang, F.; Cao, Y. Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing . SusMat , 2021 . 1 4 -23 . DOI:10.1002/sus2.10http://doi.org/10.1002/sus2.10 .
Sun, Y.; Liu, T.; Kan, Y.; Gao, K.; Tang, B.; Li, Y . Flexible organic solar cells: progress and challenges . Small Sci. , 2021 . 1 2100001 DOI:10.1002/smsc.202100001http://doi.org/10.1002/smsc.202100001 .
Bai, Y.; Zhao, C.; Zhang, S.; Zhang, S.; Yu, R.; Hou, J.; Tan, Z.; Li, Y . Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells . Sci. China Chem. , 2020 . 63 957 -965 . DOI:10.1007/s11426-020-9744-4http://doi.org/10.1007/s11426-020-9744-4 .
Liu, L.; Chen, S.; Qu, Y.; Gao, X.; Han, L.; Lin, Z.; Yang, L.; Wang, W.; Zheng, N.; Liang, Y.; Tan, Y.; Xia, H.; He, F . Nanographene-osmapentalyne complexes as a cathode interlayer in organic solar cells enhance efficiency over 18% . Adv. Mater. , 2021 . 33 2101279 DOI:10.1002/adma.202101279http://doi.org/10.1002/adma.202101279 .
Meng, H.; Liao, C.; Deng, M.; Xu, X.; Yu, L.; Peng, Q. 18 . 77 % Efficiency organic solar cells promoted by aqueous solution processed cobalt(II) acetate hole transporting layer . Angew. Chem. Int. Ed. , 2021 . 133 22728 -22735 . DOI:10.1002/ange.202110550http://doi.org/10.1002/ange.202110550 .
Li, Y.; Zhang, Z.; Han, X.; Li, T.; Lin, Y . Fine-tuning contact via complexation for high-performance organic solar cells . CCS Chem. , 2022 . 4 1087 -1097 . DOI:10.31635/ccschem.021.202100832http://doi.org/10.31635/ccschem.021.202100832 .
Cai, C.; Yao, J.; Chen, L.; Yuan, Z.; Zhang, Z . G.; Hu, Y.; Zhao, X.; Zhang, Y.; Chen, Y.; Li, Y. Silicon naphthalocyanine tetraimides: cathode interlayer materials for highly efficient organic solar cells . Angew. Chem. Int. Ed. , 2021 . 60 19053 -19057 . DOI:10.1002/anie.202106364http://doi.org/10.1002/anie.202106364 .
Liu, M.; Fan, P.; Hu, Q.; Russell, T. P.; Liu, Y . Naphthalene-diimide-based ionenes as universal interlayers for efficient organic solar cells . Angew. Chem. Int. Ed. , 2020 . 132 18288 -18292 . DOI:10.1002/ange.202004432http://doi.org/10.1002/ange.202004432 .
Pan, F.; Bai, S.; Wei, X.; Li, Y.; Tang, D.; Chen, X.; Lv, M.; Li, Y . 3D surfactant-dispersed graphenes as cathode interfacial materials for organic solar cells . Sci. China Mater. , 2021 . 64 277 -287 . DOI:10.1007/s40843-020-1401-2http://doi.org/10.1007/s40843-020-1401-2 .
Yao, J.; Qiu, B.; Zhang, Z . G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; Xiao, M.; Meng, L.; Li, Y. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells . Nat. Commun. , 2020 . 11 2726 DOI:10.1038/s41467-020-16509-whttp://doi.org/10.1038/s41467-020-16509-w .
Fukuda, K.; Yu, K.; Someya, T . The future of flexible organic solar cells . Adv. Energy Mater. , 2020 . 10 2000765 DOI:10.1002/aenm.202000765http://doi.org/10.1002/aenm.202000765 .
Li, Z. Y.; Zhong, W. K.; Ying, L.; Li, N.; Liu, F.; Huang, F.; Cao, Y . Achieving efficient thick film all-polymer solar cells using a green solvent additive . Chinese J. Polym. Sci. , 2020 . 38 323 DOI:10.1007/s10118-020-2356-3http://doi.org/10.1007/s10118-020-2356-3 .
Yu, R.; Yao, H.; Hong, L.; Qin, Y.; Zhu, J.; Cui, Y.; Li, S.; Hou, J . Design and application of volatilizable solid additives in non-fullerene organic solar cells . Nat. Commun. , 2018 . 9 4645 DOI:10.1038/s41467-018-07017-zhttp://doi.org/10.1038/s41467-018-07017-z .
Shan, T.; Zhang, Y.; Wang, Y.; Xie, Z.; Wei, Q.; Xu, J.; Zhang, M.; Wang, C.; Bao, Q.; Wang, X.; Chen, C . C.; Huang, J.; Chen, Q.; Liu, F.; Chen, L.; Zhong, H. Universal and versatile morphology engineering via hot fluorous solvent soaking for organic bulk heterojunction . Nat. Commun. , 2020 . 11 5585 DOI:10.1038/s41467-020-19429-xhttp://doi.org/10.1038/s41467-020-19429-x .
Wang, X.; Zhang, L.; Hu, L.; Xie, Z.; Mao, H.; Tan, L.; Zhang, Y.; Chen, Y . High-efficiency (16.93%) pseudo-planar heterojunction organic solar cells enabled by binary additives strategy . Adv. Funct. Mater. , 2021 . 31 2102291 DOI:10.1002/adfm.202102291http://doi.org/10.1002/adfm.202102291 .
Yang, Y.; Feng, E.; Li, H.; Shen, Z.; Liu, W.; Guo, J.; Luo, Q.; Zhang, J.; Lu, G.; Ma, C.; Yang, J . Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition . Nano Res. , 2021 . 14 4236 -4242 . DOI:10.1007/s12274-021-3576-8http://doi.org/10.1007/s12274-021-3576-8 .
Cai, Y.; Li, Y.; Wang, R.; Wu, H.; Chen, Z.; Zhang, J.; Ma, Z.; Hao, X.; Zhao, Y.; Zhang, C.; Huang, F.; Sun, Y . A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6% . Adv. Mater. , 2021 . 33 2101733 DOI:10.1002/adma.202101733http://doi.org/10.1002/adma.202101733 .
Xu, X.; Li, Y.; Peng, Q . Recent advances in morphology optimizations towards highly efficient ternary organic solar cells . Nano Sel. , 2020 . 1 30 -58 . DOI:10.1002/nano.202000012http://doi.org/10.1002/nano.202000012 .
Zhou, Z.; Xu, S.; Song, J.; Jin, Y.; Yue, Q.; Qian, Y.; Liu, F.; Zhang, F.; Zhu, X . High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors . Nat. Energy , 2018 . 3 952 -959 . DOI:10.1038/s41560-018-0234-9http://doi.org/10.1038/s41560-018-0234-9 .
Liu, T.; Yang, T.; Ma, R.; Zhan, L.; Luo, Z.; Zhang, G.; Li, Y.; Gao, K.; Xiao, Y.; Yu, J.; Zou, X.; Sun, H.; Zhang, M.; Dela Peña, T. A.; Xing, Z.; Liu, H.; Li, X.; Li, G.; Huang, J.; Duan, C.; Wong, K . S.; Lu, X.; Guo, X.; Gao, F.; Chen, H.; Huang, F.; Li, Y.; Li, Y.; Cao, Y.; Tang, B.; Yan, H. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend . Joule , 2021 . 5 914 -930 . DOI:10.1016/j.joule.2021.02.002http://doi.org/10.1016/j.joule.2021.02.002 .
An, Q.; Wang, J.; Ma, X.; Gao, J.; Hu, Z.; Liu, B.; Sun, H.; Guo, X.; Zhang, X.; Zhang, F . Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency . Energy Environ. Sci. , 2020 . 13 5039 -5047 . DOI:10.1039/D0EE02516Jhttp://doi.org/10.1039/D0EE02516J .
Wang, Y.; Duan, C.; Lv, P.; Ku, Z.; Lu, J.; Huang, F.; Cheng, Y. B. Printing strategies for scaling-up perovskite solar cells. Natl. Sci. Rev. 2021, 8, nwab075.
Savagatrup, S.; Printz, A. D.; O’Connor, T. F.; Zaretski, A. V.; Rodriquez, D.; Sawyer, E. J.; Rajan, K. M.; Acosta, R. I.; Root, S. E.; Lipomi, D. J . Mechanical degradation and stability of organic solar cells: Molecular and microstructural determinants . Energy Environ. Sci. , 2015 . 8 55 -80 . DOI:10.1039/C4EE02657Hhttp://doi.org/10.1039/C4EE02657H .
Zhou, N.; Buchholz, D. B.; Zhu, G.; Yu, X.; Lin, H.; Facchetti, A.; Marks, T. J.; Chang, R. P. H . Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes . Adv. Mater. , 2014 . 26 1098 -1104 . DOI:10.1002/adma.201302303http://doi.org/10.1002/adma.201302303 .
Dos Reis Benatto, G. A.; Roth, B.; Corazza, M.; Søndergaard, R. R.; Gevorgyan, S. A.; Jørgensen, M.; Krebs, F. C . Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules . Nanoscale , 2016 . 8 318 -326 . DOI:10.1039/C5NR07426Fhttp://doi.org/10.1039/C5NR07426F .
Konios, D.; Petridis, C.; Kakavelakis, G.; Sygletou, M.; Savva, K.; Stratakis, E.; Kymakis, E . Reduced graphene oxide micromesh electrodes for large area, flexible, organic photovoltaic devices . Adv. Funct. Mater. , 2015 . 25 2213 -2221 . DOI:10.1002/adfm.201404046http://doi.org/10.1002/adfm.201404046 .
Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y. R.; Kim, B. J.; Lee, K . Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization . Adv. Mater. , 2014 . 26 2268 -2272 . DOI:10.1002/adma.201304611http://doi.org/10.1002/adma.201304611 .
Liu, X.; Zheng, Z.; Wang, J.; Wang, Y.; Xu, B.; Zhang, S.; Hou, J. . Fluidic manipulating of printable zinc oxide for flexible organic solar cells . Adv. Mater. , 2022 . 34 2106453 DOI:10.1002/adma.202106453http://doi.org/10.1002/adma.202106453 .
Kaltenbrunner, M.; White, M. S.; Głowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S . Ultrathin and lightweight organic solar cells with high flexibility . Nat. Commun. , 2012 . 3 770 DOI:10.1038/ncomms1772http://doi.org/10.1038/ncomms1772 .
Xia, Y.; Sun, K.; Ouyang, J . Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices . Adv. Mater. , 2012 . 24 2436 -2440 . DOI:10.1002/adma.201104795http://doi.org/10.1002/adma.201104795 .
Ginting, R. T.; Ovhal, M. M.; Kang, J. W . A novel design of hybrid transparent electrodes for high performance and ultra-flexible bifunctional electrochromic-supercapacitors . Nano Energy , 2018 . 53 650 -657 . DOI:10.1016/j.nanoen.2018.09.016http://doi.org/10.1016/j.nanoen.2018.09.016 .
Sun, J. G.; Yang, T. N.; Wang, C. Y.; Chen, L. J . A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring . Nano Energy , 2018 . 48 383 -390 . DOI:10.1016/j.nanoen.2018.03.071http://doi.org/10.1016/j.nanoen.2018.03.071 .
Kim, J.; Ouyang, D.; Lu, H.; Ye, F.; Guo, Y.; Zhao, N.; Choy, W. C. H . High performance flexible transparent electrode via one-step multifunctional treatment for Ag nanonetwork composites semi-embedded in low-temperature-processed substrate for highly performed organic photovoltaics . Adv. Energy Mater. , 2020 . 10 2070066 DOI:10.1002/aenm.202070066http://doi.org/10.1002/aenm.202070066 .
Lee, H. B.; Jin, W. Y.; Ovhal, M. M.; Kumar, N.; Kang, J. W . Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review . J. Mater. Chem. C , 2019 . 7 1087 -1110 . DOI:10.1039/C8TC04423Fhttp://doi.org/10.1039/C8TC04423F .
Papanastasiou, D. T.; Schultheiss, A.; Muñoz-Rojas, D.; Celle, C.; Carella, A.; Simonato, J. P.; Bellet, D . Transparent heaters: a review . Adv. Funct. Mater. , 2020 . 30 1910225 DOI:10.1002/adfm.201910225http://doi.org/10.1002/adfm.201910225 .
Demirbakan, B.; Sezgintürk, M. K . A novel electrochemical immunosensor based on disposable ITO-PET electrodes for sensitive detection of PAK 2 antigen . J. Electroanal. Chem. , 2019 . 848 113304 DOI:10.1016/j.jelechem.2019.113304http://doi.org/10.1016/j.jelechem.2019.113304 .
Park, S. H.; Lee, S. M.; Ko, E. H.; Kim, T. H.; Nah, Y. C.; Lee, S. J.; Lee, J. H.; Kim, H. K . Roll-to-roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications . Sci. Rep. , 2016 . 6 33868 DOI:10.1038/srep33868http://doi.org/10.1038/srep33868 .
Lee, S. J.; Kim, Y.; Hwang, J. Y.; Lee, J. H.; Jung, S.; Park, H.; Cho, S.; Nahm, S.; Yang, W. S.; Kim, H.; Han, S. H . Flexible indium-tin oxide crystal on plastic substrates supported by graphene monolayer . Sci. Rep. , 2017 . 7 3131 DOI:10.1038/s41598-017-02265-3http://doi.org/10.1038/s41598-017-02265-3 .
Hu, Y.; Zhang, S.; Shu, T.; Qiu, T.; Bai, F.; Ruan, W.; Xu, F . Highly efficient flexible solar cells based on a room-temperature processed inorganic perovskite . J. Mater. Chem. A , 2018 . 6 20365 -20373 . DOI:10.1039/C8TA06719Hhttp://doi.org/10.1039/C8TA06719H .
Wu, C. C . Highly flexible touch screen panel fabricated with silver-inserted transparent ITO triple-layer structures . RSC Adv. , 2018 . 8 11862 -11870 . DOI:10.1039/C7RA13550Ehttp://doi.org/10.1039/C7RA13550E .
Kim, J. H.; Seok, H. J.; Seo, H. J.; Seong, T. Y.; Heo, J. H.; Lim, S. H.; Ahn, K. J.; Kim, H. K . Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells . Nanoscale , 2018 . 10 20587 -20598 . DOI:10.1039/C8NR06586Ahttp://doi.org/10.1039/C8NR06586A .
Shen, L.; Du, L.; Tan, S.; Zang, Z.; Zhao, C.; Mai, W . Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires . Chem. Commun. , 2016 . 52 6296 -6299 . DOI:10.1039/C6CC01139Jhttp://doi.org/10.1039/C6CC01139J .
Lin, Y.; Yuan, W.; Ding, C.; Chen, S.; Su, W.; Hu, H.; Cui, Z.; Li, F . Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays . ACS Appl. Mater. Interfaces , 2020 . 12 24074 -24085 . DOI:10.1021/acsami.9b21755http://doi.org/10.1021/acsami.9b21755 .
Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C . Failing forward: stability of transparent electrodes based on metal nanowire networks . Adv. Mater. , 2021 . 33 2004356 DOI:10.1002/adma.202004356http://doi.org/10.1002/adma.202004356 .
Meng, L.; Zhang, M.; Deng, H.; Xu, B.; Wang, H.; Wang, Y.; Jiang, L.; Liu, H . Direct-writing large-area cross-aligned Ag nanowires network: toward high-performance transparent quantum dot light-emitting diodes . CCS Chem. , 2021 . 3 2194 -2202 . DOI:10.31635/ccschem.020.202000402http://doi.org/10.31635/ccschem.020.202000402 .
Hwang, Y.; Hwang, Y. H.; Choi, K. W.; Lee, S.; Kim, S.; Park, S. J.; Ju, B. K . Highly stabilized flexible transparent capacitive photodetector based on silver nanowire/graphene hybrid electrodes . Sci. Rep. , 2021 . 11 10499 DOI:10.1038/s41598-021-88730-6http://doi.org/10.1038/s41598-021-88730-6 .
Abbas, S.; Kumar, M.; Kim, D. W.; Kim, J . Translucent photodetector with blended nanowires-metal oxide transparent selective electrode utilizing photovoltaic and pyro-phototronic coupling effect . Small , 2019 . 15 1804346 DOI:10.1002/smll.201804346http://doi.org/10.1002/smll.201804346 .
Hu, H.; Wang, S.; Wang, S.; Liu, G.; Cao, T.; Long, Y . Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property . Adv. Funct. Mater. , 2019 . 29 1902922 DOI:10.1002/adfm.201902922http://doi.org/10.1002/adfm.201902922 .
Leem, D. S.; Edwards, A.; Faist, M.; Nelson, J.; Bradley, D. D. C.; De Mello, J. C . Efficient organic solar cells with solution-processed silver nanowire electrodes . Adv. Mater. , 2011 . 23 4371 -4375 . DOI:10.1002/adma.201100871http://doi.org/10.1002/adma.201100871 .
Lee, J. Y.; Connor, S . T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes . Nano Lett. , 2008 . 8 689 -692 . DOI:10.1021/nl073296ghttp://doi.org/10.1021/nl073296g .
Seo, J. H.; Hwang, I.; Um, H. D.; Lee, S.; Lee, K.; Park, J.; Shin, H.; Kwon, T. H.; Kang, S. J.; Seo, K . Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes . Adv. Mater. , 2017 . 29 1701479 DOI:10.1002/adma.201701479http://doi.org/10.1002/adma.201701479 .
Meng, X.; Hu, X.; Yang, X.; Yin, J.; Wang, Q.; Huang, L.; Yu, Z.; Hu, T.; Tan, L.; Zhou, W.; Chen, Y . Roll-to-roll printing of meter-scale composite transparent electrodes with optimized mechanical and optical properties for photoelectronics . ACS Appl. Mater. Interfaces , 2018 . 10 8917 -8925 . DOI:10.1021/acsami.8b00093http://doi.org/10.1021/acsami.8b00093 .
Tan, L.; Wang, Y.; Zhang, J.; Xiao, S.; Zhou, H.; Li, Y.; Chen, Y.; Li, Y . Highly efficient flexible polymer solar cells with robust mechanical stability . Adv. Sci. , 2019 . 6 1801180 DOI:10.1002/advs.201801180http://doi.org/10.1002/advs.201801180 .
Alshammari, A. S . Improved electrical stability of silver NWs based hybrid transparent electrode interconnected with polymer functionalized CNTs . Mater. Res. Bull. , 2019 . 111 245 -250 . DOI:10.1016/j.materresbull.2018.11.017http://doi.org/10.1016/j.materresbull.2018.11.017 .
Zhang, C. (John); Higgins, T. M.; Park, S. H.; O’Brien, S. E.; Long, D.; Coleman, J. N.; Nicolosi, V . Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films . Nano Energy , 2016 . 28 495 -505 . DOI:10.1016/j.nanoen.2016.08.052http://doi.org/10.1016/j.nanoen.2016.08.052 .
Zhao, Y.; Zhang, S.; Yu, T.; Zhang, Y.; Ye, G.; Cui, H.; He, C.; Jiang, W.; Zhai, Y.; Lu, C.; Gu, X.; Liu, N . Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology . Nat. Commun. , 2021 . 12 4880 DOI:10.1038/s41467-021-25152-yhttp://doi.org/10.1038/s41467-021-25152-y .
Wu, W. T.; Jiang, H.; Qi, Y. T.; Fan, W. T.; Yan, J.; Liu, Y. L.; Huang, W. H . Large-scale synthesis of functionalized nanowires to construct nanoelectrodes for intracellular sensing . Angew. Chem. Int. Ed. , 2021 . 60 19337 -19343 . DOI:10.1002/anie.202106251http://doi.org/10.1002/anie.202106251 .
Cui, Y.; Zhang, F.; Chen, G.; Yao, L.; Zhang, N.; Liu, Z.; Li, Q.; Zhang, F.; Cui, Z.; Zhang, K.; Li, P.; Cheng, Y.; Zhang, S.; Chen, X . A stretchable and transparent electrode based on pegylated silk fibroin for in vivo dual-modal neural-vascular activity probing . Adv. Mater. , 2021 . 33 2100221 DOI:10.1002/adma.202100221http://doi.org/10.1002/adma.202100221 .
Li, Q.; Chen, G.; Cui, Y.; Ji, S.; Liu, Z.; Wan, C.; Liu, Y.; Lu, Y.; Wang, C.; Zhang, N.; Cheng, Y.; Zhang, K. Q.; Chen, X . Highly thermal-wet comfortable and conformal silk-based electrodes for on-skin sensors with sweat tolerance . ACS Nano , 2021 . 15 9955 -9966 . DOI:10.1021/acsnano.1c01431http://doi.org/10.1021/acsnano.1c01431 .
Liu, J.; Qu, S.; Suo, Z.; Yang, W . Functional hydrogel coatings . Nat. Sci. Rev. , 2021 . 8 nwaa254 DOI:10.1093/nsr/nwaa254http://doi.org/10.1093/nsr/nwaa254 .
Huang, J.; Ren, Z.; Zhang, Y.; Liu, K.; Zhang, H.; Tang, H.; Yan, C.; Zheng, Z.; Li, G . Stretchable ITO-free organic solar cells with intrinsic anti-reflection substrate for high-efficiency outdoor and indoor energy harvesting . Adv. Funct. Mater. , 2021 . 31 2010172 DOI:10.1002/adfm.202010172http://doi.org/10.1002/adfm.202010172 .
Zhang, F.; Johansson, M.; Andersson, M. R.; Hummelen, J. C.; Inganäs, O . Polymer photovoltaic cells with conducting polymer anodes . Adv. Mater. , 2002 . 14 662 -665 . DOI:10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-Nhttp://doi.org/10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-N .
Vosgueritchian, M.; Lipomi, D. J.; Bao, Z . Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes . Adv. Funct. Mater. , 2012 . 22 421 -428 . DOI:10.1002/adfm.201101775http://doi.org/10.1002/adfm.201101775 .
Song, W.; Fan, X.; Xu, B.; Yan, F.; Cui, H.; Wei, Q.; Peng, R.; Hong, L.; Huang, J.; Ge, Z . All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency . Adv. Mater. , 2018 . 30 1800075 DOI:10.1002/adma.201800075http://doi.org/10.1002/adma.201800075 .
Hofmann, A. I.; Smaal, W. T. T.; Mumtaz, M.; Katsigiannopoulos, D.; Brochon, C.; Schütze, F.; Hild, O . R.; Cloutet, E.; Hadziioannou, G. An alternative anionic polyelectrolyte for aqueous pedot dispersions: toward printable transparent electrodes . Angew. Chem. Int. Ed. , 2015 . 127 8626 -8630 . DOI:10.1002/ange.201503024http://doi.org/10.1002/ange.201503024 .
Lee, C.; Kang, D. J.; Kang, H.; Kim, T.; Park, J.; Lee, J.; Yoo, S.; Kim, B. J . Simultaneously enhancing light extraction and device stability of organic light-emitting diodes using a corrugated polymer nanosphere templated PEDOT:PSS layer . Adv. Energy Mater. , 2014 . 4 1301345 DOI:10.1002/aenm.201301345http://doi.org/10.1002/aenm.201301345 .
Xing, W.; Chen, Y.; Wu, X.; Xu, X.; Ye, P.; Zhu, T.; Guo, Q.; Yang, L.; Li, W.; Huang, H . PEDOT:PSS-assisted exfoliation and functionalization of 2D nanosheets for high-performance organic solar cells . Adv. Funct. Mater. , 2017 . 27 1701622 DOI:10.1002/adfm.201701622http://doi.org/10.1002/adfm.201701622 .
Fan, X . Doping and design of flexible transparent electrodes for high-performance flexible organic solar cells: recent advances and perspectives . Adv. Funct. Mater. , 2021 . 31 2009399 DOI:10.1002/adfm.202009399http://doi.org/10.1002/adfm.202009399 .
Dauzon, E.; Lin, Y.; Faber, H.; Yengel, E.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A.; Anthopoulos, T. D . Stretchable and transparent conductive PEDOT:PSS-based electrodes for organic photovoltaics and strain sensors applications . Adv. Funct. Mater. , 2020 . 30 2001251 DOI:10.1002/adfm.202001251http://doi.org/10.1002/adfm.202001251 .
Lee, J.; Llerena Zambrano, B.; Woo, J.; Yoon, K.; Lee, T . Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications . Adv. Mater. , 2020 . 32 1902532 DOI:10.1002/adma.201902532http://doi.org/10.1002/adma.201902532 .
Xiong, X.; Xue, X.; Zhang, M.; Hao, T.; Han, Z.; Sun, Y.; Zhang, Y.; Liu, F.; Pei, S.; Zhu, L . Melamine-doped cathode interlayer enables high-efficiency organic solar cells . ACS Energy Lett. , 2021 . 6 3582 -3589 . DOI:10.1021/acsenergylett.1c01730http://doi.org/10.1021/acsenergylett.1c01730 .
Bi, S.; Leng, X.; Li, Y.; Zheng, Z.; Zhang, X.; Zhang, Y.; Zhou, H . Interfacial modification in organic and perovskite solar cells . Adv. Mater. , 2019 . 31 1805708 DOI:10.1002/adma.201805708http://doi.org/10.1002/adma.201805708 .
Xu, B.; Hou, J . Solution-processable conjugated polymers as anode interfacial layer materials for organic solar cells . Adv. Energy Mater. , 2018 . 8 1800022 DOI:10.1002/aenm.201800022http://doi.org/10.1002/aenm.201800022 .
Liu, G.; Xia, R.; Huang, Q.; Zhang, K.; Hu, Z.; Jia, T.; Liu, X.; Yip, H. L.; Huang, F . Tandem organic solar cells with 18.7% efficiency enabled by suppressing the charge recombination in front sub-cell . Adv. Funct. Mater. , 2021 . 31 2103283 DOI:10.1002/adfm.202103283http://doi.org/10.1002/adfm.202103283 .
Chen, L.; Chen, Q.; Wang, C.; Li, Y . Interfacial dipole in organic and perovskite solar cells . J. Am. Chem. Soc. , 2020 . 142 18281 -18292 . DOI:10.1021/jacs.0c07439http://doi.org/10.1021/jacs.0c07439 .
Tavakoli, M . M.; Tavakoli, R.; Yadav, P.; Kong, J. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells . J. Mater. Chem. A , 2019 . 7 679 -686 . DOI:10.1039/C8TA10857Ahttp://doi.org/10.1039/C8TA10857A .
Kim, S.; Kim, C. H.; Lee, S. K.; Jeong, J. H.; Lee, J.; Jin, S. H.; Shin, W. S.; Song, C. E.; Choi, J. H.; Jeong, J. R . Highly efficient uniform ZnO nanostructures for an electron transport layer of inverted organic solar cells . Chem. Commun. , 2013 . 49 6033 -6035 . DOI:10.1039/c3cc43053ghttp://doi.org/10.1039/c3cc43053g .
Kadam, K. D.; Kim, H.; Rehman, S.; Patil, H.; Aziz, J.; Dongale, T. D.; Khan, M. F.; Kim, D. K . Optimization of ZnO:PEIE as an electron transport layer for flexible organic solar cells . Energy and Fuels , 2021 . 35 12416 -12424 . DOI:10.1021/acs.energyfuels.1c00639http://doi.org/10.1021/acs.energyfuels.1c00639 .
Zhang, P.; Wu, J.; Zhang, T.; Wang, Y.; Liu, D.; Chen, H.; Ji, L.; Liu, C.; Ahmad, W.; Chen, Z. D.; Li, S . Perovskite solar cells with ZnO electron-transporting materials . Adv. Mater. , 2018 . 30 1703737 DOI:10.1002/adma.201703737http://doi.org/10.1002/adma.201703737 .
Huang, J.; Wang, H.; Yan, K.; Zhang, X.; Chen, H.; Li, C. Z.; Yu, J . Highly efficient organic solar cells consisting of double bulk heterojunction layers . Adv. Mater. , 2017 . 29 1606729 DOI:10.1002/adma.201606729http://doi.org/10.1002/adma.201606729 .
Huang, J.; Zhang, X.; Zheng, D.; Yan, K.; Li, C. Z.; Yu, J . Boosting organic photovoltaic performance over 11% efficiency with photoconductive fullerene interfacial modifier . Sol. RRL , 2017 . 1 1600008 DOI:10.1002/solr.201600008http://doi.org/10.1002/solr.201600008 .
Wan, J.; Fan, X.; Huang, H.; Wang, J.; Zhang, Z.; Fang, J.; Yan, F . Metal oxide-free flexible organic solar cells with 0.1 M perchloric acid sprayed polymeric anodes . J. Mater. Chem. A , 2020 . 8 21007 -21015 . DOI:10.1039/D0TA07934Khttp://doi.org/10.1039/D0TA07934K .
Upama, M. B.; Mahmud, M . A.; Conibeer, G.; Uddin, A. Trendsetters in high-efficiency organic solar cells: toward 20% power conversion efficiency . Sol. RRL , 2020 . 4 1900342 DOI:10.1002/solr.201900342http://doi.org/10.1002/solr.201900342 .
Xiao, J.; Jia, X.; Duan, C.; Huang, F.; Yip, H. L.; Cao, Y . Surpassing 13% efficiency for polythiophene organic solar cells processed from nonhalogenated solvent . Adv. Mater. , 2021 . 33 2008158 DOI:10.1002/adma.202008158http://doi.org/10.1002/adma.202008158 .
Beek, W. J. E.; Wienk, M. M.; Janssen, R. A. J . Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles . Adv. Funct. Mater. , 2006 . 16 1112 -1116 . DOI:10.1002/adfm.200500573http://doi.org/10.1002/adfm.200500573 .
Li, J.; Bai, Y.; Yang, B.; Zhang, J.; Chen, X.; Hayat, T.; Alsaedi, A.; Yang, Y.; Hou, J.; Tan, Z . Multifunctional bipyramid-Au@ZnO core-shell nanoparticles as a cathode buffer layer for efficient non-fullerene inverted polymer solar cells with improved near-infrared photoresponse . J. Mater. Chem. A , 2019 . 7 2667 -2676 . DOI:10.1039/C8TA10549Ahttp://doi.org/10.1039/C8TA10549A .
Zheng, Z.; Zhang, S.; Wang, J.; Zhang, J.; Zhang, D.; Zhang, Y.; Wei, Z.; Tang, Z.; Hou, J.; Zhou, H . Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure . J. Mater. Chem. A , 2019 . 7 3570 -3576 . DOI:10.1039/C8TA11624Ehttp://doi.org/10.1039/C8TA11624E .
Xia, Y.; Wang, C.; Dong, B.; Wang, G.; Chen, Y.; Mackenzie, R. C . I.; Dong, W.; Ruan, S.; Liu, Y.; Wen, S. Molecular doping inhibits charge trapping in low-temperature-processed ZnO toward flexible organic solar cells . ACS Appl. Mater. Interfaces , 2021 . 13 14423 -14432 . DOI:10.1021/acsami.0c23087http://doi.org/10.1021/acsami.0c23087 .
Song, Y.; Yin, F.; Zhang, C.; Guo, W.; Han, L.; Yuan, Y . Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties . Nano-Micro Lett. , 2021 . 13 76 DOI:10.1007/s40820-021-00601-xhttp://doi.org/10.1007/s40820-021-00601-x .
Nian, L.; Zhang, W.; Zhu, N.; Liu, L.; Xie, Z.; Wu, H.; Würthner, F.; Ma, Y . Photoconductive cathode interlayer for highly efficient inverted polymer solar cells . J. Am. Chem. Soc. , 2015 . 137 6995 -6998 . DOI:10.1021/jacs.5b02168http://doi.org/10.1021/jacs.5b02168 .
Bao, Q.; Liu, X.; Xia, Y.; Gao, F.; Kauffmann, L . D.; Margeat, O.; Ackermann, J.; Fahlman, M. Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells . J. Mater. Chem. A , 2014 . 2 17676 -17682 . DOI:10.1039/C4TA02695Khttp://doi.org/10.1039/C4TA02695K .
Wang, J.; Zhang, X.; Yang, Q.; Yan, C.; Fu, Y.; Zhang, B.; Xie, Z . Efficient polymer solar cells employing pure ZnO cathode interlayers without thickness-dependent and light-soaking effect and negligible electrode selection . RSC Adv. , 2016 . 6 25744 -25750 . DOI:10.1039/C6RA02159Jhttp://doi.org/10.1039/C6RA02159J .
Wei, J.; Ji, G.; Zhang, C.; Yan, L.; Luo, Q.; Wang, C.; Chen, Q.; Yang, J.; Chen, L.; Ma, C. Q . Silane-capped ZnO nanoparticles for use as the electron transport layer in inverted organic solar cells . ACS Nano , 2018 . 12 5518 -5529 . DOI:10.1021/acsnano.8b01178http://doi.org/10.1021/acsnano.8b01178 .
Li, Y.; He, C.; Zuo, L.; Zhao, F.; Zhan, L.; Li, X.; Xia, R.; Yip, H. L.; Li, C . Z.; Liu, X.; Chen, H. High-performance semi-transparent organic photovoltaic devices via improving absorbing selectivity . Adv. Energy Mater. , 2021 . 11 2003408 DOI:10.1002/aenm.202003408http://doi.org/10.1002/aenm.202003408 .
Tan, Z.; Li, L.; Wang, F.; Xu, Q.; Li, S.; Sun, G.; Tu, X.; Hou, X.; Hou, J.; Li, Y . Solution-processed rhenium oxide: a versatile anode buffer layer for high performance polymer solar cells with enhanced light harvest . Adv. Energy Mater. , 2014 . 4 1300884 DOI:10.1002/aenm.201300884http://doi.org/10.1002/aenm.201300884 .
Stubhan, T.; Li, N.; Luechinger, N. A.; Halim, S. C.; Matt, G. J.; Brabec, C. J . High fill factor polymer solar cells incorporating a low temperature solution processed WO3 hole extraction layer . Adv. Energy Mater. , 2012 . 2 1433 -1438 . DOI:10.1002/aenm.201200330http://doi.org/10.1002/aenm.201200330 .
Li, M.; Zhang, W.; Wang, H.; Chen, L.; Zheng, C.; Chen, R . Effect of organic cathode interfacial layers on efficiency and stability improvement of polymer solar cells . RSC Adv. , 2017 . 7 31158 -31163 . DOI:10.1039/C7RA04586Ghttp://doi.org/10.1039/C7RA04586G .
Liu, P.; Gao, Z.; Xu, L.; Shi, X.; Fu, X.; Li, K.; Zhang, B.; Sun, X.; Peng, H . Polymer solar cell textiles with interlaced cathode and anode fibers . J. Mater. Chem. A , 2018 . 6 19947 -19953 . DOI:10.1039/C8TA06510Ahttp://doi.org/10.1039/C8TA06510A .
Xu, H.; Zou, H.; Zhou, D.; Zeng, G.; Chen, L.; Liao, X.; Chen, Y . Printable hole transport layer for 1.0 cm2 organic solar cells . ACS Appl. Mater. Interfaces , 2020 . 12 52028 -52037 . DOI:10.1021/acsami.0c16124http://doi.org/10.1021/acsami.0c16124 .
Tran, H. N.; Dao, D. Q.; Yoon, Y. J.; Shin, Y. S.; Choi, J. S.; Kim, J. Y.; Cho, S . Inverted polymer solar cells with annealing-free solution-processable NiO . Small , 2021 . 17 2101729 DOI:10.1002/smll.202101729http://doi.org/10.1002/smll.202101729 .
Tran, H. N.; Park, S.; Wibowo, F. T. A.; Krishna, N. V.; Kang, J. H.; Seo, J. H.; Nguyen-Phu, H.; Jang, S. Y.; Cho, S. . 17% Non-fullerene organic solar cells with annealing-free aqueous MoOx . Adv. Sci. , 2020 . 7 2002395 DOI:10.1002/advs.202002395http://doi.org/10.1002/advs.202002395 .
Kang, Q.; Zheng, Z.; Zu, Y.; Liao, Q.; Bi, P.; Zhang, S.; Yang, Y.; Xu, B.; Hou, J . N-doped inorganic molecular clusters as a new type of hole transport material for efficient organic solar cells . Joule , 2021 . 5 646 -658 . DOI:10.1016/j.joule.2021.01.011http://doi.org/10.1016/j.joule.2021.01.011 .
Xu, H.; Xu, H.; Yuan, F.; Zhou, D.; Liao, X.; Chen, L.; Chen, Y.; Chen, Y . Hole transport layers for organic solar cells: recent progress and prospects . J. Mater. Chem. A , 2020 . 8 11478 -11492 . DOI:10.1039/D0TA03511Dhttp://doi.org/10.1039/D0TA03511D .
Xue, R.; Zhang, M.; Luo, D.; Chen, W.; Zhu, R.; Yang, Y . M.; Li, Y.; Li, Y. Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells . Sci. China Chem. , 2020 . 63 987 -996 . DOI:10.1007/s11426-020-9741-1http://doi.org/10.1007/s11426-020-9741-1 .
Wang, Y.; Luo, Q.; Wu, N.; Wang, Q.; Zhu, H.; Chen, L.; Li, Y. Q.; Luo, L.; Ma, C. Q . Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells . ACS Appl. Mater. Interfaces , 2015 . 7 7170 -7179 . DOI:10.1021/am509049thttp://doi.org/10.1021/am509049t .
Cheng, J.; Zhang, H.; Zhao, Y.; Mao, J.; Li, C.; Zhang, S.; Wong, K. S.; Hou, J.; Choy, W. C. H . Self-assembled quasi-3D nanocomposite: a novel p-type hole transport layer for high performance inverted organic solar cells . Adv. Funct. Mater. , 2018 . 28 1 -10. .
Kim, B. J.; Kim, M. cheol; Lee, D. G.; Lee, G.; Bang, G. J.; Jeon, J. B.; Choi, M.; Jung, H. S . Interface design of hybrid electron extraction layer for relieving hysteresis and retarding charge recombination in perovskite solar cells . Adv. Mater. Interfaces , 2018 . 5 1800993 DOI:10.1002/admi.201800993http://doi.org/10.1002/admi.201800993 .
Yang, L.; Dall’Agnese, Y.; Hantanasirisakul, K.; Shuck, C. E.; Maleski, K.; Alhabeb, M.; Chen, G.; Gao, Y.; Sanehira, Y.; Jena, A. K.; Shen, L.; Dall’Agnese, C.; Wang, X . F.; Gogotsi, Y.; Miyasaka, T. SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells . J. Mater. Chem. A , 2019 . 7 5635 -5642 . DOI:10.1039/C8TA12140Khttp://doi.org/10.1039/C8TA12140K .
Cao, H.; Qin, D.; Wang, J.; Li, T.; Zhu, J.; Jiang, H.; Zhang, M.; Liu, K.; Tang, Z.; Zhan, X . New roles of fused-ring electron acceptors in organic solar cells . J. Mater. Chem. A , 2019 . 7 4766 -4770 . DOI:10.1039/C8TA12398Ehttp://doi.org/10.1039/C8TA12398E .
Gao, J.; An, Q.; Zhang, M.; Miao, J.; Ma, X.; Hu, Z.; Wang, J.; Zhang, F . One key issue in characterization of organic solar cells with solution processed interfacial layers . Phys. Chem. Chem. Phys. , 2019 . 21 5790 -5795 . DOI:10.1039/C9CP00181Fhttp://doi.org/10.1039/C9CP00181F .
Zhou, H.; Zhang, Y.; Mai, C. K.; Seifter, J.; Nguyen, T. Q.; Bazan, G. C.; Heeger, A. J . Solution-processed pH-neutral conjugated polyelectrolyte improves interfacial contact in organic solar cells . ACS Nano , 2015 . 9 371 -377 . DOI:10.1021/nn505378mhttp://doi.org/10.1021/nn505378m .
Chen, S.; Liu, L.; Gao, X.; Hua, Y.; Peng, L.; Zhang, Y.; Yang, L.; Tan, Y.; He, F.; Xia, H . Addition of alkynes and osmium carbynes towards functionalized dπ-pπ conjugated systems . Nat. Commun. , 2020 . 11 4651 DOI:10.1038/s41467-020-18498-2http://doi.org/10.1038/s41467-020-18498-2 .
Yin, Y.; Sibley, A.; Quinton, J. S.; Lewis, D. A.; Andersson, G. G . Dipole formation at the MoO3/conjugated polymer interface . Adv. Funct. Mater. , 2018 . 28 1802825 DOI:10.1002/adfm.201802825http://doi.org/10.1002/adfm.201802825 .
Meng, L.; Sun, C.; Wang, R.; Huang, W.; Zhao, Z.; Sun, P.; Huang, T.; Xue, J.; Lee, J . W.; Zhu, C.; Huang, Y.; Li, Y.; Yang, Y. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21% . J. Am. Chem. Soc. , 2018 . 140 17255 -17262 . DOI:10.1021/jacs.8b10520http://doi.org/10.1021/jacs.8b10520 .
Sun, C.; Xia, R.; Shi, H.; Yao, H.; Liu, X.; Hou, J.; Huang, F.; Yip, H. L.; Cao, Y . Heat-insulating multifunctional semitransparent polymer solar cells . Joule , 2018 . 2 1816 -1826 . DOI:10.1016/j.joule.2018.06.006http://doi.org/10.1016/j.joule.2018.06.006 .
Min, J.; Bronnbauer, C.; Zhang, Z. G.; Cui, C.; Luponosov, Y. N.; Ata, I.; Schweizer, P.; Przybilla, T.; Guo, F.; Ameri, T.; Forberich, K.; Spiecker, E.; Bäuerle, P.; Ponomarenko, S. A.; Li, Y.; Brabec, C. J . Fully solution-processed small molecule semitransparent solar cells: optimization of transparent cathode architecture and four absorbing layers . Adv. Funct. Mater. , 2016 . 26 4543 -4550 . DOI:10.1002/adfm.201505411http://doi.org/10.1002/adfm.201505411 .
Zhang, L.; Zhou, X.; Zhong, X.; Cheng, C.; Tian, Y.; Xu, B . Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells . Nano Energy , 2019 . 57 248 -255 . DOI:10.1016/j.nanoen.2018.12.033http://doi.org/10.1016/j.nanoen.2018.12.033 .
Hou, Y.; Chen, W.; Baran, D.; Stubhan, T.; Luechinger, N. A.; Hartmeier, B.; Richter, M.; Min, J.; Chen, S.; Quiroz, C. O. R.; Li, N.; Zhang, H.; Heumueller, T.; Matt, G. J.; Osvet, A.; Forberich, K.; Zhang, Z. G.; Li, Y.; Winter, B.; Schweizer, P.; Spiecker, E.; Brabec, C. J . Overcoming the interface losses in planar heterojunction perovskite-based solar cells . Adv. Mater. , 2016 . 28 5112 -5120 . DOI:10.1002/adma.201504168http://doi.org/10.1002/adma.201504168 .
Seo, J.; Nam, S.; Kim, H.; Bradley, D. D. C.; Kim, Y . Nano-crater morphology in hybrid electron-collecting buffer layers for high efficiency polymer:nonfullerene solar cells with enhanced stability . Nanoscale Horizons , 2019 . 4 472 -479 . DOI:10.1039/C8NH00330Khttp://doi.org/10.1039/C8NH00330K .
He, Z.; Zhang, C.; Xu, X.; Zhang, L.; Huang, L.; Chen, J.; Wu, H.; Cao, Y . Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor . Adv. Mater. , 2011 . 23 3086 -3089 . DOI:10.1002/adma.201101319http://doi.org/10.1002/adma.201101319 .
Yang, T.; Wang, M.; Duan, C.; Hu, X.; Huang, L.; Peng, J.; Huang, F.; Gong, X . Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte . Energy Environ. Sci. , 2012 . 5 8208 -8214 . DOI:10.1039/c2ee22296ehttp://doi.org/10.1039/c2ee22296e .
Zhang, Z . G.; Qi, B.; Jin, Z.; Chi, D.; Qi, Z.; Li, Y.; Wang, J. Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells . Energy Environ. Sci. , 2014 . 7 1966 -1973 . DOI:10.1039/c4ee00022fhttp://doi.org/10.1039/c4ee00022f .
Lei, T.; Peng, R.; Huang, L.; Song, W.; Yan, T.; Zhu, L.; Ge, Z. 13 . 5% Flexible organic solar cells achieved by robust composite ITO/PEDOT:PSS electrodes . Mater. Today Energy , 2019 . 14 100334 DOI:10.1016/j.mtener.2019.07.005http://doi.org/10.1016/j.mtener.2019.07.005 .
Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, H.; Xiong, Z.; Zhang, Y.; Chen, W . Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells . RSC Adv. , 2017 . 7 35819 -35826 . DOI:10.1039/C7RA06365Bhttp://doi.org/10.1039/C7RA06365B .
Yang, C.; Liu, D.; Chen, Y.; Chen, C.; Wang, J.; Fan, Y.; Huang, S.; Lei, W . Three-dimensional functionalized boron nitride nanosheets/ZnO superstructures for CO2 capture . ACS Appl. Mater. Interfaces , 2019 . 11 10276 -10282 . DOI:10.1021/acsami.8b20775http://doi.org/10.1021/acsami.8b20775 .
Zhang, Z.; Zhang, Z.; Yu, Y.; Zhao, B.; Li, S.; Zhang, J.; Tan, S . Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells . J. Energy Chem. , 2020 . 47 196 -202 . DOI:10.1016/j.jechem.2019.12.011http://doi.org/10.1016/j.jechem.2019.12.011 .
Zhou, Z.; Liu, W.; Zhou, G.; Zhang, M.; Qian, D.; Zhang, J.; Chen, S.; Xu, S.; Yang, C.; Gao, F.; Zhu, H.; Liu, F.; Zhu, X . Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation . Adv. Mater. , 2020 . 32 1906324 DOI:10.1002/adma.201906324http://doi.org/10.1002/adma.201906324 .
An, Q.; Ma, X.; Gao, J.; Zhang, F . Solvent additive-free ternary polymer solar cells with 16.27% efficiency . Sci. Bull. , 2019 . 64 504 -506 . DOI:10.1016/j.scib.2019.03.024http://doi.org/10.1016/j.scib.2019.03.024 .
Li, Q.; Sun, Y.; Yang, C.; Liu, K.; Islam, M. R.; Li, L.; Wang, Z.; Qu, S . Optimizing the component ratio of PEDOT:PSS by water rinse for high efficiency organic solar cells over 16.7% . Sci. Bull. , 2020 . 65 747 -752 . DOI:10.1016/j.scib.2019.12.021http://doi.org/10.1016/j.scib.2019.12.021 .
Qin, Y.; Chang, Y.; Zhu, X.; Gu, X.; Guo, L.; Zhang, Y.; Wang, Q.; Zhang, J.; Zhang, X.; Liu, X.; Lu, K.; Zhou, E.; Wei, Z.; Sun, X . 18.4% Efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells . Nano Today , 2021 . 41 101289 DOI:10.1016/j.nantod.2021.101289http://doi.org/10.1016/j.nantod.2021.101289 .
Cameron, J.; Skabara, P. J . The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives . Mater. Horiz. , 2020 . 7 1759 -1772 . DOI:10.1039/C9MH01978Bhttp://doi.org/10.1039/C9MH01978B .
Ding, Z.; Hao, Z.; Meng, B.; Xie, Z.; Liu, J.; Dai, L . Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells . Nano Energy , 2015 . 15 186 -192 . DOI:10.1016/j.nanoen.2015.04.019http://doi.org/10.1016/j.nanoen.2015.04.019 .
Duan, L.; Uddin, A . Progress in stability of organic solar cells . Adv. Sci. , 2020 . 7 1903259 DOI:10.1002/advs.201903259http://doi.org/10.1002/advs.201903259 .
Zhou, L.; Yu, M.; Chen, X.; Nie, S.; Lai, W.; Su, W.; Cui, Z.; Huang, W. . Screen-printed poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes . Adv. Funct. Mater. , 2018 . 28 1705955 DOI:10.1002/adfm.201705955http://doi.org/10.1002/adfm.201705955 .
Cheng, J.; Xie, F.; Liu, Y.; Sha, W. E. I.; Li, X.; Yang, Y.; Choy, W. C. H . Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells . J. Mater. Chem. A , 2015 . 3 23955 -23963 . DOI:10.1039/C5TA06878Ahttp://doi.org/10.1039/C5TA06878A .
Mustafa, B.; Griffin, J.; Alsulami, A. S.; Lidzey, D. G.; Buckley, A. R . Solution processed nickel oxide anodes for organic photovoltaic devices . Appl. Phys. Lett. , 2014 . 104 063302 DOI:10.1063/1.4865090http://doi.org/10.1063/1.4865090 .
Ahn, S.; Park, M. H.; Jeong, S. H.; Kim, Y. H.; Park, J.; Kim, S.; Kim, H.; Cho, H.; Wolf, C.; Pei, M.; Yang, H.; Lee, T. W . Fine control of perovskite crystallization and reducing luminescence quenching using self-doped polyaniline hole injection layer for efficient perovskite light-emitting diodes . Adv. Funct. Mater. , 2019 . 29 1807535 DOI:10.1002/adfm.201807535http://doi.org/10.1002/adfm.201807535 .
Wang, J.; Zheng, Z.; Zhang, D.; Zhang, J.; Zhou, J.; Liu, J.; Xie, S.; Zhao, Y.; Zhang, Y.; Wei, Z.; Hou, J.; Tang, Z.; Zhou, H . Regulating bulk-heterojunction molecular orientations through surface free energy control of hole-transporting layers for high-performance organic solar cells . Adv. Mater. , 2019 . 31 1806921 DOI:10.1002/adma.201806921http://doi.org/10.1002/adma.201806921 .
Zheng, Z.; Hu, Q.; Zhang, S.; Zhang, D.; Wang, J.; Xie, S.; Wang, R.; Qin, Y.; Li, W.; Hong, L.; Liang, N.; Liu, F.; Zhang, Y.; Wei, Z.; Tang, Z.; Russell, T. P.; Hou, J.; Zhou, H . A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer . Adv. Mater. , 2018 . 30 1801801 DOI:10.1002/adma.201801801http://doi.org/10.1002/adma.201801801 .
Ha, S. R.; Park, S.; Oh, J. T.; Kim, D. H.; Cho, S.; Bae, S. Y.; Kang, D. W.; Kim, J. M.; Choi, H . Water-resistant PEDOT:PSS hole transport layers by incorporating a photo-crosslinking agent for high-performance perovskite and polymer solar cells . Nanoscale , 2018 . 10 13187 -13193 . DOI:10.1039/C8NR02903Bhttp://doi.org/10.1039/C8NR02903B .
Adilbekova, B.; Lin, Y.; Yengel, E.; Faber, H.; Harrison, G.; Firdaus, Y.; El-Labban, A.; Anjum, D. H.; Tung, V.; Anthopoulos, T. D . Liquid phase exfoliation of MoS2 and WS2 in aqueous ammonia and their application in highly efficient organic solar cells . J. Mater. Chem. C , 2020 . 8 5259 -5264 . DOI:10.1039/D0TC00659Ahttp://doi.org/10.1039/D0TC00659A .
Zhao, F.; Zuo, L.; Li, Y.; Zhan, L.; Li, S.; Li, X.; Xia, R.; Yip, H. L.; Chen, H . High-performance upscaled indium tin oxide-free organic solar cells with visual esthetics and flexibility . Solar RRL , 2021 . 5 2100339 DOI:10.1002/solr.202100339http://doi.org/10.1002/solr.202100339 .
Zheng, X.; Zuo, L.; Zhao, F.; Li, Y.; Chen, T.; Shan, Q.; Yan, K.; Pan, Y.; Xu, B.; Li, C. Z.; Shi, M.; Hou, J.; Chen, H. High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability. Adv. Mater. 2022, DOI: 10.1002/adma.202200044.
Song, W.; Liu, Y.; Fanady, B.; Han, Y.; Xie, L.; Chen, Z.; Yu, K.; Peng, X.; Zhang, X.; Ge, Z . Ultra-flexible light-permeable organic solar cells for the herbal photosynthetic growth . Nano Energy , 2021 . 86 106044 DOI:10.1016/j.nanoen.2021.106044http://doi.org/10.1016/j.nanoen.2021.106044 .
Cheng, P.; Wang, H. C.; Zhu, Y.; Zheng, R.; Li, T.; Chen, C. H.; Huang, T.; Zhao, Y.; Wang, R.; Meng, D.; Li, Y.; Zhu, C.; Wei, K . H.; Zhan, X.; Yang, Y. Transparent hole-transporting frameworks: a unique strategy to design high-performance semitransparent organic photovoltaics . Adv. Mater. , 2020 . 32 2003891 DOI:10.1002/adma.202003891http://doi.org/10.1002/adma.202003891 .
Xie, R.; Brabec, C. J.; Yip, H. L.; Cao, Y . High-throughput optical screening for efficient semitransparent organic solar cells . Joule , 2019 . 3 2241 -2254 . DOI:10.1016/j.joule.2019.06.016http://doi.org/10.1016/j.joule.2019.06.016 .
Liu, W.; Sun, S.; Zhou, L.; Cui, Y.; Zhang, W.; Hou, J.; Liu, F.; Xu, S.; Zhu, X . Design of near-infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high-performance semitransparent ternary organic solar cells . Angew. Chem. Int. Ed. , 2022 . 61 e202116111 DOI:10.1002/anie.202116111http://doi.org/10.1002/anie.202116111 .
Burgués-Ceballos, I.; Stella, M.; Lacharmoise, P.; Martínez-Ferrero, E . Towards industrialization of polymer solar cells: material processing for upscaling . J. Mater. Chem. A , 2014 . 2 17711 DOI:10.1039/C4TA03780Dhttp://doi.org/10.1039/C4TA03780D .
Li, J.; Xia, R.; Qi, W.; Zhou, X.; Cheng, J.; Chen, Y.; Hou, G.; Ding, Y.; Li, Y.; Zhao, Y.; Zhang, X . Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization . J. Power Sources , 2021 . 485 229313 DOI:10.1016/j.jpowsour.2020.229313http://doi.org/10.1016/j.jpowsour.2020.229313 .
Ma, S.; Bai, Y.; Wang, H.; Zai, H.; Wu, J.; Li, L.; Xiang, S.; Liu, N.; Liu, L.; Zhu, C.; Liu, G.; Niu, X.; Chen, H.; Zhou, H.; Li, Y.; Chen, Q . 1000 h Operational lifetime perovskite solar cells by ambient melting encapsulation . Adv. Energy Mater. , 2020 . 10 1902472 DOI:10.1002/aenm.201902472http://doi.org/10.1002/aenm.201902472 .
Zhang, J.; Zhang, W.; Cheng, H. M.; Silva, S. R. P . Critical review of recent progress of flexible perovskite solar cells . Mater. Today , 2020 . 39 66 -88 . DOI:10.1016/j.mattod.2020.05.002http://doi.org/10.1016/j.mattod.2020.05.002 .
Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J . Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules . Nat. Energy , 2018 . 3 560 -566 . DOI:10.1038/s41560-018-0153-9http://doi.org/10.1038/s41560-018-0153-9 .
Matsumura, S.; Hlil, A. R.; Lepiller, C.; Gaudet, J.; Guay, D.; Shi, Z.; Holdcroft, S.; Hay, A. S . Stability and utility of pyridyl disulfide functionality in RAFT and conventional radical polymerizations . J. Polym. Sci., Part A: Polym. Chem. , 2008 . 46 7207 -7224 . DOI:10.1002/pola.23028http://doi.org/10.1002/pola.23028 .
Liu, S.; Chen, D.; Hu, X.; Xing, Z.; Wan, J.; Zhang, L.; Tan, L.; Zhou, W.; Chen, Y . Printable and large-area organic solar cells enabled by a ternary pseudo-planar heterojunction strategy . Adv. Funct. Mater. , 2020 . 30 2003223 DOI:10.1002/adfm.202003223http://doi.org/10.1002/adfm.202003223 .
Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E . Inkjet printing-process and its applications . Adv. Mater. , 2010 . 22 673 -685 . DOI:10.1002/adma.200901141http://doi.org/10.1002/adma.200901141 .
Zimmermann, B.; Schleiermacher, H . F.; Niggemann, M.; Würfel, U. ITO-free flexible inverted organic solar cell modules with high fill factor prepared by slot die coating . Sol. Energy Mater. Sol. Cells , 2011 . 95 1587 -1589 . DOI:10.1016/j.solmat.2010.11.025http://doi.org/10.1016/j.solmat.2010.11.025 .
Chang, Y. M.; Liao, C. Y.; Lee, C. C.; Lin, S. Y.; Teng, N. W.; Huei-Shuan Tan, P . All solution and ambient processable organic photovoltaic modules fabricated by slot-die coating and achieved a certified 7.56% power conversion efficiency . Sol. Energy Mater. Sol. Cells , 2019 . 202 110064 DOI:10.1016/j.solmat.2019.110064http://doi.org/10.1016/j.solmat.2019.110064 .
Zhong, W.; Hu, Q.; Jiang, Y.; Li, Y.; Chen, T. L.; Ying, L.; Liu, F.; Wang, C.; Liu, Y.; Huang, F.; Cao, Y.; Russell, T. P . In situ structure characterization in slot-die-printed all-polymer solar cells with efficiency over 9% . Sol. RRL , 2019 . 3 1900032 DOI:10.1002/solr.201900032http://doi.org/10.1002/solr.201900032 .
Na, S. I.; Seo, Y. H.; Nah, Y. C.; Kim, S. S.; Heo, H.; Kim, J. E.; Rolston, N.; Dauskardt, R H.; Gao, M.; Lee, Y.; Vak, D . High performance roll-to-roll produced fullerene-free organic photovoltaic devices via temperature-controlled slot die coating . Adv. Funct. Mater. , 2019 . 29 1805825 DOI:10.1002/adfm.201805825http://doi.org/10.1002/adfm.201805825 .
Wu, Q.; Guo, J.; Sun, R.; Guo, J.; Jia, S.; Li, Y.; Wang, J.; Min, J . Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting . Nano Energy , 2019 . 61 559 -566 . DOI:10.1016/j.nanoen.2019.04.091http://doi.org/10.1016/j.nanoen.2019.04.091 .
Lin, B.; Zhou, X.; Zhao, H.; Yuan, J.; Zhou, K.; Chen, K.; Wu, H.; Guo, R.; Scheel, M. A.; Chumakov, A.; Roth, S . V.; Mao, Y.; Wang, L.; Tang, Z.; Müller-Buschbaum, P.; Ma, W. Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses . Energy Environ. Sci. , 2020 . 13 2467 -2479 . DOI:10.1039/D0EE00774Ahttp://doi.org/10.1039/D0EE00774A .
Schwartz, L. W.; Moussalli, P.; Campbell, P.; Eley, R. R . Numerical modelling of liquid withdrawal from gravure cavities in coating operations . Chem. Eng. Res. Des. , 1998 . 76 22 -28 . DOI:10.1205/026387698524550http://doi.org/10.1205/026387698524550 .
Yin, X.; Kumar, S . Flow visualization of the liquid emptying process in scaled-up gravure grooves and cells . Chem. Eng. Sci. , 2006 . 61 1146 -1156 . DOI:10.1016/j.ces.2005.07.039http://doi.org/10.1016/j.ces.2005.07.039 .
Park, J . D.; Lim, S.; Kim, H. Patterned silver nanowires using the gravure printing process for flexible applications . Thin Solid Films , 2015 . 586 70 -75 . DOI:10.1016/j.tsf.2015.04.055http://doi.org/10.1016/j.tsf.2015.04.055 .
Howard, I. A.; Abzieher, T.; Hossain, I. M.; Eggers, H.; Schackmar, F.; Ternes, S.; Richards, B. S.; Lemmer, U.; Paetzold, U. W . Coated and printed perovskites for photovoltaic applications . Adv. Mater. , 2019 . 31 1806702 DOI:10.1002/adma.201806702http://doi.org/10.1002/adma.201806702 .
Cho, C. K.; Hwang, W. J.; Eun, K.; Choa, S. H.; Na, S. I.; Kim, H. K . Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells . Sol. Energy Mater. Sol. Cells , 2011 . 95 3269 -3275 . DOI:10.1016/j.solmat.2011.07.009http://doi.org/10.1016/j.solmat.2011.07.009 .
Xue, P.; Cheng, P.; Han, R. P. S.; Zhan, X . Printing fabrication of large-area non-fullerene organic solar cells . Mater. Horizons , 2022 . 9 194 -219 . DOI:10.1039/D1MH01317Chttp://doi.org/10.1039/D1MH01317C .
Kopola, P.; Aernouts, T.; Sliz, R.; Guillerez, S.; Ylikunnari, M.; Cheyns, D.; Välimäki, M.; Tuomikoski, M.; Hast, J.; Jabbour, G.; Myllylä, R.; Maaninen, A . Gravure printed flexible organic photovoltaic modules . Sol. Energy Mater. Sol. Cells , 2011 . 95 1344 -1347 . DOI:10.1016/j.solmat.2010.12.020http://doi.org/10.1016/j.solmat.2010.12.020 .
Wang, Z.; Han, Y.; Yan, L.; Gong, C.; Kang, J.; Zhang, H.; Sun, X.; Zhang, L.; Lin, J.; Luo, Q.; Ma, C. Q . High power conversion efficiency of 13.61% for 1 cm2 flexible polymer solar cells based on patternable and mass-producible gravure-printed silver nanowire electrodes . Adv. Funct. Mater. , 2021 . 31 2007276 DOI:10.1002/adfm.202007276http://doi.org/10.1002/adfm.202007276 .
Karunakaran, S. K.; Arumugam, G. M.; Yang, W.; Ge, S.; Khan, S . N.; Lin, X.; Yang, G. Recent progress in inkjet-printed solar cells . J. Mater. Chem. A , 2019 . 7 13873 -13902 . DOI:10.1039/C9TA03155Chttp://doi.org/10.1039/C9TA03155C .
Wang, Q.; Xie, Y.; Soltani-Kordshuli, F.; Eslamian, M . Progress in emerging solution-processed thin film solar cells-Part I: polymer solar cells . Renew. Sustain. Energy Rev. , 2016 . 56 347 -361 . DOI:10.1016/j.rser.2015.11.063http://doi.org/10.1016/j.rser.2015.11.063 .
Eom, S. H.; Park, H.; Mujawar, S. H.; Yoon, S. C.; Kim, S. S.; Na, S. I.; Kang, S. J.; Khim, D.; Kim, D. Y.; Lee, S. H . High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives . Org. Electron. , 2010 . 11 1516 -1522 . DOI:10.1016/j.orgel.2010.06.007http://doi.org/10.1016/j.orgel.2010.06.007 .
Eom, S. H.; Senthilarasu, S.; Uthirakumar, P.; Yoon, S. C.; Lim, J.; Lee, C.; Lim, H. S.; Lee, J.; Lee, S. H . Polymer solar cells based on inkjet-printed PEDOT:PSS layer . Org. Electron. , 2009 . 10 536 -542 . DOI:10.1016/j.orgel.2009.01.015http://doi.org/10.1016/j.orgel.2009.01.015 .
Eggenhuisen, T. M.; Galagan, Y.; Biezemans, A. F. K. V.; Slaats, T. M. W. L.; Voorthuijzen, W. P.; Kommeren, S.; Shanmugam, S.; Teunissen, J. P.; Hadipour, A.; Verhees, W. J. H.; Veenstra, S. C.; Coenen, M. J. J.; Gilot, J.; Andriessen, R.; Groen, W. A . High efficiency, fully inkjet printed organic solar cells with freedom of design . J. Mater. Chem. A , 2015 . 3 7255 -7262 . DOI:10.1039/C5TA00540Jhttp://doi.org/10.1039/C5TA00540J .
Jung, S.; Sou, A.; Banger, K.; Ko, D. H.; Chow, P. C. Y.; McNeill, C. R.; Sirringhaus, H . All-inkjet-printed, all-air-processed solar cells . Adv. Energy Mater. , 2014 . 4 1400432 DOI:10.1002/aenm.201400432http://doi.org/10.1002/aenm.201400432 .
Hahne, P.; Hirth, E.; Reis, I. E.; Schwichtenberg, K.; Richtering, W.; Horn, F. M.; Eggenweiler, U . Progress in thick-film pad printing technique for solar cells . Sol. Energy Mater. Sol. Cells , 2001 . 65 399 -407 . DOI:10.1016/S0927-0248(00)00119-7http://doi.org/10.1016/S0927-0248(00)00119-7 .
Krebs, F. C . Pad printing as a film forming technique for polymer solar cells . Sol. Energy Mater. Sol. Cells , 2009 . 93 484 -490 . DOI:10.1016/j.solmat.2008.09.003http://doi.org/10.1016/j.solmat.2008.09.003 .
Krantz, J.; Stubhan, T.; Richter, M.; Spallek, S.; Litzov, I.; Matt, G. J.; Spiecker, E.; Brabec, C. J . Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices . Adv. Funct. Mater. , 2013 . 23 1711 -1717 . DOI:10.1002/adfm.201202523http://doi.org/10.1002/adfm.201202523 .
Vak, D.; Kim, S. S.; Jo, J.; Oh, S. H.; Na, S. I.; Kim, J.; Kim, D. Y . Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation . Appl. Phys. Lett. , 2007 . 91 081102 DOI:10.1063/1.2772766http://doi.org/10.1063/1.2772766 .
Susanna, G.; Salamandra, L.; Brown, T . M.; Di Carlo, A.; Brunetti, F.; Reale, A. Airbrush spray-coating of polymer bulk-heterojunction solar cells . Sol. Energy Mater. Sol. Cells , 2011 . 95 1775 -1778 . DOI:10.1016/j.solmat.2011.01.047http://doi.org/10.1016/j.solmat.2011.01.047 .
Wang, T.; Scarratt, N. W.; Yi, H.; Dunbar, A. D. F.; Pearson, A. J.; Watters, D. C.; Glen, T. S.; Brook, A. C.; Kingsley, J.; Buckley, A. R.; Skoda, M. W. A.; Donald, A. M.; Jones, R. A. L.; Iraqi, A.; Lidzey, D. G . Fabricating high performance, donor-acceptor copolymer solar cells by spray-coating in air . Adv. Energy Mater. , 2013 . 3 505 -512 . DOI:10.1002/aenm.201200713http://doi.org/10.1002/aenm.201200713 .
Krebs, F. C.; Jørgensen, M.; Norrman, K.; Hagemann, O.; Alstrup, J.; Nielsen, T . D.; Fyenbo, J.; Larsen, K.; Kristensen, J. A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration . Sol. Energy Mater. Sol. Cells , 2009 . 93 422 -441 . DOI:10.1016/j.solmat.2008.12.001http://doi.org/10.1016/j.solmat.2008.12.001 .
Kim, J.; Duraisamy, N.; Lee, T. M.; Kim, I.; Choi, K. H . Screen printed silver top electrode for efficient inverted organic solar cells . Mater. Res. Bull. , 2015 . 70 412 -415 . DOI:10.1016/j.materresbull.2015.04.052http://doi.org/10.1016/j.materresbull.2015.04.052 .
Krebs, F. C.; Spanggard, H.; Kjær, T.; Biancardo, M.; Alstrup, J. . Large area plastic solar cell modules . Mater. Sci. Eng. B , 2007 . 138 106 -111 . DOI:10.1016/j.mseb.2006.06.008http://doi.org/10.1016/j.mseb.2006.06.008 .
Jørgensen, M.; Hagemann, O.; Alstrup, J.; Krebs, F. C . Thermo-cleavable solvents for printing conjugated polymers: application in polymer solar cells . Sol. Energy Mater. Sol. Cells , 2009 . 93 413 -421 . DOI:10.1016/j.solmat.2008.12.018http://doi.org/10.1016/j.solmat.2008.12.018 .
Kim, S. S.; Na, S. I.; Jo, J.; Tae, G.; Kim, D. Y . Efficient polymer solar cells fabricated by simple brush painting . Adv. Mater. , 2007 . 19 4410 -4415 . DOI:10.1002/adma.200702040http://doi.org/10.1002/adma.200702040 .
Mao, L.; Luo, B.; Sun, L.; Xiong, S.; Fan, J.; Qin, F.; Hu, L.; Jiang, Y.; Li, Z.; Zhou, Y . Writable and patternable organic solar cells and modules inspired by an old Chinese calligraphy tradition . Mater. Horiz. , 2018 . 5 123 -130 . DOI:10.1039/C7MH00559Hhttp://doi.org/10.1039/C7MH00559H .
Cai, C.; Zhang, Y.; Song, R.; Peng, Z.; Xia, L.; Wu, M.; Xiong, K.; Wang, B.; Lin, Y.; Xu, X.; Liang, Q.; Wu, H.; Wang, E.; Hou, L . Polymer solar cells spray coated with non-halogenated solvents . Sol. Energy Mater. Sol. Cells , 2017 . 161 52 -61 . DOI:10.1016/j.solmat.2016.11.027http://doi.org/10.1016/j.solmat.2016.11.027 .
Alstrup, J.; Jørgensen, M.; Medford, A. J.; Krebs, F. C . Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating . ACS Appl. Mater. Interfaces , 2010 . 2 2819 -2827 . DOI:10.1021/am100505ehttp://doi.org/10.1021/am100505e .
Lilliedal, M. R.; Medford, A. J.; Madsen, M. V.; Norrman, K.; Krebs, F. C . The effect of post-processing treatments on inflection points in currentvoltage curves of roll-to-roll processed polymer photovoltaics . Sol. Energy Mater. Sol. Cells , 2010 . 94 2018 -2031 . DOI:10.1016/j.solmat.2010.06.007http://doi.org/10.1016/j.solmat.2010.06.007 .
Krebs, F . C.; Tromholt, T.; Jørgensen, M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing . Nanoscale , 2010 . 2 873 -886 . DOI:10.1039/b9nr00430khttp://doi.org/10.1039/b9nr00430k .
Bundgaard, E.; Hagemann, O.; Manceau, M.; Jørgensen, M.; Krebs, F. C . Low band gap polymers for roll-to-roll coated polymer solar cells . Macromolecules , 2010 . 43 8115 -8120 . DOI:10.1021/ma1015903http://doi.org/10.1021/ma1015903 .
Zhang, J.; Zhao, Y.; Fang, J.; Yuan, L.; Xia, B.; Wang, G.; Wang, Z.; Zhang, Y.; Ma, W.; Yan, W.; Su, W.; Wei, Z . Enhancing performance of large-area organic solar cells with thick film via ternary strategy . Small , 2017 . 13 1700388 DOI:10.1002/smll.201700388http://doi.org/10.1002/smll.201700388 .
Liu, C.; Xiao, C.; Xie, C.; Li, W . Flexible organic solar cells: Materials, large-area fabrication techniques and potential applications . Nano Energy , 2021 . 89 106399 DOI:10.1016/j.nanoen.2021.106399http://doi.org/10.1016/j.nanoen.2021.106399 .
Hu, L.; Jiang, Y.; Zhou, Y . Flexible organic solar cells . Flex. Energy Convers. Storage Devices , 2018 . 305 -337. .
Jin, Y.; Chen, Z.; Xiao, M.; Peng, J.; Fan, B.; Ying, L.; Zhang, G.; Jiang, X . F.; Yin, Q.; Liang, Z.; Huang, F.; Cao, Y. Thick film polymer solar cells based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole conjugated polymers with efficiency over 11% . Adv. Energy Mater. , 2017 . 7 1700944 DOI:10.1002/aenm.201700944http://doi.org/10.1002/aenm.201700944 .
Schrödner, M.; Sensfuss, S.; Schache, H.; Schultheis, K.; Welzel, T.; Heinemann, K.; Milker, R.; Marten, J.; Blankenburg, L . Reel-to-reel wet coating by variation of solvents and compounds of photoactive inks for polymer solar cell production . Sol. Energy Mater. Sol. Cells , 2012 . 107 283 -291 . DOI:10.1016/j.solmat.2012.06.048http://doi.org/10.1016/j.solmat.2012.06.048 .
Yang, L.; Zhang, S.; He, C.; Zhang, J.; Yang, Y.; Zhu, J.; Cui, Y.; Zhao, W.; Zhang, H.; Zhang, Y.; Wei, Z.; Hou, J . Modulating molecular orientation enables efficient nonfullerene small-molecule organic solar cells . Chem. Mater. , 2018 . 30 2129 -2134 . DOI:10.1021/acs.chemmater.8b00287http://doi.org/10.1021/acs.chemmater.8b00287 .
Servaites, J. D.; Yeganeh, S.; Marks, T. J.; Ratner, M. A . Efficiency enhancement in organic photovoltaic cells: consequences of optimizing series resistance . Adv. Funct. Mater. , 2010 . 20 97 -104 . DOI:10.1002/adfm.200901107http://doi.org/10.1002/adfm.200901107 .
Lucera, L.; Kubis, P.; Fecher, F. W.; Bronnbauer, C.; Turbiez, M.; Forberich, K.; Ameri, T.; Egelhaaf, H. J.; Brabec, C. J . Guidelines for closing the efficiency gap between hero solar cells and roll-to-roll printed modules . Energy Technol. , 2015 . 3 373 -384 . DOI:10.1002/ente.201402192http://doi.org/10.1002/ente.201402192 .
Zeng, Y.; Li, D.; Xiao, Z.; Wu, H.; Chen, Z.; Hao, T.; Xiong, S.; Ma, Z.; Zhu, H.; Ding, L.; Bao, Q . Exploring the charge dynamics and energy loss in ternary organic solar cells with a fill factor exceeding 80% . Adv. Energy Mater. , 2021 . 11 2101338 DOI:10.1002/aenm.202101338http://doi.org/10.1002/aenm.202101338 .
Chen, Z.; Chen, X.; Jia, Z.; Zhou, G.; Xu, J.; Wu, Y.; Xia, X.; Li, X.; Zhang, X.; Deng, C.; Zhang, Y.; Lu, X.; Liu, W.; Zhang, C.; Yang, Y. (Michael); Zhu, H . Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells . Joule , 2021 . 5 1832 -1844 . DOI:10.1016/j.joule.2021.04.002http://doi.org/10.1016/j.joule.2021.04.002 .
Chen, X. K.; Qian, D.; Wang, Y.; Kirchartz, T.; Tress, W.; Yao, H.; Yuan, J.; Hülsbeck, M.; Zhang, M.; Zou, Y.; Sun, Y.; Li, Y.; Hou, J.; Inganäs, O.; Coropceanu, V.; Bredas, J. L.; Gao, F . A unified description of non-radiative voltage losses in organic solar cells . Nat. Energy , 2021 . 6 799 -806 . DOI:10.1038/s41560-021-00843-4http://doi.org/10.1038/s41560-021-00843-4 .
Kubis, P.; Li, N.; Stubhan, T.; Machui, F.; Matt, G. J.; Voigt, M. M.; Brabec, C. J . Patterning of organic photovoltaic modules by ultrafast laser . Prog. Photovolt. Res. Appl. , 2015 . 23 238 DOI:10.1002/pip.2421http://doi.org/10.1002/pip.2421 .
Kubis, P.; Winter, J.; Gavrilova, A.; Hennel, M.; Schlosser, S.; Richter, I.; Distler, A.; Heyder, M.; Kery, S.; Lenk, P.; Geiger, S.; Brabec, C. J.; Huber, H. P.; Egelhaaf, H. J . All sub-nanosecond laser monolithic interconnection of OPV modules . Prog. Photovolt. Res. Appl. , 2019 . 27 479 -490 . DOI:10.1002/pip.3115http://doi.org/10.1002/pip.3115 .
Lucera, L.; Machui, F.; Kubis, P.; Schmidt, H. D.; Adams, J.; Strohm, S.; Ahmad, T.; Forberich, K.; Egelhaaf, H. J.; Bracbec, C. J . Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials . Energy Environ. Sci. , 2016 . 9 89 DOI:10.1039/C5EE03315Bhttp://doi.org/10.1039/C5EE03315B .
Pettersson, L. A. A.; Roman, L. S.; Inganäs, O . Modeling photocurrent action spectra of photovoltaic devices based on organic thin films . J. Appl. Phys. , 1999 . 86 487 -496 . DOI:10.1063/1.370757http://doi.org/10.1063/1.370757 .
Liu, Z.; Yang, Z.; Wu, S.; Zhu, J.; Guo, W.; Sheng, J.; Ye, J.; Cui, Y . Photoinduced field-effect passivation from negative carrier accumulation for high-efficiency silicon/organic heterojunction solar cells . ACS Nano , 2017 . 11 12687 -12695 . DOI:10.1021/acsnano.7b07222http://doi.org/10.1021/acsnano.7b07222 .
Wang, P.; Li, W.; Sandberg, O . J.; Guo, C.; Sun, R.; Wang, H.; Li, D.; Zhang, H.; Cheng, S.; Liu, D.; Min, J.; Armin, A.; Wang, T. Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21% . Nano Lett. , 2021 . 21 7845 -7854 . DOI:10.1021/acs.nanolett.1c02897http://doi.org/10.1021/acs.nanolett.1c02897 .
Hösel, M.; Søndergaard, R. R.; Jørgensen, M.; Krebs, F. C . Fast inline roll-to-roll printing for indium-tin-oxide-free polymer solar cells using automatic registration . Energy Technol. , 2013 . 1 102 -107 . DOI:10.1002/ente.201200029http://doi.org/10.1002/ente.201200029 .
Kim, N.; Kang, H.; Lee, J. H.; Kee, S.; Lee, S. H.; Lee, K . Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method . Adv. Mater. , 2015 . 27 2317 -2323 . DOI:10.1002/adma.201500078http://doi.org/10.1002/adma.201500078 .
Hu, X.; Meng, X.; Zhang, L.; Zhang, Y.; Cai, Z.; Huang, Z.; Su, M.; Wang, Y.; Li, M.; Li, F.; Yao, X.; Wang, F.; Ma, W.; Chen, Y.; Song, Y . A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells . Joule , 2019 . 3 2205 -2218 . DOI:10.1016/j.joule.2019.06.011http://doi.org/10.1016/j.joule.2019.06.011 .
MacHui, F.; Abbott, S.; Waller, D.; Koppe, M.; Brabec, C. J . Determination of solubility parameters for organic semiconductor formulations . Macromol. Chem. Phys. , 2011 . 212 2159 -2165 . DOI:10.1002/macp.201100284http://doi.org/10.1002/macp.201100284 .
Xu, X.; Yu, T.; Bi, Z.; Ma, W.; Li, Y.; Peng, Q . Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-thiadiazole-based wide-bandgap copolymers . Adv. Mater. , 2018 . 30 1703973 DOI:10.1002/adma.201703973http://doi.org/10.1002/adma.201703973 .
Yang, W.; Wang, W.; Wang, Y.; Sun, R.; Guo, J.; Li, H.; Shi, M.; Guo, J.; Wu, Y.; Wang, T.; Lu, G.; Brabec, C J.; Li, Y.; Min, J . Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit . Joule , 2021 . 5 1209 -1230 . DOI:10.1016/j.joule.2021.03.014http://doi.org/10.1016/j.joule.2021.03.014 .
Li, Y.; Li, T.; Wang, J.; Zhan, X.; Lin, Y . Intrinsically inert hyperbranched interlayer for enhanced stability of organic solar cells . Sci. Bull. , 2022 . 67 171 -177 . DOI:10.1016/j.scib.2021.09.013http://doi.org/10.1016/j.scib.2021.09.013 .
Qin, Y.; Balar, N.; Peng, Z.; Gadisa, A.; Angunawela, I.; Bagui, A.; Kashani, S.; Hou, J.; Ade, H . The performance-stability conundrum of BTP-based organic solar cells . Joule , 2021 . 5 2129 -2147 . DOI:10.1016/j.joule.2021.06.006http://doi.org/10.1016/j.joule.2021.06.006 .
Ghasemi, M.; Balar, N.; Peng, Z.; Hu, H.; Qin, Y.; Kim, T.; Rech, J. J.; Bidwell, M.; Mask, W.; McCulloch, L.; You, W.; Amassian, A.; Risko, C.; O’Connor, B. T.; Ade, H . A molecular interaction-diffusion framework for predicting organic solar cell stability . Nat. Mater. , 2021 . 20 525 -532 . DOI:10.1038/s41563-020-00872-6http://doi.org/10.1038/s41563-020-00872-6 .
Burlingame, Q.; Huang, X.; Liu, X.; Jeong, C.; Coburn, C.; Forrest, S. R . Intrinsically stable organic solar cells under high-intensity illumination . Nature , 2019 . 573 394 -397 . DOI:10.1038/s41586-019-1544-1http://doi.org/10.1038/s41586-019-1544-1 .
0
Views
74
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution