a.CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
zhjm@iccas.ac.cn
Scan for full text
Yi-Rong Wang, Chun-Chun Yin, Jin-Ming Zhang, et al. Functional Cellulose Materials Fabricated by Using Ionic Liquids as the Solvent. [J]. Chinese Journal of Polymer Science 41(4):483-499(2023)
Yi-Rong Wang, Chun-Chun Yin, Jin-Ming Zhang, et al. Functional Cellulose Materials Fabricated by Using Ionic Liquids as the Solvent. [J]. Chinese Journal of Polymer Science 41(4):483-499(2023) DOI: 10.1007/s10118-022-2787-0.
A mini-review summarizes the recent advances in fabricating functional cellulose derivatives and regenerated biomass materials via using ionic liquids as the green medium, indicating new ideas for the efficient utilization of renewable natural bioresources.
Cellulose is one of the most abundant natural polymers in the nature, which has many attractive advantages, such as renewability, biodegradability, and biocompatibility. However, due to the strong hydrogen bond network and hierarchical structure, cellulose is extremely difficult to be dissolved and processed. More recently, a class of novel eco-friendly solvents, ionic liquids, have been found to be able to efficiently dissolve cellulose, providing a versatile platform for cellulose processing and functionalization. Herein, we highlight recent advances in efficiently fabricating functional cellulose derivatives ,via, the homogeneous chemical modification and developing all-biomass materials ,via, controlling the dissolution-regeneration process in ionic liquids. The effective and environmentally-friendly utilization of cellulose not only reduces dependence on fossil resources but also protects the environment.
CelluloseIonic liquidsHomogeneous modificationFunctional materialsCellulose derivatives
Shaghaleh, H.; Xu, X.; Wang, S. F . Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives . RSC Adv. , 2018 . 8 825 -842 . DOI:10.1039/c7ra11157fhttp://doi.org/10.1039/c7ra11157f .
Singhvi, M. S.; Deshmukh, A. R.; Kim, B.S . Cellulase mimicking nanomaterial-assisted cellulose hydrolysis for enhanced bioethanol fermentation: an emerging sustainable approach . Green Chem. , 2021 . 23 5064 -5081 . DOI:10.1039/D1GC01239Hhttp://doi.org/10.1039/D1GC01239H .
Shamsuri, A . A.; Abdan, K.; Kaneko, T. A concise review on the physicochemical properties of biopolymer blends prepared in ionic liquids . Molecules , 2021 . 26 216 -234 . DOI:10.3390/molecules26010216http://doi.org/10.3390/molecules26010216 .
Lee, H. J.; Kang, S. W . Cellulose acetate containing CaO coated on polypropylene for enhanced thermal stability of separator . Chem. Commun. , 2021 . 57 4388 -4391 . DOI:10.1039/D1CC00926Ehttp://doi.org/10.1039/D1CC00926E .
Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J. F.; Geonzon, L. C.; Bacabac, R. G.; Klein-Nulend, J . Cellulose and its derivatives: towards biomedical applications . Cellulose , 2021 . 28 1893 -1931 . DOI:10.1007/s10570-020-03674-whttp://doi.org/10.1007/s10570-020-03674-w .
Johnson, D. L. Compounds dissolved in cyclic amine oxides. 1969, US3447939.
Schrempf, C.; Schild, G.; Ruf, H . Cellulose-NMMO-solution and their flowability . Papier , 1995 . 49 748 -757. .
Park, S. H.; Jeong, Y. H.; Lee, W. S.; Kang, H. J . Crystallization behavior of cellulose in cellulose/NMMO solutions . Polym.-Korea , 1998 . 22 779 -785. .
Terbojevich, M.; Cosani, A.; Conio, G.; Ciferri, A.; Bianchi, E. Mesophase formation and chain rigidity in cellulose and derivatives. 3 . Aggregation of cellulose in N,N-dimethylacetamide-lithium chloride . Macromolecules , 1985 . 18 640 -646 . DOI:10.1021/ma00146a011http://doi.org/10.1021/ma00146a011 .
Kotel’nikova, N. E.; Mikhailidi, A. M.; Martakova, Y. V . Preparation of cellulose hydrogels via self-assembly in DMAc/LiCl solutions and study of their properties . Polym. Sci., Ser A , 2017 . 59 76 -87 . DOI:10.1134/S0965545X17010084http://doi.org/10.1134/S0965545X17010084 .
Kotov, N.; Raus, V.; Dybal, J . Intermolecular interactions in N,N-dimethylacetamide without and with LiCl studied by infrared spectroscopy and quantum chemical model calculations . J. Phys. Chem. B , 2018 . 122 8921 -8930 . DOI:10.1021/acs.jpcb.8b05569http://doi.org/10.1021/acs.jpcb.8b05569 .
Hamdaoui, L.; Talbaoui, A.; EI, Moussaouiti, M . Nucleophilic displacement reaction on tosyl cellulose by L-methionine to the synthesis of novel water-soluble cellulose derivative and its antibacterial activity . Int. J. Polym. Sci. , 2021 . 2021 6613184 DOI:10.1155/2021/6613684http://doi.org/10.1155/2021/6613684 .
Striegel, A. M . Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl . J. Chil. Chem. Soc. , 2003 . 48 73 -77. .
Kamide, K.; Okajima, K.; Matsui, T.; Kobayashi, H . Pharmacodynamic properties of sodium cellulose sulfate . Polym. J. , 1984 . 16 259 -265 . DOI:10.1295/polymj.16.259http://doi.org/10.1295/polymj.16.259 .
Ruan, D.; Lue, A.; Zhang, L. N . Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature . Polymer , 2008 . 49 1027 -1036 . DOI:10.1016/j.polymer.2007.12.044http://doi.org/10.1016/j.polymer.2007.12.044 .
Andanson, J. M.; Bordes, E.; Devémy, J.; Leroux, F.; Pádua, A. A. H.; Gomes, M. F. C . Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids . Green Chem. , 2014 . 16 2528 -2538 . DOI:10.1039/c3gc42244ehttp://doi.org/10.1039/c3gc42244e .
Hewetson, B. B.; Zhang, X. M.; Mosier, N. S . Enhanced acid-catalyzed biomass conversion to hydroxymethylfurfural following cellulose solvent- and organic solvent-based lignocellulosic fractionation pretreatment . Energy & Fuels , 2016 . 30 9975 -9977 . DOI:10.1021/acs.energyfuels.6b01910http://doi.org/10.1021/acs.energyfuels.6b01910 .
Satari, B.; Karimi, K.; Kumar, R . Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review . Sustain. Energy Fuels , 2019 . 3 11 -62 . DOI:10.1039/C8SE00287Hhttp://doi.org/10.1039/C8SE00287H .
Bansal, M.; Kumar, D.; Chauhan, G . S.; Kaushik, A.; Kaur, G. Functionalization of nanocellulose to quaternized nanocellulose tri-iodide and its evaluation as an antimicrobial agent . Int. J. Biol. Macromol. , 2021 . 190 1007 -1014 . DOI:10.1016/j.ijbiomac.2021.08.228http://doi.org/10.1016/j.ijbiomac.2021.08.228 .
King, A. W . T.; Asikkala, J.; Mutikainen, I.; Järvi, P.; Kilpeläinen, I. Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing . Angew. Chem. Int. Ed. , 2011 . 50 6301 -6305 . DOI:10.1002/anie.201100274http://doi.org/10.1002/anie.201100274 .
Mahmood, H.; Moniruzzaman, M.; Yusup, S.; Welton, T . Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials . Green Chem. , 2017 . 19 2051 -2075 . DOI:10.1039/C7GC00318Hhttp://doi.org/10.1039/C7GC00318H .
