a.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
liujun@ciac.ac.cn
Scan for full text
Ying-Ze Zhang, Ning Wang, Ying-Hui Wang, et al. 15% Efficiency All-Polymer Solar Cells Based on a Polymer Acceptor Containing B←N Unit. [J]. Chinese Journal of Polymer Science 40(8):989-995(2022)
Ying-Ze Zhang, Ning Wang, Ying-Hui Wang, et al. 15% Efficiency All-Polymer Solar Cells Based on a Polymer Acceptor Containing B←N Unit. [J]. Chinese Journal of Polymer Science 40(8):989-995(2022) DOI: 10.1007/s10118-022-2790-5.
An alternating copolymer containing B←N units with low-lying energy levels and narrow bandgap is developed for all-polymer solar cells (all-PSCs). The all-PSC device using this polymer as an electron acceptor exhibits the power conversion efficiency of 15.09% and potential for large-scale preparation.
The development of new polymer acceptors strongly paves the power conversion efficiency (PCE) improvement of all polymer solar cells (all-PSCs). Herein, we develop a new polymer acceptor PBN26, which is the alternating copolymer of 2,2'-((2,Z,2',Z,)-((12,13-bis(2-octyldodecyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-,e,]thieno[2'',3'':4',5'],thieno[2',3':4,5]pyrrolo[3,2-,g,]thieno[2',3':4,5],thieno[3,2-,b,]indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1,H,-indene-2,1-diylidene))dimalononitrile and B←N bridged thienylthiazole (BNTT). The optimized all-PSCs device based on PBN26 exhibits a PCE of 15.09%, which is the highest value of the all-PSCs based on B←N-based polymer acceptors at present. Moreover, we also fabricate an all-PSC module with active area of 10 cm,2, by blade coating, which exhibits a PCE of 8.78%. These results prove that polymer acceptors containing B←N units are promising for all-PSC device applications.
Organic photovoltaicAll-polymer solar cellsPolymer acceptorsBoron-nitrogen coordination bond
Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J . All-polymer solar cells: recent progress, challenges, and prospects . Angew. Chem. Int. Ed. , 2019 . 58 4129 -4142 . DOI:10.1002/anie.201808976http://doi.org/10.1002/anie.201808976 .
Yin, H.; Yan, C.; Hu, H.; Ho, J. K. W.; Zhan, X.; Li, G.; So, S. K . Recent progress of all-polymer solar cells—from chemical structure and device physics to photovoltaic performance . Mater. Sci. Eng. R Rep. , 2020 . 140 100542 DOI:10.1016/j.mser.2019.100542http://doi.org/10.1016/j.mser.2019.100542 .
Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J . Recent advances, design guidelines, and prospects of all-polymer solar cells . Chem. Rev. , 2019 . 119 8028 -8086 . DOI:10.1021/acs.chemrev.9b00044http://doi.org/10.1021/acs.chemrev.9b00044 .
Xu, X.; Zhang, G.; Li, Y.; Peng, Q . The recent progress of wide bandgap donor polymers towards non-fullerene organic solar cells . Chin. Chem. Lett. , 2019 . 30 809 -825 . DOI:10.1016/j.cclet.2019.02.030http://doi.org/10.1016/j.cclet.2019.02.030 .
Li, M. J.; Fan, B. B.; Zhong, W. K.; Zeng, Z. M. Y.; Xu, J. K.; Ying, L . Rational design of conjugated polymers for d-limonene processed all-polymer solar cells with small energy loss . Chinese J. Polym. Sci. , 2020 . 38 791 -796 . DOI:10.1007/s10118-020-2429-3http://doi.org/10.1007/s10118-020-2429-3 .
Long, X.; Dou, C.; Liu, J.; Wang, L . A homopolymer based on double B←N bridged bipyridine as electron acceptor for all-polymer solar cells . Chin. Chem. Lett. , 2018 . 29 1343 -1346 . DOI:10.1016/j.cclet.2018.01.052http://doi.org/10.1016/j.cclet.2018.01.052 .
Fan, Q.; Su, W.; Chen, S.; Kim, W.; Chen, X.; Lee, B.; Liu, T.; Méndez-Romero, U . A.; Ma, R.; Yang, T.; Zhuang, W.; Li, Y.; Li, Y.; Kim, T.-S.; Hou, L.; Yang, C.; Yan, H.; Yu, D.; Wang, E. Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms . Joule , 2020 . 4 658 -672 . DOI:10.1016/j.joule.2020.01.014http://doi.org/10.1016/j.joule.2020.01.014 .
Liu, J.; Yin, Y.; Wang, K.; Wei, P.; Lu, H.; Song, C.; Liang, Q.; Huang, W. . Domain size control in all-polymer solar cells . iScience , 2022 . 25 104090 DOI:10.1016/j.isci.2022.104090http://doi.org/10.1016/j.isci.2022.104090 .
Chen, S.; Jung, S.; Cho, H. J.; Kim, N. H.; Jung, S.; Xu, J.; Oh, J.; Cho, Y.; Kim, H.; Lee, B.; An, Y.; Zhang, C.; Xiao, M.; Ki, H.; Zhang, Z. G.; Kim, J . Y.; Li, Y.; Park, H.; Yang, C. Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices . Angew. Chem. Int. Ed. , 2018 . 57 13277 -13282 . DOI:10.1002/anie.201807513http://doi.org/10.1002/anie.201807513 .
Wu, Q.; Wang, W.; Wu, Y.; Sun, R.; Guo, J.; Shi, M.; Min, J . Tailoring polymer acceptors by electron linkers for achieving efficient and stable all-polymer solar cells . Natl. Sci. Rev. , 2022 . 9 nwab151 DOI:10.1093/nsr/nwab151http://doi.org/10.1093/nsr/nwab151 .
Wang, N.; Yang, W.; Li, S.; Shi, M.; Lau, T. K.; Lu, X.; Shikler, R.; Li, C. Z.; Chen, H . A non-fullerene acceptor enables efficient P3HT-based organic solar cells with small voltage loss and thickness insensitivity . Chin. Chem. Lett. , 2019 . 30 1277 -1281 . DOI:10.1016/j.cclet.2019.01.010http://doi.org/10.1016/j.cclet.2019.01.010 .
Zhang, W.; Sun, C.; Angunawela, I.; Meng, L.; Qin, S.; Zhou, L.; Li, S.; Zhuo, H.; Yang, G.; Zhang, Z. G.; Ade, H.; Li, Y. . 16.52% Efficiency all-polymer solar cells with high tolerance of the photoactive layer thickness . Adv. Mater. , 2022 . 34 2108749 DOI:10.1002/adma.202108749http://doi.org/10.1002/adma.202108749 .
Sun, C.; Lee, J. W.; Seo, S.; Lee, S.; Wang, C.; Li, H.; Tan, Z.; Kwon, S. K.; Kim, B. J.; Kim, Y. H . Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high-performance all-polymer solar cells with 15.1% efficiency . Adv. Energy Mater. , 2022 . 12 2103239 DOI:10.1002/aenm.202103239http://doi.org/10.1002/aenm.202103239 .
Zhao, X.; Wang, T.; Wang, W.; Sun, R.; Wu, Q.; Shen, H.; Xia, J.; Wang, Y.; Zhang, M.; Min, J . Polymerized small-molecule acceptors based on vinylene as π-bridge for efficient all-polymer solar cells . Polymer , 2021 . 230 124104 DOI:10.1016/j.polymer.2021.124104http://doi.org/10.1016/j.polymer.2021.124104 .
Yu, H.; Luo, S.; Sun, R.; Angunawela, I.; Qi, Z.; Peng, Z.; Zhou, W.; Han, H.; Wei, R.; Pan, M.; Cheung, A. M . H.; Zhao, D.; Zhang, J.; Ade, H.; Min, J.; Yan, H. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition . Adv. Funct. Mater. , 2021 . 31 2100791 DOI:10.1002/adfm.202100791http://doi.org/10.1002/adfm.202100791 .
Sun, H.; Tang, Y.; Koh, C. W.; Ling, S.; Wang, R.; Yang, K.; Yu, J.; Shi, Y.; Wang, Y.; Woo, H. Y.; Guo, X . High-performance all-polymer solar cells enabled by an n-type polymer based on a fluorinated imide-functionalized arene . Adv. Mater. , 2019 . 31 1807220 DOI:10.1002/adma.201807220http://doi.org/10.1002/adma.201807220 .
You, H.; Kang, H.; Kim, D.; Park, J. S.; Lee, J. W.; Lee, S.; Kim, F. S.; Kim, B. J . Cyano-functionalized quinoxaline-based polymer acceptors for all-polymer solar cells and organic transistors . ChemSusChem , 2021 . 14 3520 -3527 . DOI:10.1002/cssc.202100080http://doi.org/10.1002/cssc.202100080 .
Dou, C.; Liu, J.; Wang, L . Conjugated polymers containing B←N unit as electron acceptors for all-polymer solar cells . Sci. China Chem. , 2017 . 60 450 -459 . DOI:10.1007/s11426-016-0503-xhttp://doi.org/10.1007/s11426-016-0503-x .
Zhao, R.; Liu, J.; Wang, L . Polymer acceptors containing B←N units for organic photovoltaics . Acc. Chem. Res. , 2020 . 53 1557 -1567 . DOI:10.1021/acs.accounts.0c00281http://doi.org/10.1021/acs.accounts.0c00281 .
Zhao, R.; Dou, C.; Liu, J.; Wang, L . An alternating polymer of two building blocks based on B←N unit: non-fullerene acceptor for organic photovoltaics . Chinese J. Polym. Sci. , 2016 . 35 198 -206 . DOI:10.1007/s10118-017-1878-9http://doi.org/10.1007/s10118-017-1878-9 .
Zhan, X., Tan, Z., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y., Zhu, D., Kippelen, B., Marder, S . A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells . J. Am. Chem. Soc. , 2007 . 129 7246 -7247 . DOI:10.1021/ja071760dhttp://doi.org/10.1021/ja071760d .
Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J . R.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors . Nature , 2009 . 457 679 -686 . DOI:10.1038/nature07727http://doi.org/10.1038/nature07727 .
Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H . Efficient organic solar cells processed from hydrocarbon solvents . Nat. Energy , 2016 . 1 15027 DOI:10.1038/nenergy.2015.27http://doi.org/10.1038/nenergy.2015.27 .
Li, Z.; Xu, X.; Zhang, W.; Genene, Z.; Mammo, W.; Yartsev, A.; Andersson, M. R.; Janssen, R. A. J.; Wang, E . High-photovoltage all-polymer solar cells based on a diketopyrrolopyrrole–isoindigo acceptor polymer . J. Mater. Chem. A , 2017 . 5 11693 -11700 . DOI:10.1039/C6TA09379Ehttp://doi.org/10.1039/C6TA09379E .
Long, X.; Wang, N.; Ding, Z.; Dou, C.; Liu, J.; Wang, L . Low-bandgap polymer electron acceptors based on double B←N bridged bipyridine (BNBP) and diketopyrrolopyrrole (DPP) units for all-polymer solar cells . J. Mater. Chem. C , 2016 . 4 9961 -9967 . DOI:10.1039/C6TC03652Jhttp://doi.org/10.1039/C6TC03652J .
Miao, J.; Xu, H.; Meng, B.; Liu, J.; Wang, L . Polymer electron acceptors based on fluorinated isoindigo unit for polymer solar cells . Chin. J. Chem. , 2018 . 36 411 -416 . DOI:10.1002/cjoc.201800006http://doi.org/10.1002/cjoc.201800006 .
Feng, K.; Huang, J.; Zhang, X.; Wu, Z.; Shi, S.; Thomsen, L.; Tian, Y.; Woo, H. Y.; McNeill, C. R.; Guo, X . High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1. 28 eV . Adv. Mater. , 2020 . 32 e2001476 DOI:10.1002/adma.202001476http://doi.org/10.1002/adma.202001476 .
Zhang, Z. G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. . Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells . Angew. Chem. Int. Ed. , 2017 . 56 13503 -13507 . DOI:10.1002/anie.201707678http://doi.org/10.1002/anie.201707678 .
Li, Y.; Song, J.; Dong, Y.; Jin, H.; Xin, J.; Wang, S.; Cai, Y.; Jiang, L.; Ma, W.; Tang, Z.; Sun, Y . Polymerized small molecular acceptor with branched side chains for all polymer solar cells with efficiency over 16.7% . Adv. Mater. , 2022 . 34 2110155 DOI:10.1002/adma.202110155http://doi.org/10.1002/adma.202110155 .
Kong, Y.; Li, Y.; Yuan, J.; Ding, L . Polymerizing small molecular acceptors for efficient all-polymer solar cells . InfoMat , 2022 . 4 e12271 DOI:10.1002/inf2.12271http://doi.org/10.1002/inf2.12271 .
Hu, K.; Du, J.; Zhu, C.; Lai, W.; Li, J., Xin, J.; Ma, W.; Zhang, Z.; Zhang, J.; Meng, L.; Li, Y. . Chlorinated polymerized small molecule acceptor enabling ternary all-polymer solar cell with efficiency over 16.6% . Sci. China Chem. , 2022 . 65 954 -963 . DOI:10.1007/s11426-022-1219-7http://doi.org/10.1007/s11426-022-1219-7 .
Dou, C.; Ding, Z.; Zhang, Z.; Xie, Z.; Liu, J.; Wang, L . Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B←N unit . Angew. Chem. Int. Ed. , 2015 . 54 3648 -3652 . DOI:10.1002/anie.201411973http://doi.org/10.1002/anie.201411973 .
Wang, N.; Long, X.; Ding, Z.; Feng, J.; Lin, B.; Ma, W.; Dou, C.; Liu, J.; Wang, L . Improving active layer morphology of all-polymer solar cells by dissolving the two polymers individually . Macromolecules , 2019 . 52 2402 -2410 . DOI:10.1021/acs.macromol.9b00057http://doi.org/10.1021/acs.macromol.9b00057 .
Zhao, R.; Wang, N.; Yu, Y.; Liu, J . Organoboron polymer for 10% efficiency all-polymer solar cells . Chem. Mater. , 2020 . 32 1308 -1314 . DOI:10.1021/acs.chemmater.9b04997http://doi.org/10.1021/acs.chemmater.9b04997 .
Miao, J.; Wang, Y.; Liu, J.; Wang, L . Organoboron molecules and polymers for organic solar cell applications . Chem. Soc. Rev. , 2022 . 51 153 -187 . DOI:10.1039/D1CS00974Ehttp://doi.org/10.1039/D1CS00974E .
Li, Y.; Meng, H.; Liu, T.; Xiao, Y.; Tang, Z.; Pang, B.; Li, Y.; Xiang, Y.; Zhang, G.; Lu, X.; Yu, G.; Yan, H.; Zhan, C.; Huang, J.; Yao, J . 8.78% Efficient all-polymer solar cells enabled by polymer acceptors based on a B←N embedded electron-deficient unit . Adv. Mater. , 2019 . 31 1904585 DOI:10.1002/adma.201904585http://doi.org/10.1002/adma.201904585 .
Wang, Y.; Wang, N.; Yang, Q.; Zhang, J.; Liu, J.; Wang, L . A polymer acceptor containing the B←N unit for all-polymer solar cells with 14% efficiency . J. Mater. Chem. A , 2021 . 9 21071 -21077 . DOI:10.1039/D1TA06041Dhttp://doi.org/10.1039/D1TA06041D .
Liu, J.; Ma, L.-K.; Sheong, F . K.; Zhang, L.; Hu, H.; Zhang, J.-X.; Zhang, J.; Li, Z.; Ma, C.; Han, X.; Pan, D.; Ade, H.; Ma, W.; Yan, H. Carboxylate substitution position influencing polymer properties and enabling non-fullerene organic solar cells with high open circuit voltage and low voltage loss . J. Mater. Chem. A , 2018 . 6 16874 -16881 . DOI:10.1039/C8TA04935Ahttp://doi.org/10.1039/C8TA04935A .
Wang, N.; Yu, Y.-J.; Zhao, R.-Y.; Zhang, J. D.; Liu, J.; Wang, L. X . Active layer morphology engineering of all-polymer solar cells by systematically tuning molecular weights of polymer donors/acceptors . Chinese J. Polym. Sci. , 2021 . 39 1449 -1458 . DOI:10.1007/s10118-021-2609-9http://doi.org/10.1007/s10118-021-2609-9 .
Ma, L.-K.; Chen, Y.; Chow, P. C. Y.; Zhang, G.; Huang, J.; Ma, C.; Zhang, J.; Yin, H.; Hong Cheung, A. M.; Wong, K. S.; So, S. K.; Yan, H . High-efficiency indoor organic photovoltaics with a band-aligned interlayer . Joule , 2020 . 4 1486 -1500 . DOI:10.1016/j.joule.2020.05.010http://doi.org/10.1016/j.joule.2020.05.010 .
Zhang, Y.; Wang, N.; Wang, Y.; Zhang, J.; Liu, J.; Wang, L . All-polymer indoor photovoltaic modules . iScience , 2021 . 24 103104 DOI:10.1016/j.isci.2021.103104http://doi.org/10.1016/j.isci.2021.103104 .
Liu, Y.; Larsen-Olsen, T. T.; Zhao, X.; Andreasen, B.; Søndergaard, R. R.; Helgesen, M.; Norrman, K.; Jørgensen, M.; Krebs, F. C.; Zhan, X . All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells . Solar Energy Mater. Solar Cells , 2013 . 112 157 -162 . DOI:10.1016/j.solmat.2013.01.025http://doi.org/10.1016/j.solmat.2013.01.025 .
Jia, T.; Zhang, J.; Zhang, K.; Tang, H.; Dong, S.; Tan, C. H.; Wang, X.; Huang, F . All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor . J. Mater. Chem. A , 2021 . 9 8975 -8983 . DOI:10.1039/D1TA00838Bhttp://doi.org/10.1039/D1TA00838B .
0
Views
19
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution