a.Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
b.Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
c.Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
Huiliang@gzhu.edu.cn
Scan for full text
Qingqing Bai, Huiliang Sun, Xugang Guo, et al. Advances in Green-Solvent-Processable All-Polymer Solar Cells. [J]. Chinese Journal of Polymer Science 40(8):846-860(2022)
Qingqing Bai, Huiliang Sun, Xugang Guo, et al. Advances in Green-Solvent-Processable All-Polymer Solar Cells. [J]. Chinese Journal of Polymer Science 40(8):846-860(2022) DOI: 10.1007/s10118-022-2772-7.
This paper presents recent advances in green-solvent-processable all-PSCs from the material design and morphological control perspective. And further reviews progress in using more environmentally friendly solvents (i.e., water or alcohol) to achieve genuinely sustainable and environmentally friendly manufacturing all-PSCs.
All-polymer solar cells (all-PSCs) have significantly improved long-term stability and mechanical stretchability. The power conversion efficiency (PCE) of all-PSCs has been rapidly improved from ~1% to now over ~17%, driven by rational molecular design, blend morphology optimization, and device engineering. However, most all-PSCs are generally processed with halogenated solvents, hazardous for human health and the global environment. Achieving high-performance all-PSCs with halogen-free solvent processing remains a challenge. This feature article presents recent advances in green-solvent-processable all-PSCs from the material design and morphological control perspective, and further reviews progress in using more environmentally friendly solvents (,i.e., water or alcohol) to achieve genuinely sustainable and environmentally friendly manufacturing all-PSCs. Finally, we provide an outlook on the challenges and opportunities for large-scale manufacturing of green-solvent-processable all-PSCs.
All-polymer solar cellsGreen solventMolecular designMorphology control
Fu, H.; Wang, Z.; Sun, Y . Advances in non-fullerene acceptor based ternary organic solar cells . Sol. RRL , 2018 . 2 1700158 .
Wang, G.; Eastham, N. D.; Aldrich, T. J.; Ma, B.; Manley, E. F.; Chen, Z.; Chen, L. X.; de la Cruz, M. O.; Chang, R. P. H.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J . Photoactive blend morphology engineering through systematically tuning aggregation in all-polymer solar cells . Adv. Energy Mater. , 2018 . 8 1702173 .
Chen, S.; Jung, S.; Cho, H. J.; Kim, N. H.; Jung, S.; Xu, J.; Oh, J.; Cho, Y.; Kim, H.; Lee, B.; An, Y.; Zhang, C.; Xiao, M.; Ki, H.; Zhang, Z. G.; Kim, J . Y.; Li, Y.; Park, H.; Yang, C. Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices . Angew. Chem. Int. Ed. , 2018 . 57 13277 -13282 . DOI:10.1002/anie.201807513http://doi.org/10.1002/anie.201807513 .
Li, B. B.; Zhang, X. Y.; Wu, Z.; Yang, J.; Liu, B.; Liao, Q. G.; Wang, J. W.; Feng, K.; Chen, R.; Woo, H. Y.; Ye, F.; Niu, L.; Guo, X. G.; Sun, H. L. . Over 16% efficiency all-polymer solar cells by sequential deposition . Sci. China Chem. , 2022 . 65 1157 -1163 . DOI:10.1007/s11426-022-1247-1http://doi.org/10.1007/s11426-022-1247-1 .
Fan, Q. P.; Su, W. Y.; Chen, S. S.; Kim, W.; Chen, X. B.; Lee, B.; Liu, T.; Mendez-Romero, U. A.; Ma, R. J.; Yang, T.; Zhuang, W. L.; Li, Y.; Li, Y. W.; Kim, T. S.; Hou, L. T.; Yang, C.; Yan, H.; Yu, D. H.; Wang, E. G . Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms . Joule , 2020 . 4 658 -672 . DOI:10.1016/j.joule.2020.01.014http://doi.org/10.1016/j.joule.2020.01.014 .
An, Q.; Wang, J.; Ma, X.; Gao, J.; Hu, Z.; Liu, B.; Sun, H.; Guo, X.; Zhang, X.; Zhang, F . Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency . Energy Environ. Sci. , 2020 . 13 5039 -5047 . DOI:10.1039/D0EE02516Jhttp://doi.org/10.1039/D0EE02516J .
Liu, T.; Yang, T.; Ma, R. J.; Zhan, L. L.; Luo, Z. H.; Zhang, G. Y.; Li, Y.; Gao, K.; Xiao, Y. Q.; Yu, J. W.; Zou, X. H.; Sun, H. L.; Zhang, M. J.; Dela Pena, T. A.; Xing, Z. S.; Liu, H.; Li, X. J.; Li, G.; Huang, J. H.; Duan, C. H.; Wong, K. S.; Lu, X. H.; Guo, X. G.; Gao, F.; Chen, H. Z.; Huang, F.; Li, Y. F.; Li, Y . L.; Cao, Y.; Tang, B.; Yan, H. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend . Joule , 2021 . 5 914 -930 . DOI:10.1016/j.joule.2021.02.002http://doi.org/10.1016/j.joule.2021.02.002 .
Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; Xiao, Y.; Dela Peña, T. A.; Li, Y.; Zou, X.; Xing, Z.; Luo, Z.; Wong, K . S.; Lu, X.; Ye, L.; Yan, H.; Gao, K. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors . Matter , 2022 . 5 725 -734 . DOI:10.1016/j.matt.2021.12.002http://doi.org/10.1016/j.matt.2021.12.002 .
Sun, H.; Liu, B.; Ma, Y.; Lee, J.-W.; Yang, J.; Wang, J.; Li, Y.; Li, B.; Feng, K.; Shi, Y.; Zhang, B.; Han, D.; Meng, H.; Niu, L.; Kim, B . J.; Zheng, Q.; Guo, X. Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells . Adv. Mater. , 2021 . 33 2102635 DOI:10.1002/adma.202102635http://doi.org/10.1002/adma.202102635 .
Ma, R.; Yu, J.; Liu, T.; Zhang, G.; Xiao, Y.; Luo, Z.; Chai, G.; Chen, Y.; Fan, Q.; Su, W.; Li, G.; Wang, E.; Lu, X.; Gao, F.; Tang, B.; Yan, H . All-polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives . Aggregate , 2021 . 10.1002/agt2.58 DOI:10.1002/agt2.58http://doi.org/10.1002/agt2.58 .
Sun, H.; Liu, B.; Yu, J.; Zou, X.; Zhang, G.; Zhang, Y.; Zhang, W.; Su, M.; Fan, Q.; Yang, K.; Chen, J.; Yan, H.; Gao, F.; Guo, X . Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells . Sci. China Chem. , 2020 . 63 1785 -1792 . DOI:10.1007/s11426-020-9826-4http://doi.org/10.1007/s11426-020-9826-4 .
Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z.-G.; Liu, F.; Zhang, M.; Russell, T. P.; Li, Y . 11.2% Efficiency all-polymer solar cells with high open-circuit voltage . Sci. China Chem. , 2019 . 62 845 -850 . DOI:10.1007/s11426-019-9466-6http://doi.org/10.1007/s11426-019-9466-6 .
Zhao, W.; Zhang, S.; Zhang, Y.; Li, S.; Liu, X.; He, C.; Zheng, Z.; Hou, J . Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method . Adv. Mater. , 2018 . 30 1704837 DOI:10.1002/adma.201704837http://doi.org/10.1002/adma.201704837 .
Wang, Z.; Gao, K.; Kan, Y.; Zhang, M.; Qiu, C.; Zhu, L.; Zhao, Z.; Peng, X.; Feng, W.; Qian, Z.; Gu, X.; Jen, A. K. Y.; Tang, B . Z.; Cao, Y.; Zhang, Y.; Liu, F. The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances . Nat. Commun. , 2021 . 12 332 DOI:10.1038/s41467-020-20515-3http://doi.org/10.1038/s41467-020-20515-3 .
Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B . Efficient photodiodes from interpenetrating polymer networks . Nature , 1995 . 376 498 -500 . DOI:10.1038/376498a0http://doi.org/10.1038/376498a0 .
Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J . Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions . Science , 1995 . 270 1789 -1791 . DOI:10.1126/science.270.5243.1789http://doi.org/10.1126/science.270.5243.1789 .
Ye, L.; Jiao, X.; Zhou, M.; Zhang, S.; Yao, H.; Zhao, W.; Xia, A.; Ade, H.; Hou, J . Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells . Adv. Mater. , 2015 . 27 6046 -6054 . DOI:10.1002/adma.201503218http://doi.org/10.1002/adma.201503218 .
McNeill, C. R . Morphology of all-polymer solar cells . Energy Environ. Sci. , 2012 . 5 5653 -5667 . DOI:10.1039/c2ee03071chttp://doi.org/10.1039/c2ee03071c .
Zhang, S.; Ye, L.; Zhang, H.; Hou, J . Green-solvent-processable organic solar cells . Mater. Today , 2016 . 19 533 -543 . DOI:10.1016/j.mattod.2016.02.019http://doi.org/10.1016/j.mattod.2016.02.019 .
Burgués-Ceballos, I.; Machui, F.; Min, J.; Ameri, T.; Voigt, M. M.; Luponosov, Y. N.; Ponomarenko, S. A.; Lacharmoise, P. D.; Campoy-Quiles, M.; Brabec, C. J . Solubility based identification of green solvents for small molecule organic solar cells . Adv. Funct. Mater. , 2014 . 24 1449 -1457 . DOI:10.1002/adfm.201301509http://doi.org/10.1002/adfm.201301509 .
Tait, J. G.; Merckx, T.; Li, W . Q.; Wong, C.; Gehlhaar, R.; Cheyns, D.; Turbiez, M.; Heremans, P. Determination of solvent systems for blade coating thin film photovoltaics . Adv. Funct. Mater. , 2015 . 25 3393 -3398 . DOI:10.1002/adfm.201501039http://doi.org/10.1002/adfm.201501039 .
Hansen, C. M. Hansen Solubility Parameters: A User's Handbook. 2nd ed.; CRC Press: Boca Raton, 2007.
Larsen, C.; Lundberg, P.; Tang, S.; Ràfols-Ribé, J.; Sandström, A.; Mattias Lindh, E.; Wang, J.; Edman, L . A tool for identifying green solvents for printed electronics . Nat. Commun. , 2021 . 12 4510 DOI:10.1038/s41467-021-24761-xhttp://doi.org/10.1038/s41467-021-24761-x .
Sánchez-Camargo, A. D . P.; Bueno, M.; Parada-Alfonso, F.; Cifuentes, A.; Ibáñez, E. Hansen solubility parameters for selection of green extraction solvents . TrAC, Trends Anal. Chem. , 2019 . 118 227 -237 . DOI:10.1016/j.trac.2019.05.046http://doi.org/10.1016/j.trac.2019.05.046 .
Jalan, I.; Lundin, L.; Jan, V. S . Using solubility parameters to model more environmentally friendly solvent blends for organic solar cell active layers . Materials , 2019 . 12 3889 DOI:10.3390/ma12233889http://doi.org/10.3390/ma12233889 .
Abbott, S.; Hansen, C. M. Hansen solubility parameters in practice. Hansen-Solubility: 2008.
Holmes, N. P.; Munday, H.; Barr, M. G.; Thomsen, L.; Marcus, M. A.; Kilcoyne, A. L. D.; Fahy, A.; van Stam, J.; Dastoor, P. C.; Moons, E . Unravelling donor-acceptor film morphology formation for environmentally-friendly OPV ink formulations . Green Chem. , 2019 . 21 5090 -5103 . DOI:10.1039/C9GC02288Khttp://doi.org/10.1039/C9GC02288K .
Zhu, L.; Zhong, W.; Qiu, C.; Lyu, B.; Zhou, Z.; Zhang, M.; Song, J.; Xu, J.; Wang, J.; Ali, J.; Feng, W.; Shi, Z.; Gu, X.; Ying, L.; Zhang, Y.; Liu, F . Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication . Adv. Mater. , 2019 . 31 1902899 DOI:10.1002/adma.201902899http://doi.org/10.1002/adma.201902899 .
Kietzke, T.; Neher, D.; Landfester, K.; Montenegro, R.; Guntner, R.; Scherf, U . Novel approaches to polymer blends based on polymer nanoparticles . Nat. Mater. , 2003 . 2 408 -412 . DOI:10.1038/nmat889http://doi.org/10.1038/nmat889 .
Stapleton, A.; Vaughan, B.; Xue, B. F.; Sesa, E.; Burke, K.; Zhou, X. J.; Bryant, G.; Werzer, O.; Nelson, A.; Kilcoyne, A. L . D.; Thomsen, L.; Wanless, E.; Belcher, W.; Dastoor, P. A multilayered approach to polyfluorene water-based organic photovoltaics . Sol. Energy Mater. Sol. Cells , 2012 . 102 114 -124 . DOI:10.1016/j.solmat.2012.03.016http://doi.org/10.1016/j.solmat.2012.03.016 .
Xie, C.; Heumüller, T.; Gruber, W.; Tang, X.; Classen, A.; Schuldes, I.; Bidwell, M.; Späth, A.; Fink, R. H.; Unruh, T.; McCulloch, I.; Li, N.; Brabec, C. J . Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects . Nat. Commun. , 2018 . 9 5335 DOI:10.1038/s41467-018-07807-5http://doi.org/10.1038/s41467-018-07807-5 .
Duan, C.; Zhang, K.; Zhong, C.; Huang, F.; Cao, Y . Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells . Chem. Soc. Rev. , 2013 . 42 9071 -9104 . DOI:10.1039/c3cs60200ahttp://doi.org/10.1039/c3cs60200a .
Ma, Z. W.; Zhao, B.; Gong, Y. S.; Deng, J. P.; Tan, Z. A . Green-solvent-processable strategies for achieving large-scale manufacture of organic photovoltaics . J. Mater. Chem. A , 2019 . 7 22826 -22847 . DOI:10.1039/C9TA09277Chttp://doi.org/10.1039/C9TA09277C .
Jiang, H. Y.; Qin, G. M.; Zhang, L. J.; Pan, F. L.; Wu, Z. H.; Wang, Q.; Wen, G. Z.; Zhang, W.; Cao, Y.; Chen, J. W . Dithienobenzoxadiazole-based wide bandgap donor polymers with strong aggregation properties for the preparation of efficient as-cast non-fullerene polymer solar cells processed using a non-halogenated solvent . J. Mater. Chem. C , 2021 . 9 249 -259 . DOI:10.1039/D0TC04909Chttp://doi.org/10.1039/D0TC04909C .
Li, G. P.; Feng, L. W.; Mukherjee, S.; Jones, L. O.; Jacobberger, R. M.; Huang, W.; Young, R. M.; Pankow, R. M.; Zhu, W. G.; Lu, N.; Kohlstedt, K. L.; Sangwan, V. K.; Wasielewski, M. R.; Hersam, M. C.; Schatz, G. C.; DeLongchamp, D. M.; Facchetti, A.; Marks, T. J . Non-fullerene acceptors with direct and indirect hexa-fluorination afford > 17% efficiency in polymer solar cells . Energy Environ. Sci. , 2022 . 15 645 -659 . DOI:10.1039/D1EE03225Ahttp://doi.org/10.1039/D1EE03225A .
Yu, H.; Pan, M. A.; Sun, R.; Agunawela, I.; Zhang, J. Q.; Li, Y. H.; Qi, Z. Y.; Han, H.; Zou, X. H.; Zhou, W. T.; Chen, S. S.; Lai, J. Y. L.; Luo, S. W.; Luo, Z. H.; Zhao, D. H.; Lu, X. H.; Ade, H.; Huang, F.; Min, J.; Yan, H . Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15. 2 % efficiency . Angew. Chem. Int. Ed. , 2021 . 60 10137 -10146 . DOI:10.1002/anie.202016284http://doi.org/10.1002/anie.202016284 .
Yu, H.; Qi, Z.; Yu, J.; Xiao, Y.; Sun, R.; Luo, Z.; Cheung, A. M . H.; Zhang, J.; Sun, H.; Zhou, W.; Chen, S.; Guo, X.; Lu, X.; Gao, F.; Min, J.; Yan, H. Fluorinated end group enables high-performance all-polymer solar cells with near-infrared absorption and enhanced device efficiency over 14% . Adv. Energy Mater. , 2021 . 11 2003171 DOI:10.1002/aenm.202003171http://doi.org/10.1002/aenm.202003171 .
Yu, H.; Luo, S.; Sun, R.; Angunawela, I.; Qi, Z.; Peng, Z.; Zhou, W.; Han, H.; Wei, R.; Pan, M.; Cheung, A. M . H.; Zhao, D.; Zhang, J.; Ade, H.; Min, J.; Yan, H. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition . Adv. Funct. Mater. , 2021 . 31 2100791 DOI:10.1002/adfm.202100791http://doi.org/10.1002/adfm.202100791 .
He, J.; Zhang, W. J.; Ye, J. C.; Gao, P. Q . 16% efficient silicon/organic heterojunction solar cells using narrow band-gap conjugated polyelectrolytes based low resistance electron-selective contacts . Nano Energy , 2018 . 43 117 -123 . DOI:10.1016/j.nanoen.2017.11.025http://doi.org/10.1016/j.nanoen.2017.11.025 .
Tan, Y.; Chen, L.; Wu, F. Y.; Huang, B.; Liao, Z. H.; Yu, Z. K. N.; Hu, L.; Zhou, Y. H.; Chen, Y. W . Regulation of the polar groups in n-type conjugated polyelectrolytes as electron transfer layer for inverted polymer solar cells . Macromolecules , 2018 . 51 8197 -8204 . DOI:10.1021/acs.macromol.8b01490http://doi.org/10.1021/acs.macromol.8b01490 .
Zhang, L. Z.; Zhou, X. Y.; Zhong, X. W.; Cheng, C.; Tian, Y. Q.; Xu, B. M . Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells . Nano Energy , 2019 . 57 248 -255 . DOI:10.1016/j.nanoen.2018.12.033http://doi.org/10.1016/j.nanoen.2018.12.033 .
Ye, L.; Zhang, S. Q.; Zhao, W. C.; Yao, H. F.; Hou, J. H . Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain . Chem. Mater. , 2014 . 26 3603 -3605 . DOI:10.1021/cm501513nhttp://doi.org/10.1021/cm501513n .
Chen, Y.; Zhang, S. Q.; Wu, Y.; Hou, J. H . Molecular design and morphology control towards efficient polymer solar cells processed using non-aromatic and non-chlorinated solvents . Adv. Mater. , 2014 . 26 2744 -2749 . DOI:10.1002/adma.201304825http://doi.org/10.1002/adma.201304825 .
Meng, B.; Song, H. Y.; Chen, X. X.; Xie, Z. Y.; Liu, J.; Wang, L. X . Replacing alkyl with oligo(ethylene glycol) as side chains of conjugated polymers for close π-π stacking . Macromolecules , 2015 . 48 4357 -4363 . DOI:10.1021/acs.macromol.5b00702http://doi.org/10.1021/acs.macromol.5b00702 .
Lee, S.; Jeong, D.; Kim, C.; Lee, C.; Kang, H.; Woo, H. Y.; Kim, B. J . Eco-friendly polymer solar cells: advances in green-solvent processing and material design . ACS Nano , 2020 . 14 14493 -14527 . DOI:10.1021/acsnano.0c07488http://doi.org/10.1021/acsnano.0c07488 .
Kim, C.; Chen, S.; Park, J. S.; Kim, G. U.; Kang, H.; Lee, S.; Phan, T. N. L.; Kwon, S. K.; Kim, Y. H.; Kim, B. J . Green solvent-processed, high-performance organic solar cells achieved by outer side-chain selection of selenophene-incorporated Y-series acceptors . J. Mater. Chem. A , 2021 . 9 24622 -24630 . DOI:10.1039/D1TA07046Khttp://doi.org/10.1039/D1TA07046K .
Li, S.; Zhang, H.; Yue, S.; Yu, X.; Zhou, H . Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing . Nanotechnol. , 2021 . 33 072002 DOI:10.1088/1361-6528/ac020bhttp://doi.org/10.1088/1361-6528/ac020b .
Jiang, H.; Taranekar, P.; Reynolds, J. R.; Schanze, K. S . Conjugated polyelectrolytes: synthesis, photophysics, and applications . Angew. Chem. Int. Ed. , 2009 . 48 4300 -4316 . DOI:10.1002/anie.200805456http://doi.org/10.1002/anie.200805456 .
Fan, B.; Ying, L.; Wang, Z.; He, B.; Jiang, X . F.; Huang, F.; Cao, Y. Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9% . Energy Environ. Sci. , 2017 . 10 1243 -1251 . DOI:10.1039/C7EE00619Ehttp://doi.org/10.1039/C7EE00619E .
Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y . All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10% . Adv. Mater. , 2017 . 29 1703906 DOI:10.1002/adma.201703906http://doi.org/10.1002/adma.201703906 .
Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H . Efficient organic solar cells processed from hydrocarbon solvents . Nat. Energy , 2016 . 1 15027 DOI:10.1038/nenergy.2015.27http://doi.org/10.1038/nenergy.2015.27 .
Qin, Y. P.; Ye, L.; Zhang, S. Q.; Zhu, J.; Yang, B.; Ade, H.; Hou, J. H . A polymer design strategy toward green solvent processed efficient non-fullerene polymer solar cells . J. Mater. Chem. A , 2018 . 6 4324 -4330 . DOI:10.1039/C8TA00368Hhttp://doi.org/10.1039/C8TA00368H .
Li, S.; Zhang, H.; Zhao, W.; Ye, L.; Yao, H.; Yang, B.; Zhang, S.; Hou, J . Green-solvent-processed all-polymer solar cells containing a perylene diimide-based acceptor with an efficiency over 6.5% . Adv. Energy Mater. , 2016 . 6 1501991 DOI:10.1002/aenm.201501991http://doi.org/10.1002/aenm.201501991 .
Zhou, Y.; Gu, K. L.; Gu, X. D.; Kurosawa, T.; Yan, H. P.; Guo, Y. K.; Koleilat, G. I.; Zhao, D. H.; Toney, M. F.; Bao, Z. N . All-polymer solar cells employing non-halogenated solvent and additive . Chem. Mater. , 2016 . 28 5037 -5042 . DOI:10.1021/acs.chemmater.6b01776http://doi.org/10.1021/acs.chemmater.6b01776 .
Zhou, L.; He, X.; Lau, T. K.; Qiu, B.; Wang, T.; Lu, X.; Luszczynska, B.; Ulanski, J.; Xu, S.; Chen, G.; Yuan, J.; Zhang, Z. G.; Li, Y.; Zou, Y . Nonhalogenated solvent-processed all-polymer solar cells over 7. 4% efficiency from quinoxaline-based polymers . ACS Appl. Mater. Interfaces , 2018 . 10 41318 -41325 . DOI:10.1021/acsami.8b13949http://doi.org/10.1021/acsami.8b13949 .
Li, J. H.; Li, Y. L.; Xu, J. T.; Luscombe, C. K . Self-assembled amphiphilic block copolymers/CdTe nanocrystals for efficient aqueous-processed hybrid solar cells . ACS Appl. Mater. Interfaces , 2017 . 9 17942 -17948 . DOI:10.1021/acsami.7b03074http://doi.org/10.1021/acsami.7b03074 .
Kim, H. I.; Lee, J.; Choi, M.-J.; Ryu, S. U.; Choi, K.; Lee, S.; Hoogland, S.; de Arquer, F. P. G.; Sargent, E. H.; Park, T . Efficient and stable colloidal quantum dot solar cells with a green-solvent hole-transport layer . Adv. Energy Mater. , 2020 . 10 2002084 DOI:10.1002/aenm.202002084http://doi.org/10.1002/aenm.202002084 .
Liao, Q.; Kang, Q.; Yang, Y.; Zheng, Z.; Qin, J.; Xu, B.; Hou, J . Highly stable organic solar cells based on an ultraviolet-resistant cathode interfacial layer . CCS Chem. , 2022 . 4 1059 -1069 . DOI:10.31635/ccschem.021.202100852http://doi.org/10.31635/ccschem.021.202100852 .
Kang, Q.; Liao, Q.; Yang, C.; Yang, Y.; Xu, B.; Hou, J . A new PEDOT derivative for efficient organic solar cell with a fill factor of 0.80 . Adv. Energy Mater. , 2022 . 12 2103892 DOI:10.1002/aenm.202103892http://doi.org/10.1002/aenm.202103892 .
Ye, L.; Xiong, Y.; Li, S.; Ghasemi, M.; Balar, N.; Turner, J.; Gadisa, A.; Hou, J.; O'Connor, B. T.; Ade, H . Precise manipulation of multilength scale morphology and its influence on eco-friendly printed all-polymer solar cells . Adv. Funct. Mater. , 2017 . 27 1702016 DOI:10.1002/adfm.201702016http://doi.org/10.1002/adfm.201702016 .
Jeong, M.; Lee, B.; Cho, Y.; Oh, J.; Lee, S . M.; Lee, J.; Yang, C. Toxic solvent- and additive-free efficient all-polymer solar cells via a simple random sequence strategy in both donor and acceptor copolymer backbones . Small Methods , 2020 . 4 1900696 DOI:10.1002/smtd.201900696http://doi.org/10.1002/smtd.201900696 .
Li, Z.; Xie, R.; Zhong, W.; Fan, B.; Ali, J.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y . High-performance green solvent processed ternary blended all-polymer solar cells enabled by complementary absorption and improved morphology . Sol. RRL , 2018 . 2 1800196 DOI:10.1002/solr.201800196http://doi.org/10.1002/solr.201800196 .
Feng, W.; Lin, Z.; Lin, C.; Wang, W.; Ling, Q . Bicomponent random approach for the synthesis of donor polymers for efficient all-polymer solar cells processed from a green solvent . ACS Appl. Mater. Interfaces , 2019 . 11 43441 -43451 . DOI:10.1021/acsami.9b15936http://doi.org/10.1021/acsami.9b15936 .
Zhu, C.; Li, Z.; Zhong, W.; Peng, F.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y . Constructing a new polymer acceptor enabled non-halogenated solvent-processed all-polymer solar cell with an efficiency of 13. 8% . ChCom , 2021 . 57 935 -938. .
Zhang, J.; Jia, T.; Tan, C.-H.; Zhang, K.; Ren, M.; Dong, S.; Xu, Q.; Huang, F.; Cao, Y . Nonhalogenated-solvent-processed high-performance all-polymer solar cell with efficiency over 14% . Sol. RRL , 2021 . 5 2100076 .
Liu, B.; Sun, H. L.; Lee, J. W.; Yang, J.; Wang, J. W.; Li, Y. C.; Li, B. B.; Xu, M.; Liao, Q. G.; Zhang, W.; Han, D. X.; Niu, L.; Meng, H.; Kim, B. J.; Guo, X. G . Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere . Energy Environ. Sci. , 2021 . 14 4499 -4507 . DOI:10.1039/D1EE01310Fhttp://doi.org/10.1039/D1EE01310F .
Liu, H.; Wang, L.; Liu, H.; Guan, M.; Su, C. J.; Jeng, U . S.; Zhao, B.; Weng, C.; You, K.; Lu, X. Ternary polymerization strategy to approach 12% efficiency in all-polymer solar cells processed by green solvent and additive . Chem. Eng. J. , 2022 . 429 132407 DOI:10.1016/j.cej.2021.132407http://doi.org/10.1016/j.cej.2021.132407 .
Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y . A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11% . Energy Environ. Sci. , 2019 . 12 157 -163 . DOI:10.1039/C8EE02863Jhttp://doi.org/10.1039/C8EE02863J .
Li, Z.-Y.; Zhong, W.-K.; Ying, L.; Li, N.; Liu, F.; Huang, F.; Cao, Y . Achieving efficient thick film all-polymer solar cells using a green solvent additive . Chinese J. Polym. Sci. , 2020 . 38 323 -331 . DOI:10.1007/s10118-020-2356-3http://doi.org/10.1007/s10118-020-2356-3 .
Li, Z.; Zhong, W.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y . Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability . Nano Energy , 2019 . 64 103931 DOI:10.1016/j.nanoen.2019.103931http://doi.org/10.1016/j.nanoen.2019.103931 .
Zhang, Q.; Chen, Z. Y.; Ma, W.; Xie, Z. Y.; Han, Y. C . Optimizing domain size and phase purity in all-polymer solar cells by solution ordered aggregation and confinement effect of the acceptor . J. Mater. Chem. C , 2019 . 7 12560 -12571 . DOI:10.1039/C9TC03697Khttp://doi.org/10.1039/C9TC03697K .
Zhang, Q.; Chen, Z.; Ma, W.; Xie, Z.; Liu, J.; Yu, X.; Han, Y . Efficient nonhalogenated solvent-processed ternary all-polymer solar cells with a favorable morphology enabled by two well-compatible donors . ACS Appl. Mater. Interfaces , 2019 . 11 32200 -32208 . DOI:10.1021/acsami.9b06963http://doi.org/10.1021/acsami.9b06963 .
Gokulnath, T.; Choi, J.; Jin, H.; Park, H.-Y.; Sung, K.; Do, Y.; Park, H.; Reddy, S. S.; Kim, J.; Song, M.; Yoon, J.; Jin, S. H . All-polymer solar cells approaching 12% efficiency with a new π-conjugated polymer donor enabled by a nonhalogenated solvent process . ACS Appl. Mater. Interfaces , 2021 . 13 28231 -28241 . DOI:10.1021/acsami.1c05921http://doi.org/10.1021/acsami.1c05921 .
Lee, S.; Kim, Y.; Wu, Z.; Lee, C.; Oh, S. J.; Nguyen Thanh, L.; Lee, J.; Jeong, D.; Zhang, K.; Huang, F.; Kim, T. S.; Woo, H. Y.; Kim, B. J . Aqueous-soluble naphthalene diimide-based polymer acceptors for efficient and air-stable all-polymer solar cells . ACS Appl. Mater. Interfaces , 2019 . 11 45038 -45047 . DOI:10.1021/acsami.9b13812http://doi.org/10.1021/acsami.9b13812 .
Zhang, Y.; Wang, N.; Wang, Y.; Zhang, J.; Liu, J.; Wang, L . All-polymer indoor photovoltaic modules . iScience , 2021 . 24 103104 DOI:10.1016/j.isci.2021.103104http://doi.org/10.1016/j.isci.2021.103104 .
Yuan, J. Y.; Xu, Y. L.; Shi, G. Z.; Ling, X. F.; Ying, L.; Huang, F.; Lee, T. H.; Woo, H. Y.; Kim, J. Y.; Cao, Y.; Ma, W. L . Engineering the morphology via processing additives in multiple all-polymer solar cells for improved performance . J. Mater. Chem. A , 2018 . 6 10421 -10432 . DOI:10.1039/C8TA03343Ahttp://doi.org/10.1039/C8TA03343A .
Zheng, Y. F.; Goh, T.; Fan, P.; Shi, W.; Yu, J. S.; Taylor, A. D . Toward efficient thick active PTB7 photovoltaic layers using diphenyl ether as a solvent additive . ACS Appl. Mater. Interfaces , 2016 . 8 15724 -15731 . DOI:10.1021/acsami.6b03453http://doi.org/10.1021/acsami.6b03453 .
Fuchs, R.; Chambers, E. J.; Stephenson, W. K . Enthalpies of interaction of nonpolar solutes with nonpolar solvents. The role of solute polarizability and molar volume in solvation . CaJCh , 1987 . 65 2624 -2627 . DOI:10.1139/v87-433http://doi.org/10.1139/v87-433 .
Walker, B.; Tamayo, A.; Duong, D. T.; Dang, X. D.; Kim, C.; Granstrom, J.; Nguyen, T. Q . A systematic approach to solvent selection based on cohesive energy densities in a molecular bulk heterojunction system . Adv. Energy Mater. , 2011 . 1 221 -229 . DOI:10.1002/aenm.201000054http://doi.org/10.1002/aenm.201000054 .
Lee, J.; Park, S. A.; Ryu, S. U.; Chung, D.; Park, T.; Son, S. Y . Green-solvent-processable organic semiconductors and future directions for advanced organic electronics . J. Mater. Chem. A , 2020 . 8 21455 -21473 . DOI:10.1039/D0TA07373Chttp://doi.org/10.1039/D0TA07373C .
Lan, L.; Chen, Z.; Hu, Q.; Ying, L.; Zhu, R.; Liu, F.; Russell, T . P.; Huang, F.; Cao, Y. High-performance polymer solar cells based on a wide-bandgap polymer containing pyrrolo[3,4-f]benzotriazole-5,7-dione with a power conversion efficiency of 8.63% . Adv. Sci. , 2016 . 3 1600032 DOI:10.1002/advs.201600032http://doi.org/10.1002/advs.201600032 .
Park, C. D.; Fleetham, T. A.; Li, J.; Vogt, B. D . High performance bulk-heterojunction organic solar cells fabricated with non-halogenated solvent processing . Org. Electron. , 2011 . 12 1465 -1470 . DOI:10.1016/j.orgel.2011.05.020http://doi.org/10.1016/j.orgel.2011.05.020 .
Burgues-Ceballos, I.; Stella, M.; Lacharmoise, P.; Martinez-Ferrero, E . Towards industrialization of polymer solar cells: material processing for upscaling . J. Mater. Chem. A , 2014 . 2 17711 -17722 . DOI:10.1039/C4TA03780Dhttp://doi.org/10.1039/C4TA03780D .
Ye, L.; Xiong, Y.; Yao, H.; Gadisa, A.; Zhang, H.; Li, S.; Ghasemi, M.; Balar, N.; Hunt, A.; O’Connor, B . T.; Hou, J.; Ade, H. High performance organic solar cells processed by blade coating in air from a benign food additive solution . Chem. Mater. , 2016 . 28 7451 -7458 . DOI:10.1021/acs.chemmater.6b03083http://doi.org/10.1021/acs.chemmater.6b03083 .
Hong, L.; Yao, H.; Wu, Z.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R.; Liao, Q.; Gao, B.; Xian, K.; Woo, H . Y.; Ge, Z.; Hou, J. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency . Adv. Mater. , 2019 . 31 1903441 DOI:10.1002/adma.201903441http://doi.org/10.1002/adma.201903441 .
Chen, X.; Huang, R.; Han, Y.; Zha, W.; Fang, J.; Lin, J.; Luo, Q.; Chen, Z.; Ma, C. Q . Balancing the molecular aggregation and vertical phase separation in the polymer: nonfullerene blend films enables 13.09% efficiency of organic solar cells with inkjet-printed active layer . Adv. Energy Mater. , 2022 . 12 2200044 DOI:10.1002/aenm.202200044http://doi.org/10.1002/aenm.202200044 .
Tintori, F.; Laventure, A.; Welch, G. C . Perylene diimide based organic photovoltaics with slot-die coated active layers from halogen-free solvents in air at room temperature . ACS Appl. Mater. Interfaces , 2019 . 11 39010 -39017 . DOI:10.1021/acsami.9b14251http://doi.org/10.1021/acsami.9b14251 .
Dayneko, S. V.; Pahlevani, M.; Welch, G. C . Indoor photovoltaics: photoactive material selection, greener ink formulations, and slot-die coated active layers . ACS Appl. Mater. Interfaces , 2019 . 11 46017 -46025 . DOI:10.1021/acsami.9b19549http://doi.org/10.1021/acsami.9b19549 .
Layenture, A.; Harding, C. R.; Cieplechowicz, E.; Li, Z.; Wang, J.; Zou, Y. P.; Welch, G. C . Screening quinoxaline-type donor polymers for roll-to-roll processing compatible organic photovoltaics . ACS Appl. Polym. Mater. , 2019 . 1 2168 -2176 . DOI:10.1021/acsapm.9b00433http://doi.org/10.1021/acsapm.9b00433 .
Xiong, Y.; Ye, L.; Zhang, C . Eco-friendly solution processing of all-polymer solar cells: recent advances and future perspective . J. Polym. Sci. , 2022 . 60 945 -960 . DOI:10.1002/pol.20210745http://doi.org/10.1002/pol.20210745 .
0
Views
15
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution