
a.Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
c.South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
zhouheng@iccas.ac.cn (H.Z.)
tzhao@iccas.ac.cn (T.Z.)
Scan for full text
Shu-Yi Zhan, Yue Han, Yu-Huan Wu, et al. Boron-containing Phthalonitrile Resin: Synthesis, Curing Behavior, and Thermal Properties. [J]. Chinese Journal of Polymer Science 40(11):1349-1359(2022)
Shu-Yi Zhan, Yue Han, Yu-Huan Wu, et al. Boron-containing Phthalonitrile Resin: Synthesis, Curing Behavior, and Thermal Properties. [J]. Chinese Journal of Polymer Science 40(11):1349-1359(2022) DOI: 10.1007/s10118-022-2746-9.
In this work, a novel boron-containing phthalonitrile monomer was synthesized. This monomer can act as Lewis acid curing agent individually. Two model compounds were used to further understand the Lewis acid curing mechanism. The current boron-containing system exhibited good processability and thermal properties.
A novel boron-containing monomer, (4-(3,4-dicyanophenoxy)phenyl)boronic acid (BPhPN) was synthesized and used to promote the curing process of phthalonitrile monomer 1,3-bis(3,4-dicyanophenoxy)benzene (MPN). Differential scanning calorimetry and rheological analysis were used to study the curing behaviors of BPhPN/MPN (namely B-MPN), and results suggested that B-MPN systems have better processibility. FTIR spectra and solid-state ,13,C-NMR exhibited triazine and isoindoline have been formed in the curing process. Boron-containing Lewis acid curing mechanism was preliminarily speculated and verified by two model compounds with different boron chemical environments. The thermogravimetric analysis and dynamic mechanical analysis demonstrated that the cured B-MPN polymers showed excellent thermal stability and heat resistance, which were comparable with conventional catalytic systems for phthalonitrile resins. This study not only presented a novel curing system for phthalonitrile resins, but also shed light on future design of high temperature thermosets.
Curing agentPhthalonitrile resinsThermosetsBoron-containing polymer
Sastri, S. B.; Keller, T. M . Phthalonitrile polymers: cure behavior and properties . J. Polym. Sci., Part A: Polym. Chem. , 1999 . 37 2105 -2111 . DOI:10.1002/(SICI)1099-0518(19990701)37:13<2105::AID-POLA25>3.0.CO;2-Ahttp://doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2105::AID-POLA25>3.0.CO;2-A .
Chen, M.; He, X.; Guo, Y.; Hu, J.; Liang, B.; Zeng, K.; Yang, G . A new molecular design platform for high-performance polymers from versatile bio-based tyramine: a case study of tyramine-derived phthalonitrile resin . Polym. Chem. , 2021 . 12 408 -422 . DOI:10.1039/D0PY01322Fhttp://doi.org/10.1039/D0PY01322F .
Keller, T. M . Phthalonitrile-based high temperature resin . J. Appl. Polym. Sci., Part A: Polym. Chem. , 1988 . 26 3199 -3212 . DOI:10.1002/pola.1988.080261207http://doi.org/10.1002/pola.1988.080261207 .
Sun, J.; Han, Y.; Zhao, Z.; Wang, G.; Zhan, S.; Ding, J.; Liu, X.; Guo, Y.; Zhou, H.; Zhao, T. . Improved toughness of phthalonitrile composites through synergistic toughening methods . Compos. Commun. , 2021 . 26 100779 DOI:10.1016/j.coco.2021.100779http://doi.org/10.1016/j.coco.2021.100779 .
Han, Y.; Tang, D.; Wang, G.; Zhang, Y.; Guo, Y.; Zhou, H.; Qiu, W.; Zhao, T . Crosslinkable hyperbranched poly(arylene ether nitrile) modifier for phthalonitrile resins: synthesis, chain-end functionalization and properties . Polymer , 2019 . 173 88 -102 . DOI:10.1016/j.polymer.2019.04.027http://doi.org/10.1016/j.polymer.2019.04.027 .
Phua, E. J. R.; Liu, M.; Cho, B.; Liu, Q.; Amini, S.; Hu, X.; Gan, C. L . Novel high temperature polymeric encapsulation material for extreme environment electronics packaging . Materials & Design , 2018 . 141 202 -209. .
Sastri, S. B.; Keller, T. M . Phthalonitrile cure reaction with aromatic diamines . J. Polym. Sci., Part A: Polym. Chem. , 1998 . 36 1885 -1890 . DOI:10.1002/(SICI)1099-0518(199808)36:11<1885::AID-POLA23>3.0.CO;2-9http://doi.org/10.1002/(SICI)1099-0518(199808)36:11<1885::AID-POLA23>3.0.CO;2-9 .
Wu, Z.; Han, J.; Li, N.; Weng, Z.; Wang, J.; Jian, X . Improving the curing process and thermal stability of phthalonitrile resin via novel mixed curing agents . Polym. Int. , 2017 . 66 876 -881 . DOI:10.1002/pi.5328http://doi.org/10.1002/pi.5328 .
Li, W. T.; Zuo, F.; Jia, K.; Liu, X. B . Study of catalytic effect of ammonium molybdate on the bisphthalonitrile resins curing reaction with aromatic amine . Chinese Chem. Lett. , 2009 . 20 348 -351 . DOI:10.1016/j.cclet.2008.11.018http://doi.org/10.1016/j.cclet.2008.11.018 .
Bulgakov, B. A.; Sulimov, A. V.; Babkin, A. V.; Kepman, A. V.; Malakho, A. P.; Avdeev, V. V . Dual-curing thermosetting monomer containing both propargyl ether and phthalonitrile groups . J. Appl. Polym. Sci. , 2017 . 134 44786 DOI:10.1002/app.44786http://doi.org/10.1002/app.44786 .
Laskoski, M.; Neal, A.; Keller, T. M.; Dominguez, D.; Klug, C. A.; Saab, A. P . Improved synthesis of oligomeric phthalonitriles and studies designed for low temperature cure . J. Polym. Sci., Part A: Polym. Chem. , 2014 . 52 1662 -1668 . DOI:10.1002/pola.27161http://doi.org/10.1002/pola.27161 .
Cheng, K.; Lv, J. B.; Ma, J. Z.; Hu, J . H.; Chen, C.; Zeng, K.; Yang, G. The curing behavior and properties of phthalonitrile resins using ionic liquids as a new class of curing agents . Exp. Polym. Lett. , 2017 . 11 924 -934 . DOI:10.3144/expresspolymlett.2017.88http://doi.org/10.3144/expresspolymlett.2017.88 .
Weng, Z. H.; Qi, Y.; Zong, L. S.; Liu, C.; Wang, J. Y.; Jian, X. G . Multiple-SO 3 H functioned ionic liquid as efficient curing agent for phthalonitrile-terminated poly(phthalazinone ether nitrile) . Chinese Chem. Lett. , 2017 . 28 1069 -1073 . DOI:10.1016/j.cclet.2016.12.019http://doi.org/10.1016/j.cclet.2016.12.019 .
Terekhov, V. E.; Morozov, O. S.; Afanaseva, E. S.; Bulgakov, B. A.; Babkin, A. V.; Kepman, A. V.; Avdeev, V. V . Fluorinated phthalonitrile resins with improved thermal oxidative stability . Mendeleev Commun. , 2020 . 30 671 -673 . DOI:10.1016/j.mencom.2020.09.040http://doi.org/10.1016/j.mencom.2020.09.040 .
Zhao, E.; Hu, J.; Wang, J.; Shi, M.; Wang, Z.; Zeng, K.; Yang, G . Preparation and properties of phthalonitrile resins promoted by melamine . High Perform. Polym. , 2017 . 30 561 -570. .
Badshah, A.; Kessler, M. R.; Heng, Z.; Zaidi, J . H.; Hameed, S.; Hasan, A. An efficient approach to prepare ether and amide-based self-catalyzed phthalonitrile resins . Polym. Chem. , 2013 . 4 3617 DOI:10.1039/c3py00237chttp://doi.org/10.1039/c3py00237c .
Augustine, D.; Mathew, D.; Nair, C. P. R . Phenol-containing phthalonitrile polymers-synthesis, cure characteristics and laminate properties . Polym. Int. , 2013 . 62 1068 -1076 . DOI:10.1002/pi.4393http://doi.org/10.1002/pi.4393 .
Augustine, D.; Mathew, D.; Reghunadhan Nair, C. P . One component propargyl phthalonitrile novolac: synthesis and characterization . Eur. Polym. J. , 2015 . 71 389 -400 . DOI:10.1016/j.eurpolymj.2015.08.013http://doi.org/10.1016/j.eurpolymj.2015.08.013 .
Wu, D.; Zhao, Y.; Zeng, K.; Yang, G . A novel benzimidazole-containing phthalonitrile monomer with unique polymerization behavior . J. Polym. Sci., Part A: Polym. Chem. , 2012 . 50 4977 -4982 . DOI:10.1002/pola.26331http://doi.org/10.1002/pola.26331 .
Hu, J.; Sun, R.; Wu, Y.; Lv, J.; Wang, Z.; Zeng, K.; Yang, G . Novel benzimidazole-mediated phthalonitrile/epoxy binary blends system with synergistic curing behavior and outstanding thermal properties . RSC Adv. , 2017 . 7 43978 -43986 . DOI:10.1039/C7RA06162Ehttp://doi.org/10.1039/C7RA06162E .
Wu, Z.; Li, N.; Han, J.; Wang, C.; Yuan, K.; Zeng, Q.; Wang, J.; Jian, X . Low-viscosity and soluble phthalonitrile resin with improved thermostability for organic wave-transparent composites . J. Appl. Polym. Sci. , 2018 . 135 45976 DOI:10.1002/app.45976http://doi.org/10.1002/app.45976 .
Weng, Z.; Hu, Y.; Qi, Y.; Zhang, S.; Liu, C.; Wang, J.; Jian, X . Enhanced properties of phthalonitrile resins under lower curing temperature via complex curing agent . Polym. Adv. Technol. , 2020 . 31 233 -239 . DOI:10.1002/pat.4762http://doi.org/10.1002/pat.4762 .
Ji, S.; Yuan, P.; Hu, J.; Sun, R.; Zeng, K.; Yang, G . A novel curing agent for phthalonitrile monomers: curing behaviors and properties of the polymer network . Polymer , 2016 . 84 365 -370 . DOI:10.1016/j.polymer.2016.01.006http://doi.org/10.1016/j.polymer.2016.01.006 .
Yuan, P.; Ji, S.; Hu, J.; Hu, X.; Zeng, K.; Yang, G . Systematic study on highly efficient thermal synergistic polymerization effect between alicyclic imide moiety and phthalonitrile: scope, properties and mechanism . Polymer , 2016 . 102 266 -280 . DOI:10.1016/j.polymer.2016.09.025http://doi.org/10.1016/j.polymer.2016.09.025 .
Peng, W.; Liu, Y.; Liu, z.; Lu, Z.; Hu, J.; Zeng, K.; Yang, G . Curing kinetics study on highly efficient thermal synergistic polymerization effect between alicyclic imide moiety and phthalonitrile . Thermochimica Acta , 2018 . 659 27 -33 . DOI:10.1016/j.tca.2017.09.020http://doi.org/10.1016/j.tca.2017.09.020 .
Liu, Z.; Liu, Y.; Peng, W.; Lu, Z.; Liang, B.; Liu, Y.; Li, C.; Hu, J.; Zeng, K.; Yang, G . New model phthalonitrile resin system based on self-promoted curing reaction for exploring the mechanism of radical promoted-polymerization effect . J. Appl. Polym. Sci. , 2019 . 136 48134 DOI:10.1002/app.48134http://doi.org/10.1002/app.48134 .
Liao, S.; Wu, H.; He, X.; Hu, J. H.; Li, R.; Liu, Y.; Lv, J.; Liu, Y.; Liu, Z.; Zeng, K.; Yang, G . Promoting effect of methyne/methylene moiety of bisphenol E/F on phthalonitrile resin curing: expanding the structural design route of phthalonitrile resin . Polymer , 2020 . 210 123001 DOI:10.1016/j.polymer.2020.123001http://doi.org/10.1016/j.polymer.2020.123001 .
·Lv, J.; Liu, Z.; Li, R.; Liu, Y.; Hu, J.; Zeng, K.; Yang, G . Curing kinetic of self-promoted alicyclic-based bisphthalonitrile monomer . Thermochimica Acta , 2020 . 683 178446 DOI:10.1016/j.tca.2019.178446http://doi.org/10.1016/j.tca.2019.178446 .
Lv, J.; Luo, Y.; Xiao, H.; Liang, B.; Chen, L.; He, X.; Zeng, K.; Yang, G . A new addition thermosetting resin from phthalonitrile functionalized [2.2]paracyclophane . Polymer , 2021 . 231 .
Fyfe, J. W. B.; Watson, A. J. B . Recent developments in organoboron chemistry: old dogs, new tricks . Chem , 2017 . 3 31 -55 . DOI:10.1016/j.chempr.2017.05.008http://doi.org/10.1016/j.chempr.2017.05.008 .
Dimitrijević, E.; Taylor, M. S . Organoboron acids and their derivatives as catalysts for organic synthesis . ACS Catal. , 2013 . 3 945 -962 . DOI:10.1021/cs4000848http://doi.org/10.1021/cs4000848 .
Lennox, A. J.; Lloyd-Jones, G. C . Selection of boron reagents for Suzuki-Miyaura coupling . Chem. Soc. Rev. , 2014 . 43 412 -43 . DOI:10.1039/C3CS60197Hhttp://doi.org/10.1039/C3CS60197H .
Muzafarov, A. M. Silicon Polymers. Springer Science & Business Media, 2010, Vol. 235.
Hall, D. G. Boronic acids: preparation, applications in organic synthesis and medicine. John Wiley & Sons, 2006.
Keller, T. M.; Dominguez, D. D . High temperature resorcinol-based phthalonitrile polymer . Polymer , 2005 . 46 4614 -4618 . DOI:10.1016/j.polymer.2005.03.068http://doi.org/10.1016/j.polymer.2005.03.068 .
He, C.; Pan, X . MIDA boronate stabilized polymers as a versatile platform for organoboron and functionalized polymers . Macromolecules , 2020 . 53 3700 -3708 . DOI:10.1021/acs.macromol.0c00665http://doi.org/10.1021/acs.macromol.0c00665 .
Kissinger, H. E . Reaction kinetics in differential thermal analysis . Anal. Chem. , 1957 . 29 1702 -1706 . DOI:10.1021/ac60131a045http://doi.org/10.1021/ac60131a045 .
Ozawa, T . Kinetic analysis of derivative curves in thermal analysis . J. Therm. Anal. , 1970 . 2 301 -324 . DOI:10.1007/BF01911411http://doi.org/10.1007/BF01911411 .
Han, Y.; Tang, D.; Wang, G.; Guo, Y.; Zhou, H.; Qiu, W.; Zhao, T . Low melting phthalonitrile resins containing methoxyl and/or allyl moieties: synthesis, curing behavior, thermal and mechanical properties . Eur. Polym. J. , 2019 . 111 104 -113 . DOI:10.1016/j.eurpolymj.2018.12.017http://doi.org/10.1016/j.eurpolymj.2018.12.017 .
Wang, G.; Han, Y.; Guo, Y.; Wang, S.; Sun, J.; Zhou, H.; Zhao, T . Phthalonitrile-terminated silicon-containing oligomers: synthesis, polymerization, and properties . Indust. Eng. Chem. Res. , 2019 . 58 9921 -9930 . DOI:10.1021/acs.iecr.9b01642http://doi.org/10.1021/acs.iecr.9b01642 .
Qi, Y.; Weng, Z.; Song, C.; Hu, Y.; Liu, X.; Wang, J.; Zhang, S.; Liu, C.; Jian, X . Deep eutectic solvent for curing of phthalonitrile resin: lower the curing temperature but improve the properties of thermosetting . High Perform. Polym. , 2021 . 33 538 -545 . DOI:10.1177/0954008320972151http://doi.org/10.1177/0954008320972151 .
Zhou, H.; Badashah, A.; Luo, Z.; Liu, F.; Zhao, T . Preparation and property comparison of ortho, meta, and para autocatalytic phthalonitrile compounds with amino group . Polym. Adv. Technol. , 2011 . 22 1459 -1465 . DOI:10.1002/pat.2018http://doi.org/10.1002/pat.2018 .
Burchill, P. J . On the formation and properties of a high-temperature resin from a bisphthalonitrile . J. Polym. Sci., Part A: Polym. Chem. , 1994 . 32 1 -8 . DOI:10.1002/pola.1994.080320101http://doi.org/10.1002/pola.1994.080320101 .
Smith, M. K.; Northrop, B. H . Vibrational properties of boroxine anhydride and boronate ester materials: model systems for the diagnostic characterization of covalent organic frameworks . Chem. Mater. , 2014 . 26 3781 -3795 . DOI:10.1021/cm5013679http://doi.org/10.1021/cm5013679 .
Prasad, S.; Clark, T. M.; Sefzik, T. H.; Kwak, H.-T.; Gan, Z.; Grandinetti, P. J . Solid-state multinuclear magnetic resonance investigation of Pyrex® . J. Non-Cryst. Solids , 2006 . 352 2834 -2840 . DOI:10.1016/j.jnoncrysol.2006.02.085http://doi.org/10.1016/j.jnoncrysol.2006.02.085 .
Das, S.; Madheshiya, A.; Ghosh, M.; Dey, K. K.; Gautam, S . S.; Singh, J.; Mishra, R.; Gautam, C. Structural, optical, and nuclear magnetic resonance studies of V2O5-doped lead calcium titanate borosilicate glasses . J. Phys. Chem. Solids , 2019 . 126 17 -26 . DOI:10.1016/j.jpcs.2018.10.030http://doi.org/10.1016/j.jpcs.2018.10.030 .
Li, Z.; Bin, L.; Yu, L.; Lan, F.; Wu, Y . Intermolecular B-N coordination and multi-interaction synergism induced selective glycoprotein adsorption by phenylboronic acid-functionalized magnetic composites under acidic and neutral conditions . J. Mater. Chem. B , 2021 . 9 453 -463 . DOI:10.1039/D0TB01901Ahttp://doi.org/10.1039/D0TB01901A .
Malkowsky, I. M.; Fröhlich, R.; Griesbach, U.; Pütter, H.; Waldvogel, S. R . Facile and reliable synthesis of tetraphenoxyborates and their properties . Eur. J. Inorg. Chem. , 2006 . 2006 1690 -1697 . DOI:10.1002/ejic.200600074http://doi.org/10.1002/ejic.200600074 .
Liu, Y.; Liu, Y.; Wang, Q.; Han, Y.; Tan, Y . Boronic ester-based self-healing hydrogels formed by using intermolecular B-N coordination . Polymer , 2020 . 202 122624 DOI:10.1016/j.polymer.2020.122624http://doi.org/10.1016/j.polymer.2020.122624 .
Zeng, K.; Zhou, K.; Zhou, S.; Hong, H.; Zhou, H.; Wang, Y.; Miao, P.; Yang, G . Studies on self-promoted cure behaviors of hydroxy-containing phthalonitrile model compounds . Eur. Polym. J. , 2009 . 45 1328 -1335 . DOI:10.1016/j.eurpolymj.2008.12.036http://doi.org/10.1016/j.eurpolymj.2008.12.036 .
Han, Y.; Wang, G.; Qiu, W.; Guo, Y.; Sun, Y.; Zhang, Y.; Zhou, H.; Zhao, T . Activated-carbon-supported calcium oxide: a selective and efficient catalyst for nitrile-containing diaryl ether synthesis . Asian J. Org. Chem. , 2018 . 7 2511 -2517 . DOI:10.1002/ajoc.201800588http://doi.org/10.1002/ajoc.201800588 .
0
Views
8
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621