a.State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
b.School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China
c.Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
msekzhou@xjtu.edu.cn (K.Z.)
feidehai@163.com (S.W.G.)
msewma@xjtu.edu.cn (W.M.)
Scan for full text
Yu-Xuan Liu, Liang Wang, Ke Zhou, et al. Subtle Alignment of Organic Semiconductors at the Donor/Acceptor Heterojunction Facilitates the Photoelectric Conversion Process. [J]. Chinese Journal of Polymer Science 40(8):951-959(2022)
Yu-Xuan Liu, Liang Wang, Ke Zhou, et al. Subtle Alignment of Organic Semiconductors at the Donor/Acceptor Heterojunction Facilitates the Photoelectric Conversion Process. [J]. Chinese Journal of Polymer Science 40(8):951-959(2022) DOI: 10.1007/s10118-022-2759-4.
A PM6/Y6 bilayer model was employed to investigate the long-range alignment of molecular packing induced photoelectric conversion process. The smaller energy loss and longer charge carrier lifetime can be observed in bilayer devices with aligned Y6 molecules, which contribute to the higher power conversion efficiency than the as-cast devices.
The aligned molecular packing structure is vital to the anisotropic charge transport in conjugated polymer and small molecule thin films. However, how this molecular packing motif influences the photoelectric conversion process at the donor/acceptor heterojunction is still mysterious. Herein, we employed a PM6/Y6 bilayer model to investigate the long-range alignment of molecular packing induced photoelectric conversion process. Both PM6 and Y6 layers were properly controlled to exhibit the uniaxially oriented molecular packing compared to their as-cast counterparts, as revealed by the polarized absorption spectra and transmission electron microscopy. After analyzing the photovoltaic performance of bilayer devices, the smaller energy loss, lower energetic disorder, and longer charge carrier lifetime can be observed in the bilayer devices with aligned Y6 molecules, which contribute to a higher power conversion efficiency (PCE) than the as-cast devices. While the molecular packing structure of PM6 layer exhibited negligible influence on the device performance, probably resulting from the intrinsic semicrystalline nature of PM6 molecules. Our results indicate that the alignment of small molecular acceptor at the donor/acceptor interfaces should be a powerful strategy to facilitate the photoelectric conversion process, which will definitely pave the way to highly efficient bulk heterojunction photovoltaic device.
Molecular packingPhotoelectric conversion processPlanar heterojunctionOrganic solar cells
Cheng, P.; Li, G.; Zhan, X.; Yang, Y . Next-generation organic photovoltaics based on non-fullerene acceptors . Nat. Photon. , 2018 . 12 131 -142 . DOI:10.1038/s41566-018-0104-9http://doi.org/10.1038/s41566-018-0104-9 .
Lin, Y.; Wang, J.; Zhang, Z . G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 . 27 1170 -4 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317 .
Andersen, T. R.; Dam, H. F.; Hösel, M.; Helgesen, M.; Carlé, J. E.; Larsen-Olsen, T. T.; Gevorgyan, S. A.; Andreasen, J. W.; Adams, J.; Li, N.; Machui, F.; Spyropoulos, G. D.; Ameri, T.; Lemaître, N.; Legros, M.; Scheel, A.; Gaiser, D.; Kreul, K.; Berny, S.; Lozman, O. R.; Nordman, S.; Välimäki, M.; Vilkman, M.; Søndergaard, R. R.; Jørgensen, M.; Brabec, C. J.; Krebs, F. C . Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules . Energy Environ. Sci. , 2014 . 7 2781 -3088 . DOI:10.1039/C4EE90035Ahttp://doi.org/10.1039/C4EE90035A .
Kaltenbrunner, M.; White, M. S.; Glowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S . Ultrathin and lightweight organic solar cells with high flexibility . Nat. Commun. , 2012 . 3 770 DOI:10.1038/ncomms1772http://doi.org/10.1038/ncomms1772 .
Kini, G. P.; Jeon, S. J.; Moon, D. K . Latest progress on photoabsorbent materials for multifunctional semitransparent organic solar cells . Adv. Funct. Mater. , 2021 . 31 e2007931 DOI:10.1002/adfm.202007931http://doi.org/10.1002/adfm.202007931 .
Xue, R.; Zhang, J.; Li, Y.; Li, Y . Organic solar cell materials toward commercialization . Small , 2018 . 14 e1801793 DOI:10.1002/smll.201801793http://doi.org/10.1002/smll.201801793 .
Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y . Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells . Nat. Energy , 2021 . 6 605 -613 . DOI:10.1038/s41560-021-00820-xhttp://doi.org/10.1038/s41560-021-00820-x .
Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J . Single-junction organic photovoltaic cell with 19% efficiency . Adv. Mater. , 2021 . 33 e2102420 DOI:10.1002/adma.202102420http://doi.org/10.1002/adma.202102420 .
Chen, H.; Zhao, T.; Li, L.; Tan, P.; Lai, H.; Zhu, Y.; Lai, X.; Han, L.; Zheng, N.; Guo, L.; He, F . 17.6%-Efficient quasiplanar heterojunction organic solar cells from a chlorinated 3D network acceptor . Adv. Mater. , 2021 . 33 e2102778 DOI:10.1002/adma.202102778http://doi.org/10.1002/adma.202102778 .
Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E . Device physics of polymer:fullerene bulk heterojunction solar cells . Adv. Mater. , 2007 . 19 1551 -1566 . DOI:10.1002/adma.200601093http://doi.org/10.1002/adma.200601093 .
Ye, L.; Weng, K.; Xu, J.; Du, X.; Chandrabose, S.; Chen, K.; Zhou, J.; Han, G.; Tan, S.; Xie, Z.; Yi, Y.; Li, N.; Liu, F.; Hodgkiss, J. M.; Brabec, C. J.; Sun, Y . Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells . Nat. Commun. , 2020 . 11 6005 DOI:10.1038/s41467-020-19853-zhttp://doi.org/10.1038/s41467-020-19853-z .
Chen, S.; Ye, J.; Yang, Q.; Oh, J.; Hu, D.; Yang, K.; Odunmbaku, G . O.; Li, F.; Yu, Q.; Kan, Z.; Xiao, Z.; Yang, C.; Lu, S.; Sun, K. Molecular ordering and phase segregation induced by a volatile solid additive for highly efficient all-small-molecule organic solar cells . J. Mater. Chem. A , 2021 . 9 2857 -2863 . DOI:10.1039/D0TA10649Fhttp://doi.org/10.1039/D0TA10649F .
Du, X.; Zhao, J.; Zhang, H.; Lu, X.; Zhou, L.; Chen, Z.; Lin, H.; Zheng, C.; Tao, S . Modulating the molecular packing and distribution enables fullerene-free ternary organic solar cells with high efficiency and long shelf-life . J. Mater. Chem. A , 2019 . 7 20139 -20150 . DOI:10.1039/C9TA07542Ahttp://doi.org/10.1039/C9TA07542A .
Hu, Z.; Chen, H.; Qu, J.; Zhong, X.; Chao, P.; Xie, M.; Lu, W.; Liu, A.; Tian, L.; Su, Y.-A.; Chen, W.; He, F . Design and synthesis of chlorinated benzothiadiazole-based polymers for efficient solar energy conversion . ACS Energy Lett. , 2017 . 2 753 -758 . DOI:10.1021/acsenergylett.7b00092http://doi.org/10.1021/acsenergylett.7b00092 .
Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A . A general relationship between disorder, aggregation and charge transport in conjugated polymers . Nat. Mater. , 2013 . 12 1038 -1044 . DOI:10.1038/nmat3722http://doi.org/10.1038/nmat3722 .
Mukherjee, S.; Jiao, X.; Ade, H . Charge creation and recombination in multi-length scale polymer:fullerene bhj solar cell morphologies . Adv. Energy Mater. , 2016 . 6 1600699 DOI:10.1002/aenm.201600699http://doi.org/10.1002/aenm.201600699 .
McDowell, C.; Abdelsamie, M.; Zhao, K.; Smilgies, D. M.; Bazan, G. C.; Amassian, A . Synergistic impact of solvent and polymer additives on the film formation of small molecule blend films for bulk heterojunction solar cells . Adv. Energy Mater. , 2015 . 5 1501121 DOI:10.1002/aenm.201501121http://doi.org/10.1002/aenm.201501121 .
Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H . Efficient organic solar cells processed from hydrocarbon solvents . Nat. Energy , 2016 . 1 15027 DOI:10.1038/nenergy.2015.27http://doi.org/10.1038/nenergy.2015.27 .
Hu, H.; Ghasemi, M.; Peng, Z.; Zhang, J.; Rech, J . J.; You, W.; Yan, H.; Ade, H. The role of demixing and crystallization kinetics on the stability of non-fullerene organic solar cells . Adv. Mater. , 2020 . 32 e2005348 DOI:10.1002/adma.202005348http://doi.org/10.1002/adma.202005348 .
Wang, H.; Cao, C.; Chen, H.; Lai, H.; Ke, C.; Zhu, Y.; Li, H.; He, F . Oligomeric acceptor: a "two-in-one" strategy to bridge small molecules and polymers for stable solar devices . Angew. Chem. Int. Ed. , 2022 . 61 e202201844 DOI:10.1002/anie.202201844http://doi.org/10.1002/anie.202201844 .
Zhou, K.; Liu, Y.; Xu, Y.; Wu, H.; Zhou, X.; Chen, K.; Xu, X.; Ma, Z.; Tang, Z.; Ma, W . Interfacial energetic disorder induced by the molecular packing structure at conjugated polymer-based donor/acceptor heterojunctions . J. Mater. Chem. C , 2021 . 9 13761 -13769 . DOI:10.1039/D1TC03021Chttp://doi.org/10.1039/D1TC03021C .
Xue, W.; Tang, Y.; Zhou, X.; Tang, Z.; Zhao, H.; Li, T.; Zhang, L.; Liu, S.; Zhao, C.; Ma, W.; Yan, H . Identifying the electrostatic and entropy-related mechanisms for charge-transfer exciton dissociation at doped organic heterojunctions . Adv. Funct. Mater. , 2021 . 31 2101892 DOI:10.1002/adfm.202101892http://doi.org/10.1002/adfm.202101892 .
Nakano, K.; Chen, Y.; Xiao, B.; Han, W.; Huang, J.; Yoshida, H.; Zhou, E.; Tajima, K . Anatomy of the energetic driving force for charge generation in organic solar cells . Nat. Commun. , 2019 . 10 2520 DOI:10.1038/s41467-019-10434-3http://doi.org/10.1038/s41467-019-10434-3 .
Ran, N. A.; Roland, S.; Love, J. A.; Savikhin, V.; Takacs, C. J.; Fu, Y. T.; Li, H.; Coropceanu, V.; Liu, X.; Bredas, J. L.; Bazan, G. C.; Toney, M. F.; Neher, D.; Nguyen, T. Q . Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency . Nat. Commun. , 2017 . 8 79 DOI:10.1038/s41467-017-00107-4http://doi.org/10.1038/s41467-017-00107-4 .
Lee, H.; Lee, D.; Sin, D. H.; Kim, S. W.; Jeong, M. S.; Cho, K . Effect of donor-acceptor molecular orientation on charge photogeneration in organic solar cells . NPG Asia Mater. , 2018 . 10 469 -481 . DOI:10.1038/s41427-018-0054-1http://doi.org/10.1038/s41427-018-0054-1 .
Zhou, K.; Wu, Y.; Liu, Y.; Zhou, X.; Zhang, L.; Ma, W . Molecular orientation of polymer acceptor dominates open-circuit voltage losses in all-polymer solar cells . ACS Energy Lett. , 2019 . 4 1057 -1064 . DOI:10.1021/acsenergylett.9b00416http://doi.org/10.1021/acsenergylett.9b00416 .
Zhou, K.; Liu, Y.; Alotaibi, A.; Yuan, J.; Jiang, C.; Xin, J.; Liu, X.; Collins, B . A.; Zhang, F.; Ma, W. Molecular and energetic order dominate the photocurrent generation process in organic solar cells with small energetic offsets . ACS Energy Lett. , 2020 . 5 589 -596 . DOI:10.1021/acsenergylett.0c00029http://doi.org/10.1021/acsenergylett.0c00029 .
Tumbleston, J. R.; Collins, B. A.; Yang, L.; Stuart, A . C.; Gann, E.; Ma, W.; You, W.; Ade, H. The influence of molecular orientation on organic bulk heterojunction solar cells . Nat. Photon. , 2014 . 8 385 -391 . DOI:10.1038/nphoton.2014.55http://doi.org/10.1038/nphoton.2014.55 .
Bi, Z.; Chen, K.; Gou, L.; Guo, Y.; Zhou, X.; Naveed, H. B.; Wang, J.; Zhu, Q.; Yuan, J.; Zhao, C.; Zhou, K.; Chandrabose, S.; Tang, Z.; Yi, Y.; Hodgkiss, J . M.; Zhang, L.; Ma, W. Observing long-range non-fullerene backbone ordering in real-space to improve the charge transport properties of organic solar cells . J. Mater. Chem. A , 2021 . 9 16733 -16742 . DOI:10.1039/D1TA04623Chttp://doi.org/10.1039/D1TA04623C .
Shaw, L.; Hayoz, P.; Diao, Y.; Reinspach, J. A.; To, J. W.; Toney, M. F.; Weitz, R. T.; Bao, Z . Direct uniaxial alignment of a donor-acceptor semiconducting polymer using single-step solution shearing . ACS Appl. Mater. Interfaces , 2016 . 8 9285 -9296 . DOI:10.1021/acsami.6b01607http://doi.org/10.1021/acsami.6b01607 .
Matsushima, T.; Murata, H . Enhanced charge-carrier injection caused by molecular orientation . Appl. Phys. Lett. , 2011 . 98 253307 DOI:10.1063/1.3602925http://doi.org/10.1063/1.3602925 .
Zhao, H.; Lin, B.; Xue, J.; Naveed, H . B.; Zhao, C.; Zhou, X.; Zhou, K.; Wu, H.; Cai, Y.; Yun, D.; Tang, Z.; Ma, W. Kinetics manipulation enables high-performance thick ternary organic solar cells via R2R-compatible slot-die coating . Adv. Mater. , 2022 . 34 e2105114 DOI:10.1002/adma.202105114http://doi.org/10.1002/adma.202105114 .
Kyaw, A. K. K.; Wang, D. H.; Gupta, V.; Leong, W. L.; Ke, L.; Bazan, G. C.; Heeger, A. J . Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells . ACS Nano , 2013 . 7 4569 -4577 . DOI:10.1021/nn401267shttp://doi.org/10.1021/nn401267s .
Vollbrecht, J.; Brus, V. V.; Ko, S. J.; Lee, J.; Karki, A.; Cao, D. X.; Cho, K.; Bazan, G. C.; Nguyen, T. Q . Quantifying the nongeminate recombination dynamics in nonfullerene bulk heterojunction organic solar cells . Adv. Energy Mater. , 2019 . 9 1901438 DOI:10.1002/aenm.201901438http://doi.org/10.1002/aenm.201901438 .
Gupta, V.; Kyaw, A. K.; Wang, D. H.; Chand, S.; Bazan, G. C.; Heeger, A. J . Barium: an efficient cathode layer for bulk-heterojunction solar cells . Sci. Rep. , 2013 . 3 1965 DOI:10.1038/srep01965http://doi.org/10.1038/srep01965 .
Zhang, L.; Lin, B.; Hu, B.; Xu, X.; Ma, W . Blade-cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability . Adv. Mater. , 2018 . 30 e1800343 DOI:10.1002/adma.201800343http://doi.org/10.1002/adma.201800343 .
Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu, K.; Gao, F.; Yan, H . Fast charge separation in a non-fullerene organic solar cell with a small driving force . Nat. Energy , 2016 . 1 16089 DOI:10.1038/nenergy.2016.89http://doi.org/10.1038/nenergy.2016.89 .
Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganas, O.; Manca, J. V . On the origin of the open-circuit voltage of polymer-fullerene solar cells . Nat. Mater. , 2009 . 8 904 -909 . DOI:10.1038/nmat2548http://doi.org/10.1038/nmat2548 .
Xie, S.; Xia, Y.; Zheng, Z.; Zhang, X.; Yuan, J.; Zhou, H.; Zhang, Y . Effects of nonradiative losses at charge transfer states and energetic disorder on the open-circuit voltage in nonfullerene organic solar cells . Adv. Funct. Mater. , 2018 . 28 1705659 DOI:10.1002/adfm.201705659http://doi.org/10.1002/adfm.201705659 .
Blakesley, J. C.; Neher, D . Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells . Phys. Rev. B , 2011 . 84 075210 DOI:10.1103/PhysRevB.84.075210http://doi.org/10.1103/PhysRevB.84.075210 .
Hüttner, S.; Sommer, M.; Chiche, A.; Krausch, G.; Steiner, U.; Thelakkat, M . Controlled solvent vapour annealing for polymer electronics . Soft Matter , 2009 . 5 4206 -4211 . DOI:10.1039/b907147dhttp://doi.org/10.1039/b907147d .
Gao, F.; Tress, W.; Wang, J.; Inganas, O . Temperature dependence of charge carrier generation in organic photovoltaics . Phys. Rev. Lett. , 2015 . 114 128701 DOI:10.1103/PhysRevLett.114.128701http://doi.org/10.1103/PhysRevLett.114.128701 .
Riedel, I.; Dyakonov, V . Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices . Phys. Stat. Sol. A , 2004 . 201 1332 -1341 . DOI:10.1002/pssa.200404333http://doi.org/10.1002/pssa.200404333 .
Lin, W. M . M.; Bozyigit, D.; Yarema, O.; Wood, V. Transient photovoltage measurements in nanocrystal-based solar cells . J. Phys. Chem. C , 2016 . 120 12900 -12908 . DOI:10.1021/acs.jpcc.6b03695http://doi.org/10.1021/acs.jpcc.6b03695 .
0
Views
18
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution