
a.The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
b.PlemPolco B.V., Roek 24, 5508 KE Veldhoven, the Netherlands
p.ma@jiangnan.edu.cn
Scan for full text
Jia-Xuan Li, De-Yu Niu, Bo Liu, et al. Improvement on the Mechanical Performance and Resistance Towards Hydrolysis of Poly(glycolic acid)
Jia-Xuan Li, De-Yu Niu, Bo Liu, et al. Improvement on the Mechanical Performance and Resistance Towards Hydrolysis of Poly(glycolic acid)
In this work, a solid-state drawing process after melt extrusion was carried out on poly(glycolic acid) (PGA) to form oriented crystal structures and tightly arranged rigid amorphous fraction which strongly improved the mechanical properties and the resistance to hydrolysis of PGA.
Poly(glycolic acid) is a biocompatible as well as biocomposable polymer with superior mechanical and barrier properties and, consequently, has found important applications in both medical and packaging fields. However, the high hydrolysis rate in a high humidity environment restricts its application. In this work, a solid-state drawing process after melt extrusion is applied in order to produce fibrous PGA with enhanced mechanical properties and a much better resistance towards hydrolysis. The crystal structure of PGA gradually transformed from spherulites into oriented fibrous crystals in the stretching direction upon solid-state drawing. Meanwhile, both the length of microfibril and the size of lamellae increased initially with the drawing ratio (DR), while the chain-folded lamellae transformed into extended-chain fibrils at high(er) DR. The oriented structures lead to an overall improvement of the mechanical properties of PGA,e.g., the tensile strength increased from 62.0±1.4 MPa to 910±54 MPa and the elongation at break increased from around 7% to 50%. Meanwhile, the heat capacity of totally mobile amorphous PGA (Δ,C,p,0,=0.64 J∙g,−1,∙°C,−1,) was reported for the first time, which was used to analyze the content of mobile amorphous fraction (,X,MAF,) and rigid amorphous fraction (,X,RAF,). Both the oriented chain-folded lamellae crystals and the tightly arranged RAF are beneficial to prevent water molecules from penetrating the matrix, thus improving the resistance towards hydrolysis. As a consequence, the fibrous PGA with a DR of 5 showed a tensile strength retention rate of 17.3% higher in comparison with the undrawn sample after 7-days accelerated hydrolysis. Therefore, this work provides a feasible method to improve the mechanical and resistance towards hydrolysis performance of PGA, which may broaden its application and prolong the shelf-life of PGA products.
Poly(glycolic acid)Solid-state drawingFibrous crystalMechanical propertyHydrolysis resistance
Yu, C.; Bao, J.; Xie, Q.; Shan, G . Crystallization behavior and crystalline structural changes of poly(glycolic acid) investigated via temperature-variable WAXD and FTIR analysis . CrystEngComm , 2016 . 18 7894 -7902 . DOI:10.1039/C6CE01623Ehttp://doi.org/10.1039/C6CE01623E .
Chatani, Y.; Suehiro, K.; Okita, Y.; Tadokoro, H . H. Structural studies of polyesters. I. Crystal structure of polyglycolide . Macromol. Chem. Phys. , 1968 . 113 215 -229 . DOI:10.1002/macp.1968.021130119http://doi.org/10.1002/macp.1968.021130119 .
Yamane, K.; Kawakami, Y. Polyhydroxycarboxylic acid and its production process, US, 2006.
Shawe, S.; Buchanan, F.; Harkin-Jones, E.; Farrar, D . A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA) . J. Mater. Sci. , 2006 . 41 4832 -4838 . DOI:10.1007/s10853-006-0064-1http://doi.org/10.1007/s10853-006-0064-1 .
Stloukal, P.; Jandikova, G.; Koutny, M.; Sedlařík, V . Carbodiimide additive to control hydrolytic stability and biodegradability of PLA . Polym. Test. , 2016 . 54 19 -28 . DOI:10.1016/j.polymertesting.2016.06.007http://doi.org/10.1016/j.polymertesting.2016.06.007 .
Nishino, K.; Shindo, Y.; Takayama, T.; Ito, H . Improvement of impact strength and hydrolytic stability of PC/ABS blend using reactive polymer . J. Appl. Polym. Sci. , 2017 . 134 1 -6. .
Rodriguez, E.; Shahbikian, S.; Marcos, B.; Huneault, M. A . Hydrolytic stability of polylactide and poly(methyl methacrylate) blends . J. Appl. Polym. Sci. , 2018 . 135 1 -14. .
Špírková, M.; Hodan, J.; Kobera, L.; Kredatusová, J . The influence of the length of the degradable segment on the functional properties and hydrolytic stability of multi-component polyurethane elastomeric films . Polym. Degrad. Stabil. , 2017 . 137 216 -228 . DOI:10.1016/j.polymdegradstab.2017.01.021http://doi.org/10.1016/j.polymdegradstab.2017.01.021 .
Mazurek-Budzyńska, M.; Behl, M.; Razzaq, M. Y.; Nöchel, U . Hydrolytic stability of aliphatic poly(carbonate-urea-urethane)s: Influence of hydrocarbon chain length in soft segment . Polym. Degrad. Stabil. , 2019 . 161 283 -297 . DOI:10.1016/j.polymdegradstab.2019.01.032http://doi.org/10.1016/j.polymdegradstab.2019.01.032 .
Park, T. G . Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition . Biomaterials , 1995 . 16 1123 -1130 . DOI:10.1016/0142-9612(95)93575-Xhttp://doi.org/10.1016/0142-9612(95)93575-X .
Li, Y.; Yuan, L.; Ming, H.; Li, X . Enhanced hydrolytic resistance of fluorinated silicon-containing polyether urethanes . Biomacromolecules , 2020 . 21 1460 -1470 . DOI:10.1021/acs.biomac.9b01768http://doi.org/10.1021/acs.biomac.9b01768 .
Madden, D.G.; Albadarin, A.B.; O'Nolan, D.; Cronin, P . Metal-organic material polymer coatings for enhanced gas sorption performance and hydrolytic stability under humid conditions . ACS Appl. Mater. Interfaces , 2020 . 12 33759 -33764 . DOI:10.1021/acsami.0c08078http://doi.org/10.1021/acsami.0c08078 .
Xu, H.; Zhong, G. J.; Fu, Q.; Lei, J . Formation of shish-kebabs in injection-molded poly(l-lactic acid) by application of an intense flow field . ACS Appl. Mater. Interfaces , 2012 . 4 6774 -6784 . DOI:10.1021/am3019756http://doi.org/10.1021/am3019756 .
Zhou, S.-Y.; Niu, B.; Xie, X. L.; Ji, X . Interfacial shish-kebabs lengthened by coupling effect of in situ flexible nanofibrils and intense shear flow: achieving hierarchy to conquer the conflicts between strength and toughness of polylactide . ACS Appl. Mater. Interfaces , 2017 . 9 10148 -10159 . DOI:10.1021/acsami.7b00479http://doi.org/10.1021/acsami.7b00479 .
Zhang, Z. C.; Sang, Z. H.; Huang, Y. F.; Ru, J. F . Enhanced heat deflection resistance via shear flow-induced stereocomplex crystallization of polylactide systems . ACS Sustain. Chem. Eng. , 2017 . 5 1692 -1703 . DOI:10.1021/acssuschemeng.6b02438http://doi.org/10.1021/acssuschemeng.6b02438 .
Browning, A.; Chu, C. C . The effect of annealing treatments on the tensile properties and hydrolytic degradative properties of polyglycolic acid sutures . J. Biomed. Mater. Res. Part A , 1986 . 20 613 -632 . DOI:10.1002/jbm.820200507http://doi.org/10.1002/jbm.820200507 .
Sangroniz, A.; Chaos, A.; Iriarte, M.; del Río, J . Influence of the rigid amorphous fraction and crystallinity on polylactide transport properties . Macromolecules , 2018 . 51 3923 -3931 . DOI:10.1021/acs.macromol.8b00833http://doi.org/10.1021/acs.macromol.8b00833 .
Nassar, S. F.; Domenek, S.; Guinault, A.; Stoclet, G . Structural and dynamic heterogeneity in the amorphous phase of poly(L,L-lactide) confined at the nanoscale by the coextrusion process . Macromolecules , 2018 . 51 128 -136 . DOI:10.1021/acs.macromol.7b02188http://doi.org/10.1021/acs.macromol.7b02188 .
Montes de Oca, H.; Ward, I. M . Structure and mechanical properties of PGA crystals and fibres . Polymer , 2006 . 47 7070 -7077 . DOI:10.1016/j.polymer.2006.07.045http://doi.org/10.1016/j.polymer.2006.07.045 .
Montes de Oca, H.; Ward, I. M.; Klein, P. G.; Ries, M. E . Solid state nuclear magnetic resonance study of highly oriented poly(glycolic acid) . Polymer , 2004 . 45 7261 -7272 . DOI:10.1016/j.polymer.2004.08.028http://doi.org/10.1016/j.polymer.2004.08.028 .
Delpouve, N.; Stoclet, G.; Saiter, A.; Dargent, E . Water barrier properties in biaxially drawn poly(lactic acid) films . J. Phys. Chem. B , 2012 . 116 4615 -4625 . DOI:10.1021/jp211670ghttp://doi.org/10.1021/jp211670g .
Lee, S.; Hongo, C.; Nishino, T . Crystal modulus of poly(glycolic acid) and its temperature dependence . Macromolecules , 2017 . 50 5074 -5079 . DOI:10.1021/acs.macromol.7b00753http://doi.org/10.1021/acs.macromol.7b00753 .
An, M.; Xu, H.; Lv, Y.; Gu, Q . An in situ small-angle X-ray scattering study of the structural effects of temperature and draw ratio of the hot-drawing process on ultra-high molecular weight polyethylene fibers . RSC Adv. , 2016 . 6 51125 -51134 . DOI:10.1039/C6RA09965Chttp://doi.org/10.1039/C6RA09965C .
Cao, T.; Chen, X.; Lin, Y.; Meng, L . Structural evolution of UHMWPE fibers during prestretching far and near melting temperature: an in situ synchrotron radiation small- and wide-angle X-ray scattering study . Macromol. Mater. Eng. , 2018 . 303 1700493 DOI:10.1002/mame.201700493http://doi.org/10.1002/mame.201700493 .
Chen, X.; Lv, F.; Su, F.; Ji, Y . Deformation mechanism of iPP under uniaxial stretching over a wide temperature range: an in-situ synchrotron radiation SAXS/WAXS study . Polymer , 2017 . 118 12 -21 . DOI:10.1016/j.polymer.2017.04.054http://doi.org/10.1016/j.polymer.2017.04.054 .
Wang, Z.; Ma, Z.; Li, L . Flow-induced crystallization of polymers: molecular and thermodynamic considerations . Macromolecules , 2016 . 49 1505 -1517 . DOI:10.1021/acs.macromol.5b02688http://doi.org/10.1021/acs.macromol.5b02688 .
Ruland, W . Small-angle scattering studies on carbonized cellulose fibers . J. Polym. Sci. Polym. Symp. , 2010 . 28 143 -151. .
Perret, R.; Ruland, W . Single and multiple X-ray small-angle scattering of carbon fibres . J. Appl. Crystallogr , 1969 . 2 209 -218. .
Perret, R.; Ruland, W . The microstructure of PAN-base carbon fibres . J. Appl. Crystallogr. , 1970 . 3 525 -532 . DOI:10.1107/S0021889870006805http://doi.org/10.1107/S0021889870006805 .
Montes de Oca, H.; Farrar, D. F.; Ward, I. M . Degradation studies on highly oriented poly(glycolic acid) fibres with different lamellar structures . Acta Biomaterialia , 2011 . 7 1535 -1541 . DOI:10.1016/j.actbio.2010.12.023http://doi.org/10.1016/j.actbio.2010.12.023 .
Czerniecka-Kubicka, A.; Janowski, G.; Pyda, M.; Frącz, W . Biocomposites based on the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix with the hemp fibers: thermal and mechanical properties . J. Therm. Anal. Calorimetry , 2021 . 147 1017 -1029. .
Cao, Y.; Xu, P.; Yang, W.; Zhu, X . UV resistant PBT nanocomposites by reactive compatibilization and selective distribution of tailor-made double-shelled TiO2 nanohybrids . Compos. Part B: Eng. , 2021 . 205 108510 DOI:10.1016/j.compositesb.2020.108510http://doi.org/10.1016/j.compositesb.2020.108510 .
Fechine, G. J. M.; Rabello, M. S.; Souto Maior, R. M.; Catalani, L. H . Surface characterization of photodegraded poly(ethylene terephthalate). The effect of ultraviolet absorbers . Polymer , 2004 . 45 2303 -2308 . DOI:10.1016/j.polymer.2004.02.003http://doi.org/10.1016/j.polymer.2004.02.003 .
King, E.; Robinson, S.; Cameron, R. E . Effect of hydrolytic degradation on the microstructure of quenched, amorphous poly(glycolic acid): an X-ray scattering study of hydrated samples . International , 1999 . 48 915 -920. .
Woodard, L. N.; Grunlan, M. A . Hydrolytic degradation and erosion of polyester biomaterials . ACS Macro Lett. , 2018 . 7 976 -982 . DOI:10.1021/acsmacrolett.8b00424http://doi.org/10.1021/acsmacrolett.8b00424 .
Organ, S. J . Variation in melting point with molecular weight for hydroxybutyrate/hydroxyvalerate copolymers . Polymer , 1993 . 34 2175 -2179 . DOI:10.1016/0032-3861(93)90747-Xhttp://doi.org/10.1016/0032-3861(93)90747-X .
0
Views
18
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621