Hermanutz, F.; Vocht, M. P.; Panzier, N.; Buchmeiser, M. R . Processing of cellulose using ionic liquids . Macromol. Mater. and Eng. , 2019 . 304 1800450 DOI:10.1002/mame.201800450http://doi.org/10.1002/mame.201800450 .
Bodachivskyi, I.; Page, C. J.; Kuzhiumparambil, U.; Hinkley, S. F. R.; Sims, I. M.; Williams, D. B. G . Dissolution of cellulose: are ionic liquids innocent or noninnocent solvents . ACS Sustain. Chem. Eng. , 2020 . 8 10142 -10150 . DOI:10.1021/acssuschemeng.0c02204http://doi.org/10.1021/acssuschemeng.0c02204 .
Viron, K. P.; Falcatan, A. M.; Leano, J. L . Ionic liquid-mediated synthesis of cellulose/montmorillonite nanocomposite . Cell. Chem. Technol. , 2021 . 55 169 -175 . DOI:10.35812/CelluloseChemTechnol.2021.55.18http://doi.org/10.35812/CelluloseChemTechnol.2021.55.18 .
Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D . Dissolution of cellose with ionic liquids . J. Am. Chem. Soc. , 2002 . 124 4974 -4975 . DOI:10.1021/ja025790mhttp://doi.org/10.1021/ja025790m .
Kaszynska, J.; Rachocki, A.; Bielejewski, M.; Tritt-Goc, J . Influence of cellulose gel matrix on BmimCl ionic liquid dynamics and conductivity . Cellulose , 2017 . 24 1641 -1655 . DOI:10.1007/s10570-017-1223-zhttp://doi.org/10.1007/s10570-017-1223-z .
Zhang, J.; Ren, Q.; He, J. S. A cellulose solution and preparation method. 2002, CN Pat. 02147004.
Zhang, J. M.; Wu, J.; Yu, J.; Zhang, X. C.; Mi, Q. Y.; Zhang, J . Processing and functionalization of cellulose with ionic liquids . Acta Polymerica Sinica (in Chinese) , 2017 . 1058 -1072 . DOI:10.11777/j.issn1000-3304.2017.17066http://doi.org/10.11777/j.issn1000-3304.2017.17066 .
Verma, C.; Mishra, A.; Chauhan, S.; Verma, P.; Srivastava, V.; Quraishi, M. A.; Ebenso, E. E . Dissolution of cellulose in ionic liquids and their mixed cosolvents: a review . Sustain. Chem. Pharm. , 2009 . 13 100162 DOI:10.1016/j.scp.2019.100162http://doi.org/10.1016/j.scp.2019.100162 .
Chhotaray, P. K.; Biswal, S. K.; Pandey, S . Development of novel hybrid ionic fluids for efficient CO2 capture and cellulose dissolution . J. Mol. Liq. , 2020 . 312 113477 -113484 . DOI:10.1016/j.molliq.2020.113477http://doi.org/10.1016/j.molliq.2020.113477 .
Shamsuri, A. A.; Abdan, K.; Jamil, S. N. A. M . Properties and applications of cellulose regenerated from cellulose/imidazolium-based ionic liquid/co-solvent solutions: a short review . E-Polymers , 2021 . 21 869 -880 . DOI:10.1515/epoly-2021-0086http://doi.org/10.1515/epoly-2021-0086 .
Crawford, B.; Ismail, A. E . Insight into cellulose dissolution with the tetrabutylphosphonium chloride-water mixture using molecular dynamics simulations . Polymers , 2020 . 12 627 DOI:10.3390/polym12030627http://doi.org/10.3390/polym12030627 .
Layek, S.; Banerjee, P.; Sarkar, N . An insight into the dissolution of cellulose in 1-butyl-3-methylimidazolium chloride-DMSO binary mixture: exploring the dynamics of rhodamine 6G and fluorescein . J. Mol. Liq. , 2021 . 339 116817 -116827 . DOI:10.1016/j.molliq.2021.116817http://doi.org/10.1016/j.molliq.2021.116817 .
Onwukamike, K. N.; Tassaing, T.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M. A. R . Detailed understanding of the DBU/CO2 switchable solvent system for cellulose solubilization and derivatization . ACS Sustain. Chem. Eng. , 2018 . 6 1496 -1503 . DOI:10.1021/acssuschemeng.7b04053http://doi.org/10.1021/acssuschemeng.7b04053 .
Wei, J.; Gao, H.; Li, Y.; Nie, Y. . Research on the degradation behaviors of wood pulp cellulose in ionic liquids . J. Mol. Liq. , 2022 . 356 119071 DOI:10.1016/j.molliq.2022.119071http://doi.org/10.1016/j.molliq.2022.119071 .
Kasprzak, D.; Krystkowiak, E.; Stępniak, I.; Galiński, M . Dissolution of cellulose in novel carboxylate-based ionic liquids and dimethyl sulfoxide mixed solvents . Eur. Polym. J. , 2019 . 113 89 -97 . DOI:10.1016/j.eurpolymj.2019.01.053http://doi.org/10.1016/j.eurpolymj.2019.01.053 .
Xu, A. R.; Wang, F . Carboxylate ionic liquid solvent systems from 2006 to 2020: thermal properties and application in cellulose processing . Green Chem. , 2020 . 22 7622 DOI:10.1039/D0GC02840Ahttp://doi.org/10.1039/D0GC02840A .
Zhong, Y. L.; Wu, J. W.; Kang, H. L.; Liu, R. G. . Choline hydroxide based deep eutectic solvent for dissolving cellulose . Green Chem. , 2022 . 24 2464 -2475 . DOI:10.1039/d1gc04130dhttp://doi.org/10.1039/d1gc04130d .
Hinner, L. P.; Wissner, J. L.; Hauer, B.; Nebel, B. A . Efficient cellulose dissolution in a tertiary [EHEMIM]-[EMIM]OAcwater system . J. Molecul. Liquids , 2019 . 281 236 -242 . DOI:10.1016/j.molliq.2019.02.096http://doi.org/10.1016/j.molliq.2019.02.096 .
Lethesh, K. C.; Evjen, S.; Venkatraman, V.; Shah, S. N.; Fiksdahl, A . Highly efficient cellulose dissolution by alkaline ionic liquids . Carbohydr. Polym. , 2020 . 229 115594 DOI:10.1016/j.carbpol.2019.115594http://doi.org/10.1016/j.carbpol.2019.115594 .
Zunita, M.; Wahyuningrum, D.; Buchari; Bundjali, B.; Wenten, I. G.; Boopathy, R . The performance of 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazolium iodide based ionic liquid for biomass conversion into levulinic acid and formic acid . Bioresour. Technol. , 2020 . 315 123864 -123870 . DOI:10.1016/j.biortech.2020.123864http://doi.org/10.1016/j.biortech.2020.123864 .
Abushammala, H.; Mao, J . A review on the partial and complete dissolution and fractionation of wood and lignocelluloses using imidazolium ionic liquids . Polymers , 2020 . 12 195 -224 . DOI:10.3390/polym12010195http://doi.org/10.3390/polym12010195 .
Zhao, D. W.; Zhu, Y.; Cheng, W. K.; Chen, W. S.; Wu, Y. Q.; Yu, H. P . Cellulose-based flexible functional materials for emerging intelligent electronics . Adv. Mater. , 2020 . 33 2000619 DOI:10.1002/adma.202000619http://doi.org/10.1002/adma.202000619 .
El Seoud, O. A.; Nawaz, H.; Arêas, E. P. G . Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview . Molecules , 2013 . 18 1270 -1313 . DOI:10.3390/molecules18011270http://doi.org/10.3390/molecules18011270 .
Onwukamike, K . N.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M. Critical review on sustainable homogeneous cellulose modification: why renewability is not enough . ACS Sustain. Chem. Eng. , 2019 . 7 1826 -1840 . DOI:10.1021/acssuschemeng.8b04990http://doi.org/10.1021/acssuschemeng.8b04990 .
Kostag, M.; Gericke, M.; Heinze, T.; EI Seoud, O. A . Twenty-five years of cellulose chemistry: innovations in the dissolution of the biopolymer and its transformation into esters and ethers . Cellulose , 2019 . 26 139 -184 . DOI:10.1007/s10570-018-2198-0http://doi.org/10.1007/s10570-018-2198-0 .
Frank, B. P.; Smith, C.; Caudill, E. R.; Lankone, R. S.; Carlin, K.; Benware, S.; Fairbrother, D. H . Biodegradation of functionalized nanocellulose . Environ. Sci. Technol. , 2021 . 55 10744 -10757 . DOI:10.1021/acs.est.0c07253http://doi.org/10.1021/acs.est.0c07253 .
Kiriakou, M. V.; Berry, R. M.; Hoare, T.; Cranston, E. D . Effect of reaction media on grafting hydrophobic polymers from cellulose nanocrystals via surface-initiated atom-transfer radical polymerization . Biomacromolecules , 2021 . 22 3601 -3612 . DOI:10.1021/acs.biomac.1c00692http://doi.org/10.1021/acs.biomac.1c00692 .
Lettow, J. H.; Kaplan, R. Y.; Nealey, P. F.; Rowan, S. J . Enhanced Ion conductivity through hydrated, polyelectrolyte-grafted cellulose nanocrystal films . Macromolecules , 2021 . 54 6925 -6936 . DOI:10.1021/acs.macromol.1c01155http://doi.org/10.1021/acs.macromol.1c01155 .
Zhang, X.; Cheng, Y. H.; You, J. X.; Zhang, J. M.; Yin, C. C.; Zhang, J . Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance . Nat. Commun. , 2022 . 13 1117 DOI:10.1038/s41467-022-28759-xhttp://doi.org/10.1038/s41467-022-28759-x .
Zhang, X.; Cheng, Y. H.; You, J. X.; Zhang, J. M.; Wang, Y. R.; Zhang, J . Irreversible humidity-responsive phosphorescence materials from cellulose for advanced anti-counterfeiting and environmental monitoring . ACS Appl. Mater. Interfaces , 2022 . 14 16582 -16591 . DOI:10.1021/acsami.2c00043http://doi.org/10.1021/acsami.2c00043 .
Cheng, Y. H.; Zhang, X.; Zhang, J. M.; He, Z. Y.; Wang, Y. R.; Wang, J. J.; Zhang, J . Hygroscopic hydrophobic coatings from cellulose: Manipulation of the aggregation morphology of water . Chem. Eng. J. , 2022 . 441 136016 DOI:10.1016/j.cej.2022.136016http://doi.org/10.1016/j.cej.2022.136016 .
Gumina, B.; Espro, C.; Galvagno, S.; Pietropaolo, R.; Mauriello, F . Bioethanol production from unpretreated cellulose under neutral selfsustainable hydrolysis/hydrogenolysis conditions promoted by the heterogeneous Pd/Fe3O4 catalyst . ACS Omega , 2019 . 4 352 -357 . DOI:10.1021/acsomega.8b03088http://doi.org/10.1021/acsomega.8b03088 .
Nill, J. D.; Jeoh, T . The role of evolving interfacial substrate properties on heterogeneous cellulose hydrolysis kinetics . ACS Sustain. Chem. Eng. , 2020 . 8 6722 -6733 . DOI:10.1021/acssuschemeng.0c00779http://doi.org/10.1021/acssuschemeng.0c00779 .
King, A.; Jalomaki, J.; Granstrom, M.; Argyropoulos, D . S.; Heikkinen, S.; Kilpelainen, I. A new method for rapid degree of substitution and purity determination of chloroform-soluble cellulose esters, using 31P NMR . Anal. Meth. , 2010 . 2 1499 -1505 . DOI:10.1039/c0ay00336khttp://doi.org/10.1039/c0ay00336k .
Huang, K.; Xia, J. L.; Li, M.; Lian, J.; Yang, X. H.; Lin, G. F . Homogeneous synthesis of cellulose stearates with different degrees of substitution in ionic liquid 1-butyl-3-methylimidazolium chloride . Carbohydr. Polym. , 2011 . 83 1631 -1635 . DOI:10.1016/j.carbpol.2010.10.020http://doi.org/10.1016/j.carbpol.2010.10.020 .
Bui, C. V.; Rosenau, T.; Hettegger, H. . Synthesis of polyanionic cellulose carbamates by homogeneous aminolysis in an ionic liquid/DMF medium . Molecules , 2022 . 27 1384 DOI:10.3390/molecules27041384http://doi.org/10.3390/molecules27041384 .
Singh, R. K.; Gupta, P.; Sharma, O. P.; Ray, S. S . Homogeneous synthesis of cellulose fatty esters in ionic liquid (1-butyl-3-methylimidazolium chloride) and study of their comparative antifriction property . Carbohydr. Polym. , 2015 . 24 14 -19 . DOI:10.1016/j.jiec.2014.09.031http://doi.org/10.1016/j.jiec.2014.09.031 .
Gaydarov, V.; Chen, Z. Y.; Zamfirova, G.; Soylemez, M . A.; Zhang, J.; Djourelov, N.; Zhang, J. Micromechanical and positron annihilation lifetime study of new cellulose esters with different topological structures . Carbohydr. Polym. , 2019 . 219 56 -62 . DOI:10.1016/j.carbpol.2019.05.022http://doi.org/10.1016/j.carbpol.2019.05.022 .
Zamfirova, G.; Gaydarov, V.; Djourelov, N.; Zhang, J.; Zhang, J. M . PALS and nanoindentation as complementary methods for investigating cellulose derivatives (esters and carbamates) . Mater. Today: Proc. , 2021 . 34 304 -310 . DOI:10.1016/j.matpr.2020.04.089http://doi.org/10.1016/j.matpr.2020.04.089 .
Babicka, M.; Woźniak, M.; Dwiecki, K.; Borysiak, S.; Ratajczak, I . Preparation of nanocellulose using ionic liquids:1-propyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium chloride . Molecules , 2020 . 25 1544 -1557 . DOI:10.3390/molecules25071544http://doi.org/10.3390/molecules25071544 .
Kadokawa, J.; Ohyama, N.; Idenoue, S.; Yamamoto, K . Facile production of cellulosic organic solutions and organogels from ionic liquid media . Colloid. Polym. Sci. , 2020 . 298 1129 -1134 . DOI:10.1007/s00396-020-04685-6http://doi.org/10.1007/s00396-020-04685-6 .
Köhler, S.; Heinze, T. Efficient synthesis of cellulose furoates in 1-N-butyl-3-methylimidazolium chloride. Cellulose 2007, 14, 489-495.
Heinze, T.; Dorn, S.; Michael, S.; Liebert, T.; Köhler, S.; Meister, F . Interactions of ionic liquids with polysaccharides–2: Cellulose . Macromol. Symp. , 2008 . 262 8 -22 . DOI:10.1002/masy.200850202http://doi.org/10.1002/masy.200850202 .
Kadokawa, R.; Endo, T.; Yasaka, Y.; Ninomiya, K.; Takahashi, K.; Kuroda, K . Cellulose preferentially dissolved over xylan in ionic liquids through precise anion interaction regulated by bulky cations . ACS Sustain. Chem. Eng. , 2021 . 9 8686 -8691 . DOI:10.1021/acssuschemeng.1c02492http://doi.org/10.1021/acssuschemeng.1c02492 .
Suzuki, S.; Hikita, H.; Hernandez, S . C.; Wada, N.; Takahashi, K. Direct conversion of sugarcane bagasse into an injection-moldable cellulose-based thermoplastic via homogeneous esterification with mixed acyl groups . ACS Sustain. Chem. Eng. , 2021 . 9 5933 -5941 . DOI:10.1021/acssuschemeng.1c00306http://doi.org/10.1021/acssuschemeng.1c00306 .
Fidale, L. C.; Possidonio, S.; EI Seoud, O. A . Application of 1-allyl-3-(1-butyl)imidazolium chloride in the synthesis of cellulose esters: properties of the ionic liquid, and comparison with other solventsa . Macromol. Biosci. , 2009 . 9 813 -821 . DOI:10.1002/mabi.200900034http://doi.org/10.1002/mabi.200900034 .
Nawaz, H.; Pires, P. A. R.; Arêas, E. P. G.; Malek, N. I.; EI Seoud, O. A . Probing cellulose acetylation in binary mixtures of an ionic liquid with dimethylsulfoxide and sulfolane by chemical kinetics, viscometry, spectroscopy, and molecular dynamics simulations . Macromol. Chem. Phys. , 2015 . 216 2368 -2376 . DOI:10.1002/macp.201500315http://doi.org/10.1002/macp.201500315 .
Nawaz, H.; Pires, P. A. R.; Bioni, T. A.; Areas, E. P. G.; EI Seoud, O. A . Mixed solvents for cellulose derivatization under homogeneous conditions: kinetic, spectroscopic, and theoretical studies on the acetylation of the biopolymer in binary mixtures of an ionic liquid and molecular solvents . Cellulose , 2014 . 21 1193 -1204 . DOI:10.1007/s10570-014-0184-8http://doi.org/10.1007/s10570-014-0184-8 .
Jogunola, O.; Eta, V.; Hedenstrom, M.; Sundman, O.; Salmi, T.; Mikkola, J. P . Ionic liquid mediated technology for synthesis of cellulose acetates using different co-solvents . Carbohydr. Polym. , 2016 . 135 341 -348 . DOI:10.1016/j.carbpol.2015.08.092http://doi.org/10.1016/j.carbpol.2015.08.092 .
Achtel, C.; Jedvert, K.; Kostag, M.; EI Seoud, O. A.; Heinze, T . Surprising insensitivity of homogeneous acetylation of cellulose dissolved in triethyl(n-octyl)ammonium chloride/ molecular solvent on the solvent polarity . Macromol. Mater. Eng. , 2018 . 303 1800032 DOI:10.1002/mame.201800032http://doi.org/10.1002/mame.201800032 .
Schlufter, K.; Schmauder, H . P.; Dorn, S.; Heinze, T. Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride . Macromol. Rapid Commun. , 2006 . 27 1670 -1676 . DOI:10.1002/marc.200600463http://doi.org/10.1002/marc.200600463 .
Amarasekara, A. S.; Hasan, M. A.; Ha, U . A two step method for the preparation of carbamate cross-linked cellulose films using an ionic liquid and their water retention properties . Carbohydr. Polym. , 2016 . 154 8 -12 . DOI:10.1016/j.carbpol.2016.08.033http://doi.org/10.1016/j.carbpol.2016.08.033 .
Tomé, L. C.; Freire, M. G.; Rebelo, L. P. N.; Silvestre, A. J. D.; Neto, C. P.; Marrucho, I. M. M.; Freire, C. S. R . Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts . Green Chem. , 2011 . 13 2464 DOI:10.1039/c1gc15432jhttp://doi.org/10.1039/c1gc15432j .
Chen, W. W.; Feng, Y.; Zhang, M.; Wu, J.; Zhang, J . M.; Gao, X.; Zhang, J. Homogeneous benzoylation of cellulose in 1-allyl-3-methylimidazolium chloride: Hammett correlation, mechanism and regioselectivity . RSC Adv. , 2015 . 5 58536 -58542 . DOI:10.1039/C5RA08911Ehttp://doi.org/10.1039/C5RA08911E .
Chen, W. W.; Zhang, M.; Feng, Y.; Wu, J.; Gao, X.; Zhang, J. M.; Zhang, J . Homogeneous synthesis of partially substituted cellulose phenylcarbamates aiming at chiral recognition . Polym. Int. , 2015 . 64 1037 -1044 . DOI:10.1002/pi.4884http://doi.org/10.1002/pi.4884 .
Felix, G . Regioselectively modified polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography . J. Chromatogr. A , 2001 . 906 171 -184 . DOI:10.1016/S0021-9673(00)00943-2http://doi.org/10.1016/S0021-9673(00)00943-2 .
Xu, D. Q.; Li, B.; Tate, C.; Edgar, K. J . Studies on regioselective acylation of cellulose with bulky acid chlorides . Cellulose , 2011 . 18 405 -419 . DOI:10.1007/s10570-010-9476-9http://doi.org/10.1007/s10570-010-9476-9 .
Fox, S. C.; Li, B.; Xu, D. K.; Edgar, K. J . Regioselective esterification and etherification of cellulose: a review . Biomacromolecules , 2011 . 12 1956 -1972 . DOI:10.1021/bm200260dhttp://doi.org/10.1021/bm200260d .
Elschner, T.; Kotteritzsch, M.; Heinze, T . Synthesis of cellulose tricarbonates in 1-butyl-3-methylimidazolium chloride/pyridine . Macromol. Biosci. , 2014 . 14 161 -165 . DOI:10.1002/mabi.201300345http://doi.org/10.1002/mabi.201300345 .
Söyler, Z.; Meier, M . Sustainable functionalization of cellulose and starch with diallyl carbonate in ionic liquids . Green Chem. , 2017 . 19 3899 -3907 . DOI:10.1039/C7GC01978Ehttp://doi.org/10.1039/C7GC01978E .
Labafzadeh, S. R.; Helminen, K . J.; Kilpelainen; King, A. Synthesis of cellulose methylcarbonate in ionic liquids using dimethylcarbonate . ChemSusChem , 2015 . 8 77 -81 . DOI:10.1002/cssc.201402794http://doi.org/10.1002/cssc.201402794 .
Granström, M.; Pääkkö, M . K.; Jin, H.; Kolehmainen, E.; Kilpeläinen, I.; Ikkala, O. Highly water repellent aerogels based on cellulose stearoyl esters . Polym. Chem. , 2011 . 2 1789 DOI:10.1039/c0py00309chttp://doi.org/10.1039/c0py00309c .
Niu, X.; Liu, Y.; King, A. W. T.; Hietala, S.; Pan, H.; Rojas, O. J . Plasticized cellulosic films by partial esterification and welding in low-concentration ionic liquid electrolyte . Biomacromolecules , 2019 . 20 2105 -2114 . DOI:10.1021/acs.biomac.9b00325http://doi.org/10.1021/acs.biomac.9b00325 .
Gericke, M.; Liebert, T.; Heinze, T . Interaction of ionic liquids with polysaccharides, 8–Synthesis of cellulose sulfates suitable for polyelectrolyte complex formation . Macromol. Biosci. , 2009 . 9 343 -353 . DOI:10.1002/mabi.200800329http://doi.org/10.1002/mabi.200800329 .
Wang, Z. M.; Xiao, K. J.; Li, L.; Wu, J. Y . Molecular weight-dependent anticoagulation activity of sulfated cellulose derivatives . Cellulose , 2010 . 17 953 -961 . DOI:10.1007/s10570-010-9441-7http://doi.org/10.1007/s10570-010-9441-7 .
Sirviö, J. A . Cationization of lignocellulosic fibers with betaine in deep eutectic solvent: facile route to charge stabilized cellulose and wood nanofibers . Carbohydr. Polym. , 2018 . 198 34 -40 . DOI:10.1016/j.carbpol.2018.06.051http://doi.org/10.1016/j.carbpol.2018.06.051 .
Supeno; Daik, R.; EI-Sheikh, S. M . Cationic quaternization of cellulose with methacryloyloxy ethyl trimethyl ammonium chloride via ATRP method . AIP Conf. Proc. , 2014 . 1614 178 -185. .
Abbott, A. P.; Bell, T . J.; Handa, S.; Stoddart, B. Cationic functionalisation of cellulose using a choline based ionic liquid analogue . Green Chem. , 2006 . 8 784 -786 . DOI:10.1039/b605258dhttp://doi.org/10.1039/b605258d .
Erdmenger, T.; Haensch, C.; Hoogenboom, R.; Schubert, U. S . Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride . Macromol. Biosci. , 2007 . 7 440 -445 . DOI:10.1002/mabi.200600253http://doi.org/10.1002/mabi.200600253 .
Köhler, S.; Liebert, T.; Heinze, T. Interactions of ionic liquids with polysaccharides. VI . Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids . J. Polym. Sci., Part A: Polym. Chem. , 2008 . 46 4070 -4080 . DOI:10.1002/pola.22749http://doi.org/10.1002/pola.22749 .
Mormann, W.; Wezstein, M . Trimethylsilylation of cellulose in ionic liquids . Macromol. Biosci. , 2009 . 9 369 -375 . DOI:10.1002/mabi.200800192http://doi.org/10.1002/mabi.200800192 .
Abe, M.; Sugimura, K.; Nishio, Y. . Rapid allylation of cellulose without heating in tetra-n-butylphosphonium hydroxide aqueous solution . Cellulose , 2020 . 27 6887 -6896 . DOI:10.1007/s10570-020-03255-xhttp://doi.org/10.1007/s10570-020-03255-x .
Abe, M.; Sugimura, K.; Nishiyama, Y.; Nishio, Y . Rapid benzylation of cellulose in tetra-n-butylphosphonium hydroxide aqueous solution at room temperature . ACS Sustain. Chem. Eng. , 2017 . 5 4505 -4510 . DOI:10.1021/acssuschemeng.7b00492http://doi.org/10.1021/acssuschemeng.7b00492 .
Zhou, Y.; Zhang, J. M.; Cheng, Y . H.; Zhang, X.; Wu, J.; Zhang, J. Click modification for polysaccharides via novel tunnel transmission phenomenon in ionic liquids . Research , 2022 . 2022 9853529 DOI:10.34133/2022/9853529http://doi.org/10.34133/2022/9853529 .
Zhou, Y.; Zhang, X. C.; Cheng, Y. H.; Zhang, J. M.; Mi, Q. Y.; Yin, C . C.; Wu, J.; Zhang, J. Super-rapid and highly-efficient esterification of cellulose to achieve an accurate chromatographic analysis of its molecular weight . Carbohydr. Polym. , 2022 . 286 119301 DOI:10.1016/j.carbpol.2022.119301http://doi.org/10.1016/j.carbpol.2022.119301 .
Liu, C. F.; Zhang, A. P.; Li, W. Y.; Yue, F. X.; Sun, R. C . Homogeneous modification of cellulose in ionic liquid with succinic anhydride using n-bromosuccinimide as a catalyst . J. Agric. Food. Chem. , 2009 . 57 1814 -1820 . DOI:10.1021/jf803097khttp://doi.org/10.1021/jf803097k .
Luan, Y. H.; Zhang, J. M.; Zhan, M. S.; Wu, J.; Zhang, J.; He, J. S . Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine . Carbohydr. Polym. , 2013 . 92 307 -311 . DOI:10.1016/j.carbpol.2012.08.111http://doi.org/10.1016/j.carbpol.2012.08.111 .
Pires, P. A. R.; Malek, N. I.; Teixeira, T. C.; Bioni, T. A.; Nawaz, H.; EI Seoud, O. A . Imidazole-catalyzed esterification of cellulose in ionic liquid/molecular solvents: a multi-technique approach to probe effects of the medium . Ind. Crop Prod. , 2015 . 77 180 -189 . DOI:10.1016/j.indcrop.2015.08.015http://doi.org/10.1016/j.indcrop.2015.08.015 .
Kakibe, T.; Nakamura, S.; Amakuni, K.; Kishi, H . Binary ionic liquid system for direct cellulose etherification . Aust. J. Chem. , 2019 . 72 101 -105 . DOI:10.1071/CH18378http://doi.org/10.1071/CH18378 .
Qin, J. M.; Qin, Z. Y.; Yin, X. Q.; Zeng, Q. H.; Zhu, L . Synthesis and characterization of alkylated bacterial cellulose in an ionic liquid . Bioresources , 2015 . 10 2185 -2194 . DOI:10.15376/biores.10.2.2185-2194http://doi.org/10.15376/biores.10.2.2185-2194 .
Kakuchi, R.; Yamaguchi, M.; Endo, T.; Shibata, Y.; Ninomiya, K.; Ikai, T.; Maeda, K.; Takahashi, K . Efficient and rapid direct transesterification reactions of cellulose with isopropenyl acetate in ionic liquids . RSC Adv. , 2015 . 5 72071 -72074 . DOI:10.1039/C5RA14408Fhttp://doi.org/10.1039/C5RA14408F .
Kakuchi, R.; Ito, R.; Nomura, S.; Abroshan, H.; Ninomiya, K.; Ikai, T.; Maeda, K.; Kim, H. J.; Takahashi, K . A mechanistic insight into the organocatalytic properties of imidazolium-based ionic liquids and a positive co-solvent effect on cellulose modification reactions in an ionic liquid . RSC Adv. , 2017 . 7 9423 -9430 . DOI:10.1039/C6RA28659Chttp://doi.org/10.1039/C6RA28659C .
Milotskyi, R.; Szabo´, L.; Fujie, T.; Sakata, K.; Wada, N.; Takahashi, K . Low waste process of rapid cellulose transesterifcation using ionic liquid/DMSO mixed solvent: towards more sustainable reaction systems . Carbohydr. Polym. , 2021 . 256 117560 -117567 . DOI:10.1016/j.carbpol.2020.117560http://doi.org/10.1016/j.carbpol.2020.117560 .
Yang, Y. L.; Song, L. C.; Peng, C.; Liu, E. H.; Xie, H. B . Activating cellulose via its reversible reaction with CO2 in the presence of 1,8-diazabicyclo[5.4.0]-undec-7-ene for the efficient synthesis of cellulose acetate . Green Chem. , 2015 . 17 2758 -2763 . DOI:10.1039/C5GC00115Chttp://doi.org/10.1039/C5GC00115C .
Yang, Y. L.; Xie, H. B.; Liu, E. H . Acylation of cellulose in reversible ionic liquids . Green Chem. , 2014 . 16 3018 -3023 . DOI:10.1039/C4GC00199Khttp://doi.org/10.1039/C4GC00199K .
Söyler, Y.; Onwukamike, K . N.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M. Sustainable succinylation of cellulose in a CO2-based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification . Green Chem. , 2018 . 20 214 -224 . DOI:10.1039/C7GC02577Ghttp://doi.org/10.1039/C7GC02577G .
Wolfs, J.; Meier, M . A more sustainable synthesis approach for cellulose acetate using the DBU/CO2 switchable solvent system . Green Chem. , 2021 . 23 4410 -4420 . DOI:10.1039/D1GC01508Ghttp://doi.org/10.1039/D1GC01508G .
Casarano, R.; EI Seoud, O. A . Successful application of an ionic liquid carrying the fluoride counter-ion in biomacromolecular chemistry: microwave-assisted acylation of cellulose in the presence of 1-allyl-3-methylimidazolium fluoride/DMSO mixtures . Macromol. Biosci. , 2013 . 13 191 -202 . DOI:10.1002/mabi.201200296http://doi.org/10.1002/mabi.201200296 .
Gericke, M.; Liebert, T.; EI Seoud, O.; Heinze, T . Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures . Macromol. Biosci. , 2011 . 296 483 -493. .
Possidonio, S.; Fidale, L. C.; EI Seoud, O. A . Microwave-assisted derivatization of cellulose in an ionic liquid: an efficient, expedient synthesis of simple and mixed carboxylic esters . J. Polym. Sci., Part A: Polym. Chem. , 2009 . 48 134 -143. .
Vitz, J.; Erdmenger, T.; Haensch, C.; Schubert, U. S . Extended dissolution studies of cellulose in imidazolium based ionic liquids . Green Chem. , 2009 . 11 417 -424 . DOI:10.1039/b818061jhttp://doi.org/10.1039/b818061j .
Ma, S.; Xue, X. L.; Yu, S. J.; Wang, Z. H . High-intensity ultrasound irradiated modification of sugarcane bagasse cellulose in an ionic liquid . Ind. Crops. Prod. , 2012 . 35 135 -139 . DOI:10.1016/j.indcrop.2011.06.023http://doi.org/10.1016/j.indcrop.2011.06.023 .
Sánchez, P. B.; Tsubaki, S.; Pádua, A. A. H.; Wada, Y . Kinetic analysis of microwave-enhanced cellulose dissolution in ionic solvents . Phys. Chem. Chem. Phys. , 2020 . 22 1003 DOI:10.1039/C9CP06239Dhttp://doi.org/10.1039/C9CP06239D .
Ndruru, S.; Pramono, E.; Wahyuningrum, D.; Bundjali, B.; Arcana, I. M . Preparation and characterization of biopolymer blend electrolyte membranes based on derived celluloses for lithium-ion batteries separator . Bull. Mater. Sci. , 2021 . 44 104 DOI:10.1007/s12034-021-02369-7http://doi.org/10.1007/s12034-021-02369-7 .
Jia, R. N.; Tian, W. G.; Bai, H.; Zhang, J . M.; Wang, S.; Zhang, J. Sunlight-driven wearable and robust antibacterial coatings with water-soluble cellulose-based photosensitizers . Adv. Healthc. Mater. , 2019 . 8 e1801591 DOI:10.1002/adhm.201801591http://doi.org/10.1002/adhm.201801591 .
Chen, Z. Y.; Xiao, P.; Zhang, J. M.; Tian, W. G.; Jia, R . N.; Nawaz, H.; Zhang, J. A facile strategy to fabricate cellulose-based, flame-retardant, transparent and anti-dripping protective coatings . Chem. Eng. J. , 2020 . 379 122270 DOI:10.1016/j.cej.2019.122270http://doi.org/10.1016/j.cej.2019.122270 .
Yang, T. T.; Xiao, P.; Zhang, J. M.; Jia, R. N.; Nawaz, H.; Chen, Z. Y.; Zhang, J . Multifunctional cellulose ester containing hindered phenol groups with free-radical-scavenging and UV-resistant activities . ACS Appl. Mater. Interfaces , 2019 . 11 4302 -4310 . DOI:10.1021/acsami.8b15642http://doi.org/10.1021/acsami.8b15642 .
Li, X.; Dong, F. P.; Zhang, Li. H.; Xu, Q. Q.; Zhu, X. Y.; Liang, S. M.; Hu, L. J.; Xie, H. B . Cellulosic protic ionic liquids hydrogel: a green and efficient catalyst carrier for Pd nanoparticles in reduction of 4-nitrophenol in water . Chem. Eng. J. , 2019 . 372 516 -525 . DOI:10.1016/j.cej.2019.04.123http://doi.org/10.1016/j.cej.2019.04.123 .
Cheng, Y. H.; Zhang, X.; Yin, C. C.; Zhang, J . M.; Yu, J.; Zhang, J. Immobilization of ionic liquids with a new cellulose ester containing imidazolium cation for high-performance CO2 separation membranes . Macromol. Rapid Commun. , 2021 . 42 2000494 DOI:10.1002/marc.202000494http://doi.org/10.1002/marc.202000494 .
Tian, W. G.; Zhang, J. M.; Yu, J.; Wu, J.; Zhang, J.; He, J. S.; Wang, F. S . Phototunable full-color emission of cellulose-based dynamic fluorescent materials . Adv. Funct. Mater. , 2018 . 28 1703548 DOI:10.1002/adfm.201703548http://doi.org/10.1002/adfm.201703548 .
Yin, C. C.; Zhang, J. M.; Chang, L. M.; Zhang, M.; Yang, T. T.; Zhang, X. C.; Zhang, J . Regioselectively substituted cellulose mixed esters synthesized by two-steps route to understand chiral recognition mechanism and fabricate high-performance chiral stationary phases . Anal. Chim. Acta , 2019 . 1073 90 -98 . DOI:10.1016/j.aca.2019.04.071http://doi.org/10.1016/j.aca.2019.04.071 .
Es-said, A.; EI Hamdaoui, L.; El Moussaouiti, M.; Bchitou, R . Esterification optimization of cellulose with p-Iodobenzoyl chloride using experimental design method . J. Polym. Res. , 2019 . 26 237 DOI:10.1007/s10965-019-1862-xhttp://doi.org/10.1007/s10965-019-1862-x .
Yin, C. C.; Chen, W. W.; Zhang, J . M.; Zhang, M.; Zhang, J. A facile and efficient method to fabricate high-resolution immobilized cellulose-based chiral stationary phases via thiol-ene click chemistry . Sep. Purif. Technol. , 2019 . 210 175 -181 . DOI:10.1016/j.seppur.2018.08.002http://doi.org/10.1016/j.seppur.2018.08.002 .
Tian, W. G.; Zhang, J. M.; Yu, J.; Wu, J.; Nawaz, H.; Zhang, J.; Wang, F. S . Cellulose-based solid fluorescent materials . Adv. Opt. Mater. , 2016 . 4 2044 -2050 . DOI:10.1002/adom.201600500http://doi.org/10.1002/adom.201600500 .
Jin, K. F.; Zhang, J. M.; Tian, W . G.; Ji, X.; Yu, J.; Zhang, J. Facile access to solid-state carbon dots with high luminescence efficiency and excellent formability via cellulose derivative coatings . ACS Sustain. Chem. Eng. , 2020 . 8 5937 -5945 . DOI:10.1021/acssuschemeng.0c00237http://doi.org/10.1021/acssuschemeng.0c00237 .
Hufendiek, A.; Carlmark, A.; Meier, M.; Barner, K. C . Fluorescent covalently cross-linked cellulose networks via lightinduced ligation . ACS Macro Lett. , 2016 . 5 139 -143 . DOI:10.1021/acsmacrolett.5b00806http://doi.org/10.1021/acsmacrolett.5b00806 .
Nawaz, H.; Tian, W. G.; Zhang, J. M.; Jia, R. N.; Chen, Z. Y.; Zhang, J . Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes . ACS Appl. Mater. Interfaces , 2018 . 10 2114 -2121 . DOI:10.1021/acsami.7b17342http://doi.org/10.1021/acsami.7b17342 .
Nawaz, H.; Tian, W. G.; Zhang, J. M.; Jia, R. N.; Yang, T . T.; Yu, J.; Zhang, J. Visual and precise detection of pH values under extreme acidic and strong basic environments by cellulose-based superior sensor . Anal. Chem. , 2019 . 91 3085 -3092 . DOI:10.1021/acs.analchem.8b05554http://doi.org/10.1021/acs.analchem.8b05554 .
Nawaz, H.; Zhang, J. M.; Tian, W. G.; Jin, K. F.; Jia, R. N.; Yang, T. T.; Zhang, J . Cellulose-based fluorescent sensor for visual and versatile detection of amines and anions . J. Hazard. Mater. , 2020 . 387 121719 DOI:10.1016/j.jhazmat.2019.121719http://doi.org/10.1016/j.jhazmat.2019.121719 .
Jia, R. N.; Tian, W. G.; Bai, H. T.; Zhang, J . M.; Wang, S.; Zhang, J. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness . Nat. Commun. , 2019 . 10 795 DOI:10.1038/s41467-019-08675-3http://doi.org/10.1038/s41467-019-08675-3 .
Müller, K.; Opdenbosch, D. V.; Zollfrank, C . Cellulose blends with polylactic acid or polyamide 6 from solution blending: Microstructure and polymer interactions . Mater. Today Commun. , 2020 . 30 103074 .
Xu, R. M.; Yang, T. T.; Vidović, E.; Jia, R. N.; Zhang, J. M.; Mi, Q. Y.; Zhang, J . Cellulose acetate thermoplastics with high modulus, dimensional stability and anti-migration properties by using CA-g-PLA as macromolecular plasticizer . Chinese J. Polym. Sci. , 2020 . 38 1141 -1148 . DOI:10.1007/s10118-020-2470-2http://doi.org/10.1007/s10118-020-2470-2 .
Yan, C. H.; Zhang, J. M.; Lv, Y. X.; Yu, J.; Wu, J.; Zhang, J.; He, J. S . Thermoplastic cellulose-graft-poly(L-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst . Biomacromolecules , 2009 . 10 2013 -2018 . DOI:10.1021/bm900447uhttp://doi.org/10.1021/bm900447u .
Xiao, P.; Zhang, J. M.; Feng, Y.; Wu, J.; He, J. S.; Zhang, J . Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus: cellulose diphenyl phosphate and its mixed esters . Cellulose , 2014 . 21 2369 -2378 . DOI:10.1007/s10570-014-0256-9http://doi.org/10.1007/s10570-014-0256-9 .
Chen, Z. Y.; Zhang, J. M; Xiao, P.; Tian, W. G.; Zhang, J . Novel thermoplastic cellulose esters containing bulky moieties and soft segments . ACS Sustain. Chem. Eng. , 2018 . 6 4931 -4939 . DOI:10.1021/acssuschemeng.7b04466http://doi.org/10.1021/acssuschemeng.7b04466 .
Nishita, R.; Kuroda, K.; Ota, S.; Endo, T.; Suzuki, S.; Ninomiya, K.; Takahashi, K . Flame-retardant thermoplastics derived from plant cell wall polymers by single ionic liquid substitution . New J. Chem. , 2019 . 43 2057 -2064 . DOI:10.1039/C8NJ04797Ahttp://doi.org/10.1039/C8NJ04797A .
Zhong, H. Q.; Zhang, J. M.; Guo, Y.; Wang, L.; Ge, W. J.; Chen, M. W.; Sun, R. C.; Wang, X. H . Multi-color light-emitting amphiphilic cellulose/conjugated polymers nanomicelles for tumor cell imaging . Cellulose , 2017 . 24 889 -902 . DOI:10.1007/s10570-016-1126-4http://doi.org/10.1007/s10570-016-1126-4 .
Liu, H. C.; Li, C. J.; Wang, B. J.; Sui, X. F.; Wang, L.; Yan, X. L.; Xu, H.; Zhang, L. P.; Zhong, Y.; Mao, Z. P . Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties . Cellulose , 2018 . 25 559 -571 . DOI:10.1007/s10570-017-1546-9http://doi.org/10.1007/s10570-017-1546-9 .
Guo, Y. L.; Li, L.; Guo, G.; Pei, M.; Zhang, L. H.; Xie, H. B.; Sun, H.; Zheng, Q. Synthesis of a fully biobased cellulose-3-(2-hydroxyphenyl) propionate ester with antioxidant activity and UV-resistant properties by the DBU/CO2/DMSO solvent system Green Chem. 2021, 23, 2352-2361.
Correia, D. M.; Lizundia, E.; Meira, R . M.; Rincón-Iglesias, M.; Lanceros-Méndez, S. Cellulose nanocrystal and water-soluble cellulose derivative based electromechanical bending actuators . Materials , 2020 . 13 2294 DOI:10.3390/ma13102294http://doi.org/10.3390/ma13102294 .
Rana, H. H.; Park, J. H.; Gund, G. S.; Park, H. S . Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors . Energy Stor. Mater. , 2020 . 25 70 -75 . DOI:10.1016/j.ensm.2019.10.030http://doi.org/10.1016/j.ensm.2019.10.030 .
Alekseeva, O. V.; Shibaeva, V. D.; Noskov, A. V; Ivanov, V. K.; Agafonov, A. V . Enhancing the thermal stability of ionogels: synthesis and properties of triple ionic liquid/halloysite/MCC ionogels . Molecules , 2021 . 26 6198 DOI:10.3390/molecules26206198http://doi.org/10.3390/molecules26206198 .
Rani, M. S. A.; Mohammad, M.; Sát, M. S.; Ahmad, A.; Mohamed, N. S . Novel approach for the utilization of ionic liquid-based cellulose derivative biosourced polymer electrolytes in safe sodium-ion batteries . Polym. Bull. , 2021 . 78 5355 -5377 . DOI:10.1007/s00289-020-03382-2http://doi.org/10.1007/s00289-020-03382-2 .
Shen, Y. Q.; Yuan, C. P.; Zhu, X. Y.; Chen, Q.; Lu, S. J.; Xie, H. B . Engineering cellulose into water soluble poly(protic ionic liquid) electrolytes in the DBU/CO2/DMSO solvent system as an organocatalyst for the Knoevenagel condensation reaction . Green Chem. , 2021 . 23 9922 -9934 . DOI:10.1039/D1GC03148Ahttp://doi.org/10.1039/D1GC03148A .
Luo, N.; Lv, Y. X.; Wang, D. X.; Zhang, J. M.; Wu, J.; He, J. S.; Zhang, J . Direct visualization of solution morphology of cellulose in ionic liquids by conventional TEM at room temperature . Chem. Commun. , 2012 . 48 6283 -6285 . DOI:10.1039/c2cc31483ehttp://doi.org/10.1039/c2cc31483e .
Zhou, Y,; Zhang, X. C.; Yin, D. X.; Zhang, J. M.; Mi, Q. Y.; Lu, H. C.; Liang, D. H.; Zhang, J. . The solution state and dissolution process of cellulose in ionic-liquid-based solvents with different hydrogen-bonding basicity and microstructures . Green Chem. , 2022 . 24 3824 -3833 . DOI:10.1039/d2gc00374khttp://doi.org/10.1039/d2gc00374k .
Zhou, Y.; Cheng, Y. H.; Mi, Q. Y.; Zhang, X. C.; Zhang, J. M.; Zhang, J . Confronting the challenge of cellulose molecular weight measurement: an accurate, rapid, and universal method with ionic liquid as an additive . Anal. Chem. , 2022 . 94 5432 -5440 . DOI:10.1021/acs.analchem.2c00558http://doi.org/10.1021/acs.analchem.2c00558 .
Li, J. Y.; Nawaz, H.; Wu, J.; Zhang, J . M.; Wan, J.; Mi, Q.; Zhang, J. All-cellulose composites based on the self-reinforced effect . Compos. Commun. , 2018 . 9 42 -53 . DOI:10.1016/j.coco.2018.04.008http://doi.org/10.1016/j.coco.2018.04.008 .
Wang, D. X.; Yu, J.; Zhang, J. M.; He, J. S.; Zhang, J . Transparent bionanocomposites with improved properties from poly(propylene carbonate) (PPC) and cellulose nanowhiskers (CNWs) . Compos. Sci. Technol. , 2013 . 85 83 -89 . DOI:10.1016/j.compscitech.2013.06.004http://doi.org/10.1016/j.compscitech.2013.06.004 .
Wang, D. X.; Li, J. Y.; Zhang, J . M; Yu, J.; Zhang, J. Re-dispersible 1D and 2D nanoparticle solid powders without any surfactant . ChemNanoMat , 2019 . 5 163 -168 . DOI:10.1002/cnma.201800399http://doi.org/10.1002/cnma.201800399 .
Wang, D. X.; Yang, T. T.; Li, J. Y.; Zhang, J. M.; Yu, J.; Zhang, X. C.; Zhang, J . Thermostable and redispersible cellulose nanocrystals with thixotropic gelation behavior by a facile desulfation process . ACS Sustain. Chem. Eng. , 2020 . 8 11737 -11746 . DOI:10.1021/acssuschemeng.0c03838http://doi.org/10.1021/acssuschemeng.0c03838 .
Zhang, J. M.; Luo, N.; Zhang, X. Y.; Xu, L . L.; Wu, J.; Yu, J.; Zhang, J. All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an Ionic Liquid . ACS Sustain. Chem. Eng. , 2016 . 4 4417 -4423 . DOI:10.1021/acssuschemeng.6b01034http://doi.org/10.1021/acssuschemeng.6b01034 .
Zhang, J. M.; Luo, N.;Wan, J. Q.; Xia, G. M.; Yu, J.; He, J. S.; Zhang, J . Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additional in situ-retained cellulose nanocrystals . ACS Sustain. Chem. Eng. , 2017 . 5 5127 -5133 . DOI:10.1021/acssuschemeng.7b00488http://doi.org/10.1021/acssuschemeng.7b00488 .
Xia, G. M.; Wan, J. Q.; Zhang, J. M.; Zhang, X. Y.; Xu, L . L.; Wu, J.; Zhang, J. (2016) Cellulose-based films prepared directly from waste newspapers via an ionic liquid . Carbohydr. Polym. , 2016 . 151 223 -229 . DOI:10.1016/j.carbpol.2016.05.080http://doi.org/10.1016/j.carbpol.2016.05.080 .
Xia, G. M.; Zhou, Q. W.; Xu, Z.; Zhang, J. M.; Zhang, J.; Wang, J.; You, J. H.; Wang, Y. H.; Nawaz, H . Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication . Carbohydr. Polym. , 2021 . 273 118569 DOI:10.1016/j.carbpol.2021.118569http://doi.org/10.1016/j.carbpol.2021.118569 .
Yan, C. H.; Wang, R. H.; Wan, J. Q.; Zhang, Q. H.; Xue, S . Z.; Wu, X.; Cong, W. Cellulose/microalgae composite films prepared in ionic liquids . Algal. Res. , 2016 . 20 135 -141 . DOI:10.1016/j.algal.2016.09.024http://doi.org/10.1016/j.algal.2016.09.024 .
Lu, H. C.; Xia, Z. H.; Zheng, X.; Mi, Q. Y.; Zhang, J. M.; Zhou, Y.; Zhang, J. . Patternable cellulose/MWCNT laminated nanocomposites with anisotropic thermal and electrical conductivity . Compos. Commun. , 2021 . 26 100786 DOI:10.1016/j.coco.2021.100786http://doi.org/10.1016/j.coco.2021.100786 .
Lu, H. C.; Xia, Z, H.; Mi, Q. Y.; Zhang, J. M.; Zheng, X. J.; He, Z . Y.; Wu, J.; Zhang, J. Cellulose-based conductive films with superior joule heating performance, electromagnetic shielding efficiency, and high stability by in situ welding to construct a segregated MWCNT conductive network . Ind. Eng. Chem. Res. , 2022 . 61 1773 -1785 . DOI:10.1021/acs.iecr.1c04677http://doi.org/10.1021/acs.iecr.1c04677 .
Li, J. Y.; Zhang, X. C.; Zhang, J. M.; Mi, Q. Y.; Jia, F . W.; Wu, J.; Zhang, J. Direct and complete utilization of agricultural straw to fabricate all-biomass films with high-strength, high-haze and UV-shielding properties . Carbohydr. Polym. , 2019 . 223 115057 DOI:10.1016/j.carbpol.2019.115057http://doi.org/10.1016/j.carbpol.2019.115057 .
Xia, Z. H.; Li, J. Y.; Lu, H. C.; Zhang, J. M.; Mi, Q. Y.; Wu, J.; Zheng, X. J.; Zhang, J . Natural grass to all-biomass biodegradable tape and superior oil-water separation fabric . Resour. Conserv. Recycling , 2022 . 182 106320 DOI:10.1016/j.resconrec.2022.106320http://doi.org/10.1016/j.resconrec.2022.106320 .
Mi, Q. Y.; Ma, S. R.; Yu, J.; He, J. S.; Zhang, J . Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process . ACS Sustain. Chem. Eng. , 2016 . 4 656 -660 . DOI:10.1021/acssuschemeng.5b01079http://doi.org/10.1021/acssuschemeng.5b01079 .
Wan, J. Q.; Zhang, J . M.; Yu, J.; Zhang, J. Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium-ion batteries . ACS Appl. Mater. Interfaces , 2017 . 9 24591 -24599 . DOI:10.1021/acsami.7b06271http://doi.org/10.1021/acsami.7b06271 .
Yuan, B.; Zhang, J. M.; Mi, Q . Y.; Yu, J.; Song, R.; Zhang, J. (2017) Transparent cellulose–silica composite aerogels with excellent flame retardancy via an in situ sol-gel process . ACS Sustain. Chem. En.g , 2017 . 5 11117 -11123 . DOI:10.1021/acssuschemeng.7b03211http://doi.org/10.1021/acssuschemeng.7b03211 .
Wan, J. Q.; Zhang, J. M.; Zheng, X. J.; Jia, F. W.; Yu, J.; Zhang, J. . Flame-retardant cellulose based composite aerogel membranes for lithium ion batteries . Acta Polymerica Sinica (in Chinese) , 2020 . 51 935 -943 . DOI:10.11777/j.issn1000-3304.2020.20081http://doi.org/10.11777/j.issn1000-3304.2020.20081 .
Xia, Z. H.; Li, J. Y.; Zhang, J. M.; Zhang, X. C.; Zheng, X. J.; Zhang, J . Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids . J. Bioresour. Bioprod. , 2020 . 5 79 -95 . DOI:10.1016/j.jobab.2020.04.001http://doi.org/10.1016/j.jobab.2020.04.001 .
0
Views
11
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution