a.College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
b.Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
c.College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
liuyh@qdu.edu.cn (Y.L)
zsbo@bnu.edu.cn (Z.B)
Scan for full text
Hang Wang, Hao Lu, Ya-Nan Chen, et al. Effect of Polymer Chain Regularity on the Photovoltaic Performance of Organic Solar Cells. [J]. Chinese Journal of Polymer Science 40(8):996-1002(2022)
Hang Wang, Hao Lu, Ya-Nan Chen, et al. Effect of Polymer Chain Regularity on the Photovoltaic Performance of Organic Solar Cells. [J]. Chinese Journal of Polymer Science 40(8):996-1002(2022) DOI: 10.1007/s10118-022-2796-z.
The BDT based regio-regular polymer ,reg-PTF, and the corresponding random polymer ,ran-PTF, are developed as donor materials. Acceptors with different energy level are severally match with the two polymers can give the significant different PCE due to the different energy level offset between the donor and acceptor materials.
In this work, regio-regular and random polymers (,reg-PTF, and ,ran-PTF,) comprising benzodithiophene and 3-fluorothiophene units are developed to investigate the influence of polymer chain regularity on the photovoltaic performance. Interestingly,reg-PTF, exhibits higher HOMO energy level (~0.2 eV) than that of ,ran-PTF, due to the more ordered molecular structure and higher crystallization. As the result, the HOMO energy level offset between donor and acceptor can be well controlled by selecting different acceptors. Using BTP-ec9-4F with a much deep HOMO energy level as acceptor,reg-PTF,-based devices display an inferior PCE of 7.66% compared with ,ran-PTF, based ones (11.78%) due to the too large HOMO energy levels offset. When blending with Y18-1F, the PCE of ,reg-PTF,-based devices is increased to 13.23% due to the appropriate energy level. In comparison, the ,ran-PTF,-based devices nearly do not work because of the negative HOMO energy levels offset. This work indicates that both the polymer chain regularity and the energy level offset between the donor and acceptor material are important to the performance of organic solar cells.
Organic solar cellsPolymer donorRegio-regular polymerRandom polymerEnergy level offset
Liu, Y.; Liu, B.; Ma, C. Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z. G.; Bo, Z. Recent progress in organic solar cells (Part II Device Engineering). Sci. China Chem. 2022, doi/10.1007/s11426-022-1256-8.
Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C . Roll-to-roll fabrication of polymer solar cells . Mater. Today , 2012 . 15 36 -49 . DOI:10.1016/S1369-7021(12)70019-6http://doi.org/10.1016/S1369-7021(12)70019-6 .
Wang, G.; Zhang, J.; Yang, C.; Wang, Y.; Xing, Y.; Adil, M . A.; Yang, Y.; Tian, L.; Su, M.; Shang, W.; Lu, K.; Shuai, Z.; Wei, Z. Synergistic optimization enables large-area flexible organic solar cells to maintain over 98% PCE of the small-area rigid devices . Adv. Mater. , 2020 . 32 e2005153 DOI:10.1002/adma.202005153http://doi.org/10.1002/adma.202005153 .
Li, N.; Brabec, C. J . Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10% . Energy Environ. Sci. , 2015 . 8 2902 -2909 . DOI:10.1039/C5EE02145Fhttp://doi.org/10.1039/C5EE02145F .
Cheng, P.; Li, G.; Zhan, X.; Yang, Y . Next-generation organic photovoltaics based on non-fullerene acceptors . Nat. Photon. , 2018 . 12 131 -142 . DOI:10.1038/s41566-018-0104-9http://doi.org/10.1038/s41566-018-0104-9 .
Shen, W.; Zhao, G.; Zhang, X.; Bu, F.; Yun, J.; Tang, J . Using dual microresonant cavity and plasmonic effects to enhance the photovoltaic efficiency of flexible polymer solar cells . Nanomaterials , 2020 . 10 944 DOI:10.3390/nano10050944http://doi.org/10.3390/nano10050944 .
Wang, J.; Zhang, M.; Lin, J.; Zheng, Z.; Zhu, L.; Bi, P.; Liang, H.; Guo, X.; Wu, J.; Wang, Y.; Yu, L.; Li, J.; Lv, J.; Liu, X.; Liu, F.; Hou, J.; Li, Y . An asymmetric wide-bandgap acceptor simultaneously enabling highly efficient single-junction and tandem organic solar cells . Energy Environ. Sci. , 2022 . 15 1585 -1593 . DOI:10.1039/D1EE03673Dhttp://doi.org/10.1039/D1EE03673D .
Qin, J.; Yang, Q.; Oh, J.; Chen, S.; Odunmbaku, G. O.; Ouedraogo, N. A. N.; Yang, C.; Sun, K.; Lu, S . Volatile solid additive-assisted sequential deposition enables 18.42% efficiency in organic solar cells . Adv. Sci. , 2022 . 9 e2105347 DOI:10.1002/advs.202105347http://doi.org/10.1002/advs.202105347 .
Duan, X.; Song, W.; Qiao, J.; Li, X.; Cai, Y.; Wu, H.; Zhang, J.; Hao, X.; Tang, Z.; Ge, Z.; Huang, F.; Sun, Y . Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss . Energy Environ. Sci. , 2022 . 15 1563 -1572 . DOI:10.1039/D1EE03989Jhttp://doi.org/10.1039/D1EE03989J .
Meng, H.; Liao, C.; Deng, M.; Xu, X.; Yu, L.; Peng, Q . 18.77% Efficiency organic solar cells promoted by aqueous solution processed cobalt(II) acetate hole transporting layer . Angew. Chem. Int. Ed. , 2021 . 60 22554 -22561 . DOI:10.1002/anie.202110550http://doi.org/10.1002/anie.202110550 .
Duan, C.; Ding, L . The new era for organic solar cells: polymer donors . Sci. Bull. , 2020 . 65 1422 -1424 . DOI:10.1016/j.scib.2020.04.044http://doi.org/10.1016/j.scib.2020.04.044 .
Yang, M.; Wei, W.; Zhou, X.; Wang, Z.; Duan, C . Non-fused ring acceptors for organic solar cells . Energy Mater. , 2021 . 1 100008 .
Tang, C. W . Two-layer organic photovoltaic cell . Appl. Phys. Lett. , 1986 . 48 183 -185 . DOI:10.1063/1.96937http://doi.org/10.1063/1.96937 .
Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F . Photoinduced electron transfer from a conducting polymer to Buckminsterfullerene . Science , 1992 . 258 1474 -1476 . DOI:10.1126/science.258.5087.1474http://doi.org/10.1126/science.258.5087.1474 .
Yu G.; Gao J.; Hummelen. J. C.; Wudl. F.; Heeger. A. J . Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions . Science , 1995 . 270 1789 -1791 . DOI:10.1126/science.270.5243.1789http://doi.org/10.1126/science.270.5243.1789 .
Zheng, Y.; Sun, R.; Zhang, M.; Chen, Z.; Peng, Z.; Wu, Q.; Yuan, X.; Yu, Y.; Wang, T.; Wu, Y.; Hao, X.; Lu, G.; Ade, H.; Min, J . Baseplate temperature-dependent vertical composition gradient in pseudo-bilayer films for printing non-fullerene organic solar cells . Adv. Energy Mater. , 2021 . 11 2102135 DOI:10.1002/aenm.202102135http://doi.org/10.1002/aenm.202102135 .
Zhang, L.; Ma, W . Morphology optimization in ternary organic solar cells . Chinese J. Polym. Sci. , 2016 . 35 184 -197 . DOI:10.1007/s10118-017-1898-5http://doi.org/10.1007/s10118-017-1898-5 .
Liu, Y.; Liu, B.; Ma, C. Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z. G.; Bo, Z . Recent progress in organic solar cells (Part I material science) . Sci. China Chem. , 2021 . 65 224 -268 . DOI:10.1007/s11426-021-1180-6http://doi.org/10.1007/s11426-021-1180-6 .
Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C . Bulk heterojunction solar cells: morphology and performance relationships . Chem. Rev. , 2014 . 114 7006 -7043 . DOI:10.1021/cr400353vhttp://doi.org/10.1021/cr400353v .
Li, G.; Zhu, R.; Yang, Y . Polymer solar cells . Nat. Photon. , 2012 . 6 153 -161 . DOI:10.1038/nphoton.2012.11http://doi.org/10.1038/nphoton.2012.11 .
Lu, L.; Zheng, T.; Wu, Q.; Schneider, A . M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells . Chem. Rev. , 2015 . 115 12666 -12731 . DOI:10.1021/acs.chemrev.5b00098http://doi.org/10.1021/acs.chemrev.5b00098 .
Wang, Z.; Gao, K.; Kan, Y.; Zhang, M.; Qiu, C.; Zhu, L.; Zhao, Z.; Peng, X.; Feng, W.; Qian, Z.; Gu, X.; Jen, A. K.; Tang, B . Z.; Cao, Y.; Zhang, Y.; Liu, F. The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances . Nat. Commun. , 2021 . 12 332 DOI:10.1038/s41467-020-20515-3http://doi.org/10.1038/s41467-020-20515-3 .
Natsuda, S . I.; Saito, T.; Shirouchi, R.; Sakamoto, Y.; Takeyama, T.; Tamai, Y.; Ohkita, H. Cascaded energy landscape as a key driver for slow yet efficient charge separation with small energy offset in organic solar cells . Energy Environ. Sci. , 2022 . 15 1545 -1555 . DOI:10.1039/D1EE03565Ghttp://doi.org/10.1039/D1EE03565G .
Azzouzi, M.; Gallop, N. P.; Eisner, F.; Yan, J.; Zheng, X.; Cha, H.; He, Q.; Fei, Z.; Heeney, M.; Bakulin, A. A.; Nelson, J . Reconciling models of interfacial state kinetics and device performance in organic solar cells: impact of the energy offsets on the power conversion efficiency . Energy Environ. Sci. , 2022 . 15 1256 -1270 . DOI:10.1039/D1EE02788Chttp://doi.org/10.1039/D1EE02788C .
Chen, J. D.; Cui, C.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y.; Tang, J. X . Single-junction polymer solar cells exceeding 10% power conversion efficiency . Adv. Mater. , 2015 . 27 1035 -1041 . DOI:10.1002/adma.201404535http://doi.org/10.1002/adma.201404535 .
Ma, S.; Wu, S.; Zhang, J.; Song, Y.; Tang, H.; Zhang, K.; Huang, F.; Cao, Y . Heptacyclic S,N-heteroacene-based near-infrared nonfullerene acceptor enables high-performance organic solar cells with small highest occupied molecular orbital offsets . ACS Appl. Mater. Interfaces , 2020 . 12 51776 -51784 . DOI:10.1021/acsami.0c19033http://doi.org/10.1021/acsami.0c19033 .
Li, X.; Pan, M.-A.; Lau, T.-K.; Liu, W.; Li, K.; Yao, N.; Shen, F.; Huo, S.; Zhang, F.; Wu, Y.; Li, X.; Lu, X.; Yan, H.; Zhan, C . Roles of acceptor guests in tuning the organic solar cell property based on an efficient binary material system with a nearly zero hole-transfer driving force . Chem. Mater. , 2020 . 32 5182 -5191 . DOI:10.1021/acs.chemmater.0c01245http://doi.org/10.1021/acs.chemmater.0c01245 .
Sun, C.; Qin, S.; Wang, R.; Chen, S.; Pan, F.; Qiu, B.; Shang, Z.; Meng, L.; Zhang, C.; Xiao, M.; Yang, C.; Li, Y . High efficiency polymer solar cells with efficient hole transfer at zero highest occupied molecular orbital offset between methylated polymer donor and brominated acceptor . J. Am. Chem. Soc. , 2020 . 142 1465 -1474 . DOI:10.1021/jacs.9b09939http://doi.org/10.1021/jacs.9b09939 .
Wang, S.; Tao, Y.; Li, S.; Xia, X.; Chen, Z.; Shi, M.; Zuo, L.; Zhu, H.; Lu, X.; Chen, H . A benzobis(thiazole)-based wide bandgap polymer donor enables over 15% efficiency organic photovoltaics with a flat energetic offset . Macromolecules , 2021 . 54 7862 -7869 . DOI:10.1021/acs.macromol.1c01301http://doi.org/10.1021/acs.macromol.1c01301 .
Li, S.; Zhan, L.; Sun, C.; Zhu, H.; Zhou, G.; Yang, W.; Shi, M.; Li, C . Z.; Hou, J.; Li, Y.; Chen, H. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets . J. Am. Chem. Soc. , 2019 . 141 3073 -3082 . DOI:10.1021/jacs.8b12126http://doi.org/10.1021/jacs.8b12126 .
Li, W.; Zeiske, S.; Sandberg, O. J.; Riley, D . B.; Meredith, P.; Armin, A. Organic solar cells with near-unity charge generation yield . Energy Environ. Sci. , 2021 . 14 6484 -6493 . DOI:10.1039/D1EE01367Jhttp://doi.org/10.1039/D1EE01367J .
Yao, H.; Zhao, W.; Zheng, Z.; Cui, Y.; Zhang, J.; Wei, Z.; Hou, J . PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure . J. Mater. Chem. A , 2016 . 4 1708 -1713 . DOI:10.1039/C5TA08614Khttp://doi.org/10.1039/C5TA08614K .
Liu, Y.; Lu, H.; Li, M.; Zhang, Z.; Feng, S.; Xu, X.; Wu, Y.; Bo, Z . Enhancing the performance of non-fullerene organic solar cells using regioregular wide-bandgap polymers . Macromolecules , 2018 . 51 8646 -8651 . DOI:10.1021/acs.macromol.8b01677http://doi.org/10.1021/acs.macromol.8b01677 .
Li, X.; Huang, G.; Wang, H.; Wang, T.; Zhao, Z.; Peng, H.; Cao, C.; Qi, Y.; Chen, W.; Yang, R . Weakening conformational locking for fine tuning of morphology and photovoltaic performance by introducing a third component . Chem. Eng. J. , 2021 . 422 130097 DOI:10.1016/j.cej.2021.130097http://doi.org/10.1016/j.cej.2021.130097 .
Heo, H.; Kim, H.; Lee, D.; Jang, S.; Ban, L.; Lim, B.; Lee, J.; Lee, Y . Regioregular D1-A-D2-A Terpolymer with controlled thieno[3,4-b]thiophene orientation for high-efficiency polymer solar cells processed with nonhalogenated solvents . Macromolecules , 2016 . 49 3328 -3335 . DOI:10.1021/acs.macromol.6b00269http://doi.org/10.1021/acs.macromol.6b00269 .
Wang, H.; Lu, H.; Chen, Y . N.; Ran, G.; Zhang, A.; Li, D.; Yu, N.; Zhang, Z.; Liu, Y.; Xu, X.; Zhang, W.; Bao, Q.; Tang, Z.; Bo, Z. Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17 . Adv. Mater. , 2022 . 34 e2105483 DOI:10.1002/adma.202105483http://doi.org/10.1002/adma.202105483 .
Jeon, S. J.; Han, Y. W.; Moon, D. K . Chlorine effects of heterocyclic ring-based donor polymer for low-cost and high-performance nonfullerene polymer solar cells . Solar RRL , 2019 . 3 1900094 DOI:10.1002/solr.201900094http://doi.org/10.1002/solr.201900094 .
Zhang, Q.; Yan, L.; Jiao, X.; Peng, Z.; Liu, S.; Rech, J . J.; Klump, E.; Ade, H.; So, F.; You, W. Fluorinated thiophene units improve photovoltaic device performance of donor-acceptor copolymers . Chem. Mater. , 2017 . 29 5990 -6002 . DOI:10.1021/acs.chemmater.7b01683http://doi.org/10.1021/acs.chemmater.7b01683 .
Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J . Single-junction organic photovoltaic cells with approaching 18% efficiency . Adv. Mater. , 2020 . 32 e1908205 DOI:10.1002/adma.201908205http://doi.org/10.1002/adma.201908205 .
Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H . Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells . Nat. Commun. , 2014 . 5 5293 DOI:10.1038/ncomms6293http://doi.org/10.1038/ncomms6293 .
Lee, J.; Ko, H.; Song, E.; Kim, H. G.; Cho, K . Naphthodithiophene-based conjugated polymer with linear, planar backbone conformation and strong intermolecular packing for efficient organic solar cells . ACS Appl. Mater. Interfaces , 2015 . 7 21159 -69 . DOI:10.1021/acsami.5b04884http://doi.org/10.1021/acsami.5b04884 .
Ren, Y.; Hailey, A. K.; Hiszpanski, A. M.; Loo, Y. L . Isoindigo-containing molecular semiconductors: effect of backbone extension on molecular organization and organic solar cell performance . Chem. Mater. , 2014 . 26 6570 -6577 . DOI:10.1021/cm503312chttp://doi.org/10.1021/cm503312c .
Zheng, Y.; Ashizawa, M.; Zhang, S.; Kang, J.; Nikzad, S.; Yu, Z.; Ochiai, Y.; Wu, H. C.; Tran, H.; Mun, J.; Zheng, Y. Q.; Tok, J. B . H.; Gu, X.; Bao, Z. Tuning the mechanical properties of a polymer semiconductor by modulating hydrogen bonding interactions . Chem. Mater. , 2020 . 32 5700 -5714 . DOI:10.1021/acs.chemmater.0c01437http://doi.org/10.1021/acs.chemmater.0c01437 .
Wan, J.; Xu, X.; Zhang, G.; Li, Y.; Feng, K.; Peng, Q . Highly efficient halogen-free solvent processed small-molecule organic solar cells enabled by material design and device engineering . Energy Environ. Sci. , 2017 . 10 1739 -1745 . DOI:10.1039/C7EE00805Hhttp://doi.org/10.1039/C7EE00805H .
Feng, K.; Yuan, J.; Bi, Z.; Ma, W.; Xu, X.; Zhang, G.; Peng, Q . Low-energy-loss polymer solar cells with 14.52% efficiency enabled by wide-band-gap copolymers . iScience , 2019 . 12 1 -12 . DOI:10.1016/j.isci.2018.12.027http://doi.org/10.1016/j.isci.2018.12.027 .
Ma, K.; An, C.; Zhang, T.; Lv, Q.; Zhang, S.; Zhou, P.; Zhang, J.; Hou, J . Study of photovoltaic performances for asymmetrical and symmetrical chlorinated thiophene-bridge-based conjugated polymers . J. Mater. Chem. C. , 2020 . 8 2301 -2306 . DOI:10.1039/C9TC05610Fhttp://doi.org/10.1039/C9TC05610F .
Kim, H.; Lee, H.; Seo, D.; Jeong, Y.; Cho, K.; Lee, J.; Lee, Y . Regioregular low bandgap polymer with controlled thieno[3,4-b]thiophene orientation for high-efficiency polymer solar cells . Chem. Mater. , 2015 . 27 3102 -3107 . DOI:10.1021/acs.chemmater.5b00632http://doi.org/10.1021/acs.chemmater.5b00632 .
Ying, L.; Hsu, B. B.; Zhan, H.; Welch, G. C.; Zalar, P.; Perez, L. A.; Kramer, E. J.; Nguyen, T. Q.; Heeger, A. J.; Wong, W. Y.; Bazan, G. C . Regioregular pyridal[2,1,3]thiadiazole pi-conjugated copolymers . J. Am. Chem. Soc. , 2011 . 133 18538 -18541 . DOI:10.1021/ja207543ghttp://doi.org/10.1021/ja207543g .
Tsoi, W. C.; Spencer, S. J.; Yang, L.; Ballantyne, A. M.; Nicholson, P. G.; Turnbull, A.; Shard, A. G.; Murphy, C. E.; Bradley, D. D. C.; Nelson, J.; Kim, J. S . Effect of crystallization on the electronic energy levels and thin film morphology of P3HT:PCBM blends . Macromolecules , 2011 . 44 2944 -2952 . DOI:10.1021/ma102841ehttp://doi.org/10.1021/ma102841e .
0
Views
10
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution