a.School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, China
b.State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
yelong@tju.edu.cn
Scan for full text
Jing-Jing Wang, Long Ye. When Electronically Inert Polymers Meet Conjugated Polymers: Emerging Opportunities in Organic Photovoltaics. [J]. Chinese Journal of Polymer Science 40(8):861-869(2022)
Jing-Jing Wang, Long Ye. When Electronically Inert Polymers Meet Conjugated Polymers: Emerging Opportunities in Organic Photovoltaics. [J]. Chinese Journal of Polymer Science 40(8):861-869(2022) DOI: 10.1007/s10118-022-2762-9.
This paper presents recent advances in green-solvent-processable all-PSCs from the material design and morphological control perspective. And further reviews progress in using more environmentally friendly solvents (i.e., water or alcohol) to achieve genuinely sustainable and environmentally friendly manufacturing all-PSCs.
Insulating polymers (commodity plastics in particular) are a major category of polymeric materials widely used in our daily life, but they exhibit abysmal electrical conductivity. Instead, conjugated polymers are gaining tremendous interest due to their excellent electrical properties and versatile applications in organic electronics. In this perspective, we provide a concise account of the added value in organic solar cells, as brought by the combined use of conjugated and insulating polymers. The challenging tasks and prospective directions are given to the potential benefits of employing insulating polymer additives, which spans from common commodity plastics to high-temperature resistant resins and thermoplastic elastomers. Particularly, the inert polymers can improve many important properties such as mechanical and thermal robustness but not sacrifice optoelectronic performance.
Organic solar cellsInsulating polymersPhotovoltaic polymersMiscibilityMorphology
Xue, R.; Zhang, J.; Li, Y.; Li, Y . Organic solar cell materials toward commercialization . Small , 2018 . 14 1801793 DOI:10.1002/smll.201801793http://doi.org/10.1002/smll.201801793 .
Cheng, P.; Li, G.; Zhan, X.; Yang, Y . Next-generation organic photovoltaics based on non-fullerene acceptors . Nat. Photonics , 2018 . 12 131 -142 . DOI:10.1038/s41566-018-0104-9http://doi.org/10.1038/s41566-018-0104-9 .
Yan, T.; Song, W.; Huang, J.; Peng, R.; Huang, L.; Ge, Z. 16.67% Rigid and 14 . 06% flexible organic solar cells enabled by ternary heterojunction strategy . Adv. Mater. , 2019 . 31 1902210 DOI:10.1002/adma.201902210http://doi.org/10.1002/adma.201902210 .
Yuan, X.; Zhao, Y.; Xie, D.; Pan, L.; Liu, X.; Duan, C.; Huang, F.; Cao, Y . Polythiophenes for organic solar cells with efficiency surpassing 17% . Joule , 2022 . 6 647 -661 . DOI:10.1016/j.joule.2022.02.006http://doi.org/10.1016/j.joule.2022.02.006 .
Yang, C.; Zhang, S.; Hou, J . Low-cost and efficient organic solar cells based on polythiophene- and poly(thiophene vinylene)-related donors . Aggregate , 2021 . 3 e111 .
Wang, Q.; Li, M. M.; Peng, Z. X.; Kirby, N.; Deng, Y. F.; Ye, L.; Geng, Y. H . Calculation aided miscibility manipulation enables highly efficient polythiophene: nonfullerene photovoltaic cells . Sci. China Chem. , 2021 . 64 478 -487 . DOI:10.1007/s11426-020-9890-6http://doi.org/10.1007/s11426-020-9890-6 .
Yang, C.; Zhang, S.; Ren, J.; Gao, M.; Bi, P.; Ye, L.; Hou, J . Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency . Energy Environ. Sci. , 2020 . 13 2864 -2869 . DOI:10.1039/D0EE01763Ahttp://doi.org/10.1039/D0EE01763A .
Wu, J.; Gao, M.; Chai, Y.; Liu, P.; Zhang, B.; Liu, J.; Ye, L . Towards a bright future: the versatile applications of organic solar cells . Mater. Rep. Energy , 2021 . 1 100062 .
Hou, J.; Inganäs, O.; Friend, R.; Gao, F . Organic solar cells based on non-fullerene acceptors . Nat. Mater. , 2018 . 17 119 DOI:10.1038/nmat5063http://doi.org/10.1038/nmat5063 .
Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A.; Marder, S.; Zhan, X . Non-fullerene acceptors for organic solar cells . Nat. Rev. Mater. , 2018 . 3 18003 DOI:10.1038/natrevmats.2018.3http://doi.org/10.1038/natrevmats.2018.3 .
Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H. L.; Cao, Y.; Chen, Y . Organic and solution-processed tandem solar cells with 17.3% efficiency . Science , 2018 . 361 1094 -1098 . DOI:10.1126/science.aat2612http://doi.org/10.1126/science.aat2612 .
Zhang, J.; Tan, H.; Guo, X.; Facchetti, A.; Yan, H . Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors . Nat. Energy , 2018 . 3 720 -731 . DOI:10.1038/s41560-018-0181-5http://doi.org/10.1038/s41560-018-0181-5 .
Huang, F.; Bo, Z.; Geng, Y.; Wang, X.; Wang, L.; Ma, Y.; Hou, J.; Hu, W.; Pei, J.; Dong, H.; Wang, S.; Li, Z.; Shuai, Z.; Li, Y.; Cao, Y. Study on optoelectronic polymers: an overview and outlook. Acta Polymerica Sinica10.11777/j.issn1000-3304.2019.19110 (in Chinese) 2019, 50, 988-1046.
Hu, Z.; Wang, J.; Ma, X.; Gao, J.; Xu, C.; Yang, K.; Wang, Z.; Zhang, J.; Zhang, F . A critical review on semitransparent organic solar cells . Nano Energy , 2020 . 78 105376 DOI:10.1016/j.nanoen.2020.105376http://doi.org/10.1016/j.nanoen.2020.105376 .
Chen, Z.; Song, W.; Yu, K.; Ge, J.; Zhang, J.; Xie, L.; Peng, R.; Ge, Z . Small-molecular donor guest achieves rigid 18.5% and flexible 15.9% efficiency organic photovoltaic via fine-tuning microstructure morphology . Joule , 2021 . 5 2395 -2407 . DOI:10.1016/j.joule.2021.06.017http://doi.org/10.1016/j.joule.2021.06.017 .
Zhan, L.; Li, S.; Li, Y.; Sun, R.; Min, J.; Bi, Z.; Ma, W.; Chen, Z.; Zhou, G.; Zhu, H.; Shi, M.; Zuo, L.; Chen, H . Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics . Joule , 2022 . 6 662 -675 . DOI:10.1016/j.joule.2022.02.001http://doi.org/10.1016/j.joule.2022.02.001 .
Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19 . 05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination . Adv. Mater. , 2022 . 34 2109516 DOI:10.1002/adma.202109516http://doi.org/10.1002/adma.202109516 .
Bi, P.; Zhang, S.; Chen, Z.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J.; Qin, J.; Hong, L.; Hao, X.; Hou, J . Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency . Joule , 2021 . 5 2408 -2419 . DOI:10.1016/j.joule.2021.06.020http://doi.org/10.1016/j.joule.2021.06.020 .
Li, Y.; Huang, X.; Ding, K.; Sheriff, H. K. M.; Ye, L.; Liu, H.; Li, C. Z.; Ade, H.; Forrest, S. R . Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years . Nat. Commun. , 2021 . 12 5419 DOI:10.1038/s41467-021-25718-whttp://doi.org/10.1038/s41467-021-25718-w .
Peng, Z.; Jiang, K.; Qin, Y.; Li, M.; Balar, N.; O'Connor, B . T.; Ade, H.; Ye, L.; Geng, Y. Modulation of morphological, mechanical, and photovoltaic properties of ternary organic photovoltaic blends for optimum operation . Adv. Energy Mater. , 2021 . 11 2003506 DOI:10.1002/aenm.202003506http://doi.org/10.1002/aenm.202003506 .
Qin, J.; Lan, L.; Chen, S.; Huang, F.; Shi, H.; Chen, W.; Xia, H.; Sun, K.; Yang, C . Recent progress in flexible and stretchable organic solar cells . Adv. Funct. Mater. , 2020 . 30 2002529 DOI:10.1002/adfm.202002529http://doi.org/10.1002/adfm.202002529 .
Han, J. H.; Bao, F.; Huang, D.; Wang, X. C.; Yang, C. M.; Yang, R. Q.; Jian, X. G.; Wang, J. Y.; Bao, X. C.; Chu, J. H . A universal method to enhance flexibility and stability of organic solar cells by constructing insulating matrices in active layers . Adv. Funct. Mater. , 2020 . 30 2003654 DOI:10.1002/adfm.202003654http://doi.org/10.1002/adfm.202003654 .
Ye, L.; Ke, H.; Liu, Y . The renaissance of polythiophene organic solar cells . Trends Chem. , 2021 . 3 1074 -1087 . DOI:10.1016/j.trechm.2021.09.008http://doi.org/10.1016/j.trechm.2021.09.008 .
Cheng, P.; Zhan, X . Stability of organic solar cells: challenges and strategies . Chem. Soc. Rev. , 2016 . 45 2544 -82 . DOI:10.1039/C5CS00593Khttp://doi.org/10.1039/C5CS00593K .
Ye, L.; Gao, M.; Hou, J . Advances and prospective in thermally stable nonfullerene polymer solar cells . Sci. China Chem. , 2021 . 64 1875 -1887 . DOI:10.1007/s11426-021-1087-8http://doi.org/10.1007/s11426-021-1087-8 .
Li, N.; Perea, J.; Kassar, T.; Richter, M.; Heumueller, T.; Matt, G.; Hou, Y.; Guldal, N.; Chen, H.; Chen, S.; Langner, S.; Berlinghof, M.; Unruh, T.; Brabec, C . Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing . Nat. Commun. , 2017 . 8 14541 DOI:10.1038/ncomms14541http://doi.org/10.1038/ncomms14541 .
Zhu, Y.; Gadisa, A.; Peng, Z.; Ghasemi, M.; Ye, L.; Xu, Z.; Zhao, S.; Ade, H . Rational strategy to stabilize an unstable high-efficiency binary nonfullerene organic solar cells with a third component . Adv. Energy Mater. , 2019 . 9 1900376 DOI:10.1002/aenm.201900376http://doi.org/10.1002/aenm.201900376 .
Scaccabarozzi, A. D.; Stingelin, N . Semiconducting:Insulating polymer blends for optoelectronic applications-a review of recent advances . J. Mater. Chem. A , 2014 . 2 10818 -10824 . DOI:10.1039/C4TA01065Ehttp://doi.org/10.1039/C4TA01065E .
Ferenczi, T. A. M.; Müller, C.; Bradley, D. D . C.; Smith, P.; Nelson, J.; Stingelin, N. Organic semiconductor:Insulator polymer ternary blends for photovoltaics . Adv. Mater. , 2011 . 23 4093 -4097 . DOI:10.1002/adma.201102100http://doi.org/10.1002/adma.201102100 .
Goffri, S.; Müller, C.; Stingelin-Stutzmann, N.; Breiby, D. W.; Radano, C. P.; Andreasen, J. W.; Thompson, R.; Janssen, R. A. J.; Nielsen, M . M.; Smith, P.; Sirringhaus, H. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold . Nat. Mater. , 2006 . 5 950 DOI:10.1038/nmat1779http://doi.org/10.1038/nmat1779 .
Wang, T.; Liu, J. Q.; Hao, X. T . Recent progress of organic solar cells with insulating polymers . Sol. RRL , 2020 . 4 2000539 DOI:10.1002/solr.202000539http://doi.org/10.1002/solr.202000539 .
Chang, Y.; Zhu, X.; Lu, K.; Wei, Z . Progress and prospects of thick-film organic solar cells . J. Mater. Chem. A , 2021 . 9 3125 -3150 . DOI:10.1039/D0TA10594Ehttp://doi.org/10.1039/D0TA10594E .
Wang, T.; Yang, X. Y.; Bi, P. Q.; Niu, M. S.; Feng, L.; Liu, J. Q.; Hao, X. T . Effective exciton dissociation and reduced charge recombination in thick-film organic solar cells via incorporation of insulating polypropylene . Sol. RRL , 2019 . 3 1900087 DOI:10.1002/solr.201900087http://doi.org/10.1002/solr.201900087 .
Wang, T.; Niu, M. S.; Wen, Z. C.; Jiang, Z. N.; Qin, C. C.; Wang, X. Y.; Liu, H. Y.; Li, X. Y.; Yin, H.; Liu, J. Q.; Hao, X. T . High-efficiency thickness-insensitive organic solar cells with an insulating polymer . ACS Appl Mater Interfaces , 2021 . 13 11134 -11143 . DOI:10.1021/acsami.0c22452http://doi.org/10.1021/acsami.0c22452 .
Tai, Q. D.; Li, J. H.; Liu, Z. K.; Sun, Z. H.; Zhao, X. Z.; Yan, F . Enhanced photovoltaic performance of polymer solar cells by adding fullerene end-capped polyethylene glycol . J. Mater. Chem , 2011 . 21 6848 -6853 . DOI:10.1039/c0jm04559dhttp://doi.org/10.1039/c0jm04559d .
Li, H.; Yang, Z.; Pan, C.; Jiang, N.; Satija, S. K.; Xu, D.; Gersappe, D.; Nam, C. Y.; Rafailovich, M. H . A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase . Nanoscale , 2017 . 9 11511 -11522 . DOI:10.1039/C7NR03789Ahttp://doi.org/10.1039/C7NR03789A .
Wu, F. C.; Hsu, S. W.; Cheng, H. L.; Chou, W. Y.; Tang, F. C . Effects of soft insulating polymer doping on the photovoltaic properties of polymer-fullerene blend solar cells . J. Phys. Chem. C , 2013 . 117 8691 -8696. .
Kumari, T.; Moon, M.; Kang, S. H.; Yang, C . Improved efficiency of DTGe(FBTTh2)2-based solar cells by using macromolecular additives: how macromolecular additives versus small additives influence nanoscale morphology and photovoltaic performance . Nano Energy , 2016 . 24 56 -62 . DOI:10.1016/j.nanoen.2016.03.026http://doi.org/10.1016/j.nanoen.2016.03.026 .
Deng, J.; Huang, B.; Li, W.; Zhang, L.; Jeong, S. Y.; Huang, S.; Zhang, S.; Wu, F.; Xu, X.; Zou, G.; Woo, H. Y.; Chen, Y.; Chen, L. Ferroelectric polymer drives performance enhancement of non-fullerene organic solar cells. Angew. Chem. Int. Ed. 2022, DOI:10.1002/anie.202202177.
Wang, M.; Liu, S.; You, P.; Wang, N.; Tang, G.; Miao, Q.; Yan, F . Insulating polymers for enhancing the efficiency of nonfullerene organic solar cells . Sol. RRL , 2020 . 4 2000013 DOI:10.1002/solr.202000013http://doi.org/10.1002/solr.202000013 .
Oh, J.; Jung, S.; Jeong, M.; Lee, B.; Lee, J.; Cho, Y.; Lee, S M.; Chen, S.; Zhang, Z. G.; Li, Y.; Yang, C . Ring-perfluorinated non-volatile additives with a high dielectric constant lead to highly efficient and stable organic solar cells . J. Mater. Chem. C , 2019 . 7 4716 -4724 . DOI:10.1039/C9TC00762Hhttp://doi.org/10.1039/C9TC00762H .
Lee, B.; Jeong, M.; Lee, J.; Oh, J.; Cho, Y.; Jung, S.; Lee, S . M.; Chen, S.; Yang, C. Thick-film high-performance solar cells with a C60-containing polystyrene additive . Solar RRL , 2019 . 3 1900033 DOI:10.1002/solr.201900033http://doi.org/10.1002/solr.201900033 .
Gumyusenge, A.; Tran, D. T.; Luo, X.; Pitch, G. M.; Zhao, Y.; Jenkins, K. A.; Dunn, T. J.; Ayzner, A. L.; Savoie, B. M.; Mei, J . Semiconducting polymer blends that exhibit stable charge transport at high temperatures . Science , 2018 . 362 1131 -1134 . DOI:10.1126/science.aau0759http://doi.org/10.1126/science.aau0759 .
Gao, M.; Liu, Y.; Xian, K.; Peng, Z.; Zhou, K.; Liu, J.; Li, S.; Xie, F.; Zhao, W.; Zhang, J.; Jiao, X.; Ye, L . Thermally stable poly(3-hexylthiophene):nonfullerene solar cells with efficiency breaking 10% . Aggregate , 2022 . 3 e190 .
Chen, F.; Zhang, Y.; Wang, Q.; Gao, M.; Kirby, N.; Peng, Z.; Deng, Y.; Li, M.; Ye, L . High Tg polymer insulator yields organic photovoltaic blends with superior thermal stability at 150 oC . Chin. J. Chem. , 2021 . 39 2570 -2578 . DOI:10.1002/cjoc.202100270http://doi.org/10.1002/cjoc.202100270 .
Han, J.; Bao, F.; Wang, X.; Huang, D.; Yang, R.; Yang, C.; Jian, X.; Wang, J.; Bao, X.; Chu, J . Identifying tunneling effects of poly(aryl ether) matrices and boosting the efficiency, stability, and stretchability of organic solar cells . Cell Rep. Phys. Sci. , 2021 . 2 100408 DOI:10.1016/j.xcrp.2021.100408http://doi.org/10.1016/j.xcrp.2021.100408 .
Chen, S.; Jung, S.; Cho, H. J.; Kim, N. H.; Jung, S.; Xu, J.; Oh, J.; Cho, Y.; Kim, H.; Lee, B.; An, Y.; Zhang, C.; Xiao, M.; Ki, H.; Zhang, Z. G.; Kim, J . Y.; Li, Y.; Park, H.; Yang, C. Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices . Angew. Chem. Int. Ed. , 2018 . 57 13277 -13282 . DOI:10.1002/anie.201807513http://doi.org/10.1002/anie.201807513 .
Liu, D.; Ding, Z.; Wu, Y.; Liu, S . F.; Han, Y.; Zhao, K. In situ study of molecular aggregation in conjugated polymer/elastomer blends toward stretchable electronics . Macromolecules , 2022 . 55 297 -308 . DOI:10.1021/acs.macromol.1c01537http://doi.org/10.1021/acs.macromol.1c01537 .
Zhu, Q.; Xue, J.; Lu, G.; Lin, B.; Naveed, H . B.; Bi, Z.; Lu, G.; Ma, W. Efficient and mechanically-robust organic solar cells based on vertical stratification modulation through sequential blade-coating . Nano Energy , 2022 . 97 107194 DOI:10.1016/j.nanoen.2022.107194http://doi.org/10.1016/j.nanoen.2022.107194 .
Root, S. E.; Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J . Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics . Chem. Rev. , 2017 . 117 6467 -6499 . DOI:10.1021/acs.chemrev.7b00003http://doi.org/10.1021/acs.chemrev.7b00003 .
Peng, Z.; Xian, K.; Cui, Y.; Qi, Q.; Liu, J.; Xu, Y.; Chai, Y.; Yang, C.; Hou, J.; Geng, Y.; Ye, L . Thermoplastic elastomer tunes phase structure and promotes stretchability of high-efficiency organic solar cells . Adv. Mater. , 2021 . 33 2106732 DOI:10.1002/adma.202106732http://doi.org/10.1002/adma.202106732 .
Dauzon, E.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A.; Anthopoulos, T. D . Versatile methods for improving the mechanical properties of fullerene and non-fullerene bulk heterojunction layers to enable stretchable organic solar cells . J. Mater. Chem. C , 2022 . 10 3375 -3386 . DOI:10.1039/D1TC05263Bhttp://doi.org/10.1039/D1TC05263B .
Liu, C.; Xiao, C.; Xie, C.; Zhu, Q.; Chen, Q.; Ma, W.; Li, W . Insulating polymers as additives to bulk-heterojunction organic solar cells: the effect of miscibility . Chemphyschem , 2022 . 23 e202100725 .
Feng, G.; Tan, W.; Karuthedath, S.; Li, C.; Jiao, X.; Liu, A. C. Y.; Venugopal, H.; Tang, Z.; Ye, L.; Laquai, F.; McNeill, C. R.; Li, W . Revealing the side-chain-dependent ordering transition of highly crystalline double-cable conjugated polymers . Angew. Chem. Int. Ed. , 2021 . 60 25499 -25507 . DOI:10.1002/anie.202111192http://doi.org/10.1002/anie.202111192 .
Jiang, X.; Yang, J.; Karuthedath, S.; Li, J.; Lai, W.; Li, C.; Xiao, C.; Ye, L.; Ma, Z.; Tang, Z.; Laquai, F.; Li, W . Miscibility-controlled phase separation in double-cable conjugated polymers for single-component organic solar cells with efficiencies over 8% . Angew. Chem. Int. Ed. , 2020 . 59 21683 -21692 . DOI:10.1002/anie.202009272http://doi.org/10.1002/anie.202009272 .
Feng, G. T.; Li, J. Y.; He, Y. K.; Zheng, W. Y.; Wang, J.; Li, C.; Tang, Z.; Osvet, A.; Li, N.; Brabec, C. J.; Yi, Y. P.; Yan, H.; Li, W. W . Thermal-driven phase separation of double-cable polymers enables efficient single-component organic solar cells . Joule , 2019 . 3 1765 -1781 . DOI:10.1016/j.joule.2019.05.008http://doi.org/10.1016/j.joule.2019.05.008 .
Xie, C.; Xiao, C.; Jiang, X.; Liang, S.; Liu, C.; Zhang, Z.; Chen, Q.; Li, W . Miscibility-controlled mechanical and photovoltaic properties in double-cable conjugated polymer/insulating polymer composites . Macromolecules , 2021 . 55 322 -330. .
Zhou, K.; Xian, K.; Ye, L . Morphology control in high-efficiency all-polymer solar cells . InfoMat , 2022 . 4 e12270 .
Balar, N.; Rech, J. J.; Henry, R.; Ye, L.; Ade, H.; You, W.; O’Connor, B. T . The importance of entanglements in optimizing the mechanical and electrical performance of all-polymer solar cells . Chem. Mater. , 2019 . 31 5124 -5132 . DOI:10.1021/acs.chemmater.9b01011http://doi.org/10.1021/acs.chemmater.9b01011 .
Yin, H.; Yan, C.; Hu, H.; Ho, J. K. W.; Zhan, X.; Li, G.; So, S. K . Recent progress of all-polymer solar cells – from chemical structure and device physics to photovoltaic performance . Mater. Sci. Eng. R Rep. , 2020 . 140 100542 DOI:10.1016/j.mser.2019.100542http://doi.org/10.1016/j.mser.2019.100542 .
Duan, C.; Ding, L . The new era for organic solar cells: polymer acceptors . Sci. Bull. , 2020 . 65 1508 -1510 . DOI:10.1016/j.scib.2020.05.023http://doi.org/10.1016/j.scib.2020.05.023 .
Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; Xiao, Y.; Dela Peña, T. A.; Li, Y.; Zou, X.; Xing, Z.; Luo, Z.; Wong, K . S.; Lu, X.; Ye, L.; Yan, H.; Gao, K. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors . Matter , 2022 . 5 725 -734 . DOI:10.1016/j.matt.2021.12.002http://doi.org/10.1016/j.matt.2021.12.002 .
Kong, Y.; Li, Y.; Yuan, J.; Ding, L . Polymerizing small molecular acceptors for efficient all-polymer solar cells . InfoMat , 2022 . 4 12271 .
Zhang, Z. G.; Li, Y . Polymerized small-molecule acceptors for high-performance all-polymer solar cells . Angew. Chem. Int. Ed. , 2021 . 60 4422 -4433 . DOI:10.1002/anie.202009666http://doi.org/10.1002/anie.202009666 .
Zhao, R.; Liu, J.; Wang, L . Polymer acceptors containing b←n units for organic photovoltaics . Acc. Chem. Res. , 2020 . 53 1557 -1567 . DOI:10.1021/acs.accounts.0c00281http://doi.org/10.1021/acs.accounts.0c00281 .
Sun, H.; Guo, X.; Facchetti, A . High-performance n-type polymer semiconductors: Applications, recent development, and challenges . Chem , 2020 . 6 1310 -1326 . DOI:10.1016/j.chempr.2020.05.012http://doi.org/10.1016/j.chempr.2020.05.012 .
Liu, J.; Gao, M.; Kim, J.; Zhou, Z.; Chung, D . S.; Yin, H.; Ye, L. Challenges and recent advances in photodiodes-based organic photodetectors . Mater. Today , 2021 . 51 475 -503 . DOI:10.1016/j.mattod.2021.08.004http://doi.org/10.1016/j.mattod.2021.08.004 .
Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I . The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications . Adv. Mater. , 2020 . 32 2001763 DOI:10.1002/adma.202001763http://doi.org/10.1002/adma.202001763 .
Liu, J.; Xian, K.; Ye, L.; Zhou, Z . Open-circuit voltage loss in lead chalcogenide quantum dot solar cells . Adv. Mater. , 2021 . 33 e2008115 DOI:10.1002/adma.202008115http://doi.org/10.1002/adma.202008115 .
Liu, J.; Qiao, J.; Zhou, K.; Wang, J.; Gui, R.; Xian, K.; Gao, M.; Yin, H.; Hao, X. T.; Zhou, Z.; Ye, L. An aggregation-suppressed polymer blending strategy enables high-performance organic and quantum dot hybrid solar cells. Small 2022, DOI: 10.1002/smll.202201387.
Gao, M.; Wang, W.; Hou, J.; Ye, L . Control of aggregated structure of photovoltaic polymers for high-efficiency solar cells . Aggregate , 2021 . 2 e46 .
Ding, Z.; Liu, D.; Zhao, K.; Han, Y . Optimizing morphology to trade off charge transport and mechanical properties of stretchable conjugated polymer films . Macromolecules , 2021 . 54 3907 -3926 . DOI:10.1021/acs.macromol.1c00268http://doi.org/10.1021/acs.macromol.1c00268 .
Choi, J.; Kim, W.; Kim, D.; Kim, S.; Chae, J.; Choi, S. Q.; Kim, F. S.; Kim, T. S.; Kim, B. J . Importance of critical molecular weight of semicrystalline n-type polymers for mechanically robust, efficient electroactive thin films . Chem. Mater. , 2019 . 31 3163 -3173 . DOI:10.1021/acs.chemmater.8b05114http://doi.org/10.1021/acs.chemmater.8b05114 .
0
Views
13
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution