a.Institute for Advanced Study (IAS), Shenzhen University, Shenzhen 518060, China
b.College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
c.South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
crystinacao@scut.edu.cn
Scan for full text
Kaichao Wang, Ziwei Lai, Jiaman Huang, et al. Dual Effects of Interfacial Interaction and Geometric Constraints on Structural Formation of Poly(butylene terephthalate) Nanorods. [J]. Chinese Journal of Polymer Science 40(6):700-708(2022)
Kaichao Wang, Ziwei Lai, Jiaman Huang, et al. Dual Effects of Interfacial Interaction and Geometric Constraints on Structural Formation of Poly(butylene terephthalate) Nanorods. [J]. Chinese Journal of Polymer Science 40(6):700-708(2022) DOI: 10.1007/s10118-022-2736-y.
We first discovered three new ,α,-phase nanostructures {,$ \left(010\right) $, upright-,$ \left(100\right) $, flat,-,$ \left(1\stackrel{-}{1}1\right) $, tilting,-,ring} of PBT nanorods in cylindrical confined crystallization. We demonstrate the nanostructure formation mechanism from the aspects of geometrical constraints and pore wall interfacial effect.
When the size of the material is smaller than the size of the molecular chain, new nanostructures can be formed by crystallizing polymers in nanoporous alumina. However, the effect of pore wall and geometric constraints on polymer nanostructures remains unclear. In this study, we demonstrate three new restricted nanostructures {upright-, flat- and tilting-ring} in polybutylene terephthalate (PBT) nanorods prepared from nanoporous alumina. The dual effects of geometrical constraints and interfacial interactions on the formation of PBT nanostructures were investigated for the first time by using X-ray diffraction and Cerius,2, modeling packages. Under weak constraints, the interaction between pore wall and the PBT rings is dominant and the ring plane tends to be parallel to the pore wall and radiate outward to grow the upright-ring crystals. Surprisingly, in strong 2D confinement, a structural formation reversal occurs and geometrical constraints overpower the effect of pore wall. Rings tend to pile up vertically or obliquely along the long axis of the rod, so the flat- and tilting-ring crystals are predominate in the constrained system. In principle, our study of the nanostructure formation based on the geometrical constraints and the pore wall interfacial effects could provide a new route to manipulate the chain assembly at the nanoscale, further improving the performance of polymer nanomaterial.
Cylindrical confinementPoly(butylene terephthalate)NanorodsGeometry constraintsInterfacial interaction
Fu, Y.; Wang, Y.; Chen, D.; Yu, Z.; Zheng, J.; Zhou, H . Three-dimensional photonic crystal bulks with outstanding mechanical performance assembled by thermoforming-etching cross-linked polymer microspheres . ACS Appl. Mater. Interfaces , 2020 . 12 35311 -35317 . DOI:10.1021/acsami.0c04723http://doi.org/10.1021/acsami.0c04723 .
Li, M. C.; Ousaka, N.; Wang, H. F.; Yashima, E.; Ho, R. M . Chirality control and its memory at microphase-separated interface of self-assembled chiral block copolymers for nanostructured chiral materials . ACS Macro Lett. , 2017 . 6 980 -986 . DOI:10.1021/acsmacrolett.7b00493http://doi.org/10.1021/acsmacrolett.7b00493 .
Chen, D.; Zhao, W.; Russell, T. P . P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates . ACS Nano , 2012 . 6 1479 -1485 . DOI:10.1021/nn2043548http://doi.org/10.1021/nn2043548 .
Wang, H.; Chang, T.; Li, X.; Zhang, W.; Hu, Z.; Jonas, A. M . Scaled down glass transition temperature in confined polymer nanofibers . Nanoscale , 2016 . 8 14950 -14955 . DOI:10.1039/C6NR04459Jhttp://doi.org/10.1039/C6NR04459J .
Carr, J . M.; Mackey, M.; Flandin, L.; Schuele, D.; Zhu, L.; Baer, E. Effect of biaxial orientation on dielectric and breakdown properties of poly(ethylene terephthalate)/poly(vinylidene fluoride-co-tetrafluoroethylene) multilayer films . J. Polym. Sci., Part B: Polym. Phys. , 2013 . 51 882 -896 . DOI:10.1002/polb.23277http://doi.org/10.1002/polb.23277 .
Ma, Z.; Kotaki, M.; Yong, T.; He, W.; Ramakrishna, S . Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering . Biomaterials , 2005 . 26 2527 -2536 . DOI:10.1016/j.biomaterials.2004.07.026http://doi.org/10.1016/j.biomaterials.2004.07.026 .
Catalani, L . H.; Collins, G.; Jaffe, M. Evidence for molecular orientation and residual charge in the electrospinning of poly(butylene terephthalate) nanofibers . Macromolecules , 2007 . 40 1693 -1697 . DOI:10.1021/ma061342dhttp://doi.org/10.1021/ma061342d .
Wang, Y.; Acton, O.; Ting, G.; Weidner, T.; Shamberge, P. J.; Ma, H.; Ohuchi, F. S.; Castner, D. G.; Jen, A. K. Y . Effect of the phenyl ring orientation in the polystyrene buffer layer on the performance of pentacene thin-film transistors . Org. Electron. , 2010 . 11 1066 -1073 . DOI:10.1016/j.orgel.2010.03.006http://doi.org/10.1016/j.orgel.2010.03.006 .
Hong, Y.; Bao, S.; Xiang, X.; Wang, X . Concentration-dominated orientation of phenyl groups at the polystyrene/graphene interface . ACS Macro Lett. , 2020 . 9 889 -894 . DOI:10.1021/acsmacrolett.0c00279http://doi.org/10.1021/acsmacrolett.0c00279 .
David, M.; Roman, T.; Diño, W . A.; Nakanishi, H.; Kasai, H.; Ando, N.; Naritomi, M. A nanoscale understanding of the adhesion of polybutylene terephthalate on aluminum . Surface Sci. , 2007 . 601 5241 -5245 . DOI:10.1016/j.susc.2007.04.209http://doi.org/10.1016/j.susc.2007.04.209 .
Lotz, B.; Miyoshi, T.; Cheng, S. Z. D . 50th Anniversary perspective: polymer crystals and crystallization: personal journeys in a challenging research field . Macromolecules , 2017 . 50 5995 -6025 . DOI:10.1021/acs.macromol.7b00907http://doi.org/10.1021/acs.macromol.7b00907 .
Kang, J.; Miyoshi, T.; Akihiro Kamimura, A. O. C., Unfolding of Isotactic Polypropylene under Uniaxial Stretching. 2016; Vol. 2016, p V42.009.
Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I . Confinement size effect on crystal orientation changes of poly(ethylene oxide) blocks in poly(ethylene oxide)-b-polystyrene diblock copolymers . Macromolecules , 2004 . 37 3689 -3698 . DOI:10.1021/ma0305378http://doi.org/10.1021/ma0305378 .
Ho, R. M.; Chiang, Y. W.; Lin, C. C.; Huang, B. H . Crystallization and melting behavior of poly(ε-caprolactone) under physical confinement . Macromolecules , 2005 . 38 4769 -4779 . DOI:10.1021/ma047515lhttp://doi.org/10.1021/ma047515l .
Sun, Y. S.; Chung, T. M.; Li, Y. J.; Ho, R. M.; Ko, B. T.; Jeng, U. S.; Lotz, B . Crystalline polymers in nanoscale 1D spatial confinement . Macromolecules , 2006 . 39 5782 -5788 . DOI:10.1021/ma0608121http://doi.org/10.1021/ma0608121 .
Ko, H. W.; Higuchi, T.; Chang, C. W.; Cheng, M. H.; Isono, K.; Chi, M. H.; Jinnai, H.; Chen, J. T . Controlled self-assemblies of polystyrene-block-polydimethylsiloxane micelles in cylindrical confinement through a micelle solution wetting method and Rayleigh-instability-driven transformation . Soft Matter , 2017 . 13 5428 -5436 . DOI:10.1039/C7SM01024Ahttp://doi.org/10.1039/C7SM01024A .
Yabu, H.; Higuchi, T.; Jinnai, H . Frustrated phases: polymeric self-assemblies in a 3D confinement . Soft Matter , 2014 . 10 2919 -2931 . DOI:10.1039/c3sm52821ahttp://doi.org/10.1039/c3sm52821a .
Dai, X.; Li, H.; Ren, Z.; Russell, T . P.; Yan, S.; Sun, X. Confinement effects on the crystallization of poly(3-hydroxybutyrate) . Macromolecules , 2018 . 51 5732 -5741 . DOI:10.1021/acs.macromol.8b01083http://doi.org/10.1021/acs.macromol.8b01083 .
Michell, R. M.; Blaszczyk-Lezak, I.; Mijangos, C.; Müller, A. J . Confinement effects on polymer crystallization: from droplets to alumina nanopores . Polymer , 2013 . 54 4059 -4077 . DOI:10.1016/j.polymer.2013.05.029http://doi.org/10.1016/j.polymer.2013.05.029 .
Michell, R. M.; Blaszczyk-Lezak, I.; Mijangos, C.; Müller, A. J. . Confined crystallization of polymers within anodic aluminum oxide templates . J. Polym. Sci., Part B: Polym. Phys. , 2014 . 52 1179 -1194 . DOI:10.1002/polb.23553http://doi.org/10.1002/polb.23553 .
Zhang, G.; Xu, H.; Macinnis, K.; Baer, E. . Crystallization of linear low density polyethylene under two-dimensional confinement in high barrier blend systems . Polymer , 2014 . 55 6853 -6860 . DOI:10.1016/j.polymer.2014.10.040http://doi.org/10.1016/j.polymer.2014.10.040 .
Chung, T. M.; Wang, T. C.; Ho, R. M.; Sun, Y. S.; Ko, B. T . Polymeric crystallization under nanoscale 2D spatial confinement . Macromolecules , 2010 . 43 6237 -6240 . DOI:10.1021/ma100998khttp://doi.org/10.1021/ma100998k .
Wu, H.; Cao, Y.; Ishige, R.; Higaki, Y.; Hoshino, T.; Ohta, N.; Takahara, A . Confinement-induced crystal growth in one-dimensional isotactic polystyrene nanorod arrays . ACS Macro Letters , 2013 . 2 414 -418 . DOI:10.1021/mz400136dhttp://doi.org/10.1021/mz400136d .
Cao, Y.; Wu, H.; Higaki, Y.; Jinnai, H.; Takahara, A . Molecular self-assembly of nylon-12 nanorods cylindrically confined to nanoporous alumina . IUCrJ , 2014 . 1 439 -445 . DOI:10.1107/S2052252514020132http://doi.org/10.1107/S2052252514020132 .
Yu, S.; Lai, Z.; Jinnai, H.; Zeng, X.; Ageishi, M.; Lotz, B.; Cheng, S. Z . D.; Zheng, N.; Zhang, S.; Feng, X.; Cao, Y. Adding symmetry: cylindrically confined crystallization of nylon-6 . Macromolecules , 2019 . 52 3298 -3305 . DOI:10.1021/acs.macromol.8b02672http://doi.org/10.1021/acs.macromol.8b02672 .
Lai, Z.; Zheng, N.; Liang, Z.; Wang, Y.; Niu, H.; Ji, M.-S.; Ni, B.; Huang, X.; Ouyang, X.; Li, X.; Lotz, B.; Cao, Y . Structural ensemble of molecular chains in isotactic polypropylene under cylindrical confinement . Macromolecules , 2021 . 54 2325 -2333 . DOI:10.1021/acs.macromol.0c02357http://doi.org/10.1021/acs.macromol.0c02357 .
Zeng, X.; Zhang, S.; Zheng, N.; Yu, S.; Li, X.; Ageishi, M.; Lotz, B.; Liu, G.; Cao, Y . Diversified α-phase nanostructure of isotactic polypropylene under cylindrical confinement via cross diffraction analysis . Polymer , 2019 . 179 121647 DOI:10.1016/j.polymer.2019.121647http://doi.org/10.1016/j.polymer.2019.121647 .
Liang, Z.; Zheng, N.; Ni, B.; Lai, Z.; Niu, H.; Zhang, S.; Cao, Y . Coherent crystal branches: the impact of tetragonal symmetry on the 2D confined polymer nanostructure . IUCrJ , 2021 . 8 215 -224 . DOI:10.1107/S2052252521000774http://doi.org/10.1107/S2052252521000774 .
Lai, Z.; Zhang, S.; Zheng, N.; Yu, S.; Ageishi, M.; Jinnai, H.; Cao, Y . Hierarchical structure of the triclinic α-phase crystal in nylon 6,12 mediated by two-dimensional confinement . J. Appl. Crystal. , 2020 . 53 27 -33 . DOI:10.1107/S1600576719014705http://doi.org/10.1107/S1600576719014705 .
Steinhart, M.; Zimmermann, S.; Göring, P.; Schaper, A. K.; Gösele, U.; Weder, C.; Wendorff, J. H . Liquid crystalline nanowires in porous alumina: geometric confinement versus influence of pore walls . Nano Letters , 2005 . 5 429 -434 . DOI:10.1021/nl0481728http://doi.org/10.1021/nl0481728 .
Konishi, T.; Miyamoto, Y . Crystallization of poly(butylene terephthalate) from the glass . Macromolecules , 2010 . 43 375 -383 . DOI:10.1021/ma9017058http://doi.org/10.1021/ma9017058 .
Righetti, M. C.; Di Lorenzo, M . L.; Angiuli, M.; Tombari, E. Structural reorganization in poly(butylene terephthalate) during fusion . Macromolecules , 2004 . 37 9027 -9033 . DOI:10.1021/ma0492667http://doi.org/10.1021/ma0492667 .
Konishi, T.; Sakatsuji, W.; Fukao, K.; Miyamoto, Y . Temperature dependence of lamellar thickness in isothermally crystallized poly(butylene terephthalate) . Macromolecules , 2016 . 49 2272 -2280 . DOI:10.1021/acs.macromol.6b00126http://doi.org/10.1021/acs.macromol.6b00126 .
Wang, Z.; Macosko, C. W.; Bates, F. S . Fluorine-enriched melt-blown fibers from polymer blends of poly(butylene terephthalate) and a fluorinated multiblock copolyester . ACS Applied Materials & Interfaces , 2016 . 8 754 -761. .
Chisholm, B. J.; Moore, R . B.; Barber, G.; Khouri, F.; Hempstead, A.; Larsen, M.; Olson, E.; Kelley, J.; Balch, G.; Caraher, J. Nanocomposites derived from sulfonated poly(butylene terephthalate) . Macromolecules , 2002 . 35 5508 -5516 . DOI:10.1021/ma012224nhttp://doi.org/10.1021/ma012224n .
Shanmuganathan, K.; Fang, Y.; Chou, D. Y.; Sparks, S.; Hibbert, J.; Ellison, C. J . Solventless high throughput manufacturing of poly(butylene terephthalate) nanofibers . ACS Macro Lett. , 2012 . 1 960 -964 . DOI:10.1021/mz3001995http://doi.org/10.1021/mz3001995 .
Fung, C. P.; Kang, P. C . Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis . J. Mater. Proc. Technol. , 2005 . 170 602 -610 . DOI:10.1016/j.jmatprotec.2005.06.040http://doi.org/10.1016/j.jmatprotec.2005.06.040 .
Matsuo, M.; Adachi, R.; Jiang, X.; Bin, Y . Orientation behavior of the three principal crystallographic axes of poly(butylene terephthalate) estimated in terms of orientation distribution function of crystallites . Macromolecules , 2004 . 37 1324 -1332 . DOI:10.1021/ma030347xhttp://doi.org/10.1021/ma030347x .
Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K . Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation . Macromolecules , 1976 . 9 266 -273 . DOI:10.1021/ma60050a018http://doi.org/10.1021/ma60050a018 .
Borchardt-Ott, Walter Crystallography Morphology. 2012, 10.1007/978-3-642-16452-1, 29-59.
De Rosa, C.; Auriemma, F.; Circelli, T.; Waymouth, R. M . Crystallization of the α and γ forms of isotactic polypropylene as a tool to test the degree of segregation of defects in the polymer chains . Macromolecules , 2002 . 35 3622 -3629 . DOI:10.1021/ma0116248http://doi.org/10.1021/ma0116248 .
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution