1.Università degli Studi Roma Tre, Dipartimento di Ingegneria Industriale, Elettronica e Meccanica, Via della Vasca Navale 79, 00146 Roma, Italy
massimiliano.barletta@uniroma3.it
Scan for full text
Clizia Aversa, Massimiliano Barletta. Addition of Thermoplastic Starch (TPS) to Binary Blends of Poly(lactic acid) (PLA) with Poly(butylene adipate-
Clizia Aversa, Massimiliano Barletta. Addition of Thermoplastic Starch (TPS) to Binary Blends of Poly(lactic acid) (PLA) with Poly(butylene adipate-
Addition of thermoplastic starch to binary PLA/PBAT blends was studied. The compounds were obtained by reactive extrusion and reprocessed by cast extrusion and thermoforming to obtain products suitable for the storage of hot food. PLA/PBAT/TPS blends proved to be very effective, also presenting a high disintegration rate in ambient conditions.
Development of home compostable materials based on bioavailable polymers is of high strategic interest as they ensure a significant reduction of the environmental footprint in many production sectors. In this work, the addition of thermoplastic starch to binary PLA/PBAT blends was studied. The compounds were obtained by a reactive extrusion process by means of a co-rotating twin screw extruder. Thermo-mechanical, physical and chemical characterization tests were carried out to highlight the effectiveness of the material design strategy. The compounds were subsequently reprocessed by cast extrusion and thermoforming in order to obtain products suitable for the storage of hot food. The extruded films and the thermoformed containers were further characterized to highlight their thermo-mechanical, physical and chemical properties. Thermo-rheological, mechanical and physical properties of the material and of the cast film were analyzed thoroughly using combined technique as capillary rheometer, MFI, DSC, VICAT/HDT, XRD, FTIR, UV-Vis, SEM, permeability and, lastly, running preliminary chemical inertness and biodegradation tests. Particular attention was also devoted to the evaluation of the thermo-mechanical resistance of the thermoformed containers, where the PLA / PBAT /TPS blends proved to be very effective, also presenting a high disintegration rate in ambient conditions.
Thermoplastic starch (TPS)Poly(lactic acid) (PLA)Poly(butylene adipate-co-terephthalate) (PBAT) ExtrusionThermoformingCompostability
Patel, M., Do Biopolymers Fulfill Our Expectations Concerning Environmental Benefits? in: Chiellini, E., Solaro, R. (Eds.), Biodegradable Polymers and Plastics. Springer US, Boston, MA, 2003, pp. 83–102.
Desole, M. P.; Aversa, C.; Barletta, M.; Gisario, A.; Vosooghnia, A . Life cycle assessment (LCA) of PET and PLA bottles for the packaging of fresh pasteurised milk: the role of the manufacturing process and the disposal scenario . Packaging Technol. Sci. , 2021 . 35 135 -152. .
Cappiello, G.; Aversa, C.; Genovesi, A.; Barletta, M. . Life cycle assessment (LCA) of bio-based packaging solutions for extended shelf-life (ESL) milk . Environ. Sci. Pollut. Res. Int. , 2022 . 29 18617 -18628 . DOI:10.1007/s11356-021-17094-1http://doi.org/10.1007/s11356-021-17094-1 .
Broeren, M. L. M.; Kuling, L.; Worrell, E.; Shen, L . Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives . Resources, Conservation and Recycling , 2017 . 127 246 -255 . DOI:10.1016/j.resconrec.2017.09.001http://doi.org/10.1016/j.resconrec.2017.09.001 .
Bangar, S. P.; Whiteside, W. S.; Ashogbon, A. O.; Kumar, M . Recent advances in thermoplastic starches for food packaging: a review . Food Packaging and Shelf Life , 2021 . 30 100743 DOI:10.1016/j.fpsl.2021.100743http://doi.org/10.1016/j.fpsl.2021.100743 .
Pan, H.; Ju, D.; Zhao, Y.; Wang, Z.; Yang, H.; Zhang, H.; Dong, L . Mechanical properties, hydrophobic properties and thermal stability of the biodegradable poly(butylene adipate-co-terephthalate)/maleated thermoplastic starch blown films . Fibers Polym. , 2016 . 17 1540 -1549 . DOI:10.1007/s12221-016-6379-xhttp://doi.org/10.1007/s12221-016-6379-x .
Fourati, Y.; Tarrés, Q.; Mutjé, P.; Boufi, S . PBAT/thermoplastic starch blends: effect of compatibilizers on the rheological, mechanical and morphological properties . Carbohydr. Polym. , 2018 . 199 51 -57 . DOI:10.1016/j.carbpol.2018.07.008http://doi.org/10.1016/j.carbpol.2018.07.008 .
Garalde, R.A.; Thipmanee, R.; Jariyasakoolroj, P.; Sane, A . The effects of blend ratio and storage time on thermoplastic starch/poly(butylene adipate-co-terephthalate) films . Heliyon , 2019 . 5 e01251 DOI:10.1016/j.heliyon.2019.e01251http://doi.org/10.1016/j.heliyon.2019.e01251 .
Lekube, B.M.; Fahrngruber, B.; Kozich, M.; Wastyn, M.; Burgstaller, C . Influence of processing on the mechanical properties and morphology of starch-based blends for film applications . J. Appl. Polym. Sci. , 2019 . 136 47990 DOI:10.1002/app.47990http://doi.org/10.1002/app.47990 .
Dammak, M.; Fourati, Y.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Boufi, S . Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability . Indust. Crops Prod. , 2020 . 144 112061 DOI:10.1016/j.indcrop.2019.112061http://doi.org/10.1016/j.indcrop.2019.112061 .
Liu, W.; Wang, Z.; Liu, J.; Dai, B.; Hu, S.; Hong, R.; Xie, H.; Li, Z.; Chen, Y.; Zeng, G . Preparation, reinforcement and properties of thermoplastic starch film by film blowing . Food Hydrocolloids , 2020 . 108 106006 DOI:10.1016/j.foodhyd.2020.106006http://doi.org/10.1016/j.foodhyd.2020.106006 .
Pokhrel, S.; Sigdel, A.; Lach, R.; Slouf, M.; Sirc, J.; Katiyar, V.; Bhattarai, D. R.; Adhikari, R. . Starch-based biodegradable film with poly(butylene adipate-co-terephthalate): preparation, morphology, thermal and biodegradation properties . J. Macromol. Sci. , 2021 . Part A 0 610 -621 . DOI:10.1080/10601325.2021.1920838http://doi.org/10.1080/10601325.2021.1920838 .
Diyana, Z. N.; Jumaidin, R.; Selamat, M. Z.; Ghazali, I.; Julmohammad, N.; Huda, N.; Ilyas, R. A. . Physical properties of thermoplastic starch derived from natural resources and its blends: a review . Polymers , 2021 . 13 1396 DOI:https://doi.org/10.3390/polym13091396http://doi.org/https://doi.org/10.3390/polym13091396 .
Khan, B.; Bilal Khan Niazi, M.; Samin, G.; Jahan, Z . Thermoplastic starch: a possible biodegradable food packaging material—a review . J. Food Proc. Eng. , 2017 . 40 e12447 DOI:10.1111/jfpe.12447http://doi.org/10.1111/jfpe.12447 .
Aldas, M.; Pavon, C.; López-Martínez, J.; Arrieta, M. P . Pine resin derivatives as sustainable additives to improve the mechanical and thermal properties of injected moulded thermoplastic starch . Appl. Sci. , 2020 . 10 2561 DOI:10.3390/app10072561http://doi.org/10.3390/app10072561 .
Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M. P . Films based on thermoplastic starch blended with pine resin derivatives for food packaging . Foods , 2021 . 10 1171 DOI:10.3390/foods10061171http://doi.org/10.3390/foods10061171 .
Quiles-Carrillo, L.; Montanes, N.; Pineiro, F.; Jorda-Vilaplana, A.; Torres-Giner, S . Ductility and toughness improvement of injection-molded compostable pieces of polylactide by melt blending with poly(ε-caprolactone) and thermoplastic starch . Materials , 2018 . 11 2138 DOI:10.3390/ma11112138http://doi.org/10.3390/ma11112138 .
Chapleau, N.; Huneault, M. A.; Li, H . Biaxial orientation of polylactide/thermoplastic starch blends . Int. Polym. Proc. , 2007 . 22 402 -409 . DOI:10.3139/217.2070http://doi.org/10.3139/217.2070 .
Suwanmanee, U.; Varabuntoonvit, V.; Chaiwutthinan, P.; Tajan, M.; Mungcharoen, T.; Leejarkpai, T . Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate . Int. J. Life Cycle Assess. , 2013 . 18 401 -417 . DOI:10.1007/s11367-012-0479-7http://doi.org/10.1007/s11367-012-0479-7 .
Zhao, X.; Cornish, K.; Vodovotz, Y . Narrowing the gap for bioplastic use in food packaging: an update . Environ. Sci. Technol. , 2020 . 54 4712 -4732 . DOI:10.1021/acs.est.9b03755http://doi.org/10.1021/acs.est.9b03755 .
Robertson, G.L. 3 - Packaging and Food and Beverage Shelf Life, in: Subramaniam, P. (Ed.), in The Stability and Shelf Life of Food (Second Edition), Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, 2016, pp. 77–106.
Panseri, S.; Martino, P. A.; Cagnardi, P.; Celano, G.; Tedesco, D.; Castrica, M.; Balzaretti, C.; Chiesa, L. M . Feasibility of biodegradable based packaging used for red meat storage during shelf-life: a pilot study . Food Chem. , 2018 . 249 22 -29 . DOI:10.1016/j.foodchem.2017.12.067http://doi.org/10.1016/j.foodchem.2017.12.067 .
Gerometta, M.; Rocca-Smith, J. R.; Domenek, S.; Karbowiak, T. Physical and chemical stability of PLA in food packaging, in: Reference Module in Food Science. Elsevier, 2019.
Larsson, M.; Markbo, O.; Jannasch, P . Melt processability and thermomechanical properties of blends based on polyhydroxyalkanoates and poly(butylene adipate-co-terephthalate) . RSC Adv. , 2016 . 6 44354 -44363 . DOI:10.1039/C6RA06282Bhttp://doi.org/10.1039/C6RA06282B .
Höhne, C.; Schmidt, R.; Berner, V.; Metzsch-Zilligen, E.; Westphal, E.; Pfaendner, R.; Mack, C . Intrinsic flame retardancy of poly(lactic acid) bead foams . J. Appl. Polym. Sci. , 2021 . 138 50856 DOI:10.1002/app.50856http://doi.org/10.1002/app.50856 .
Barrena, R.; Font, X.; Gabarrell, X.; Sánchez, A . Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability . Waste Manag. , 2014 . 34 1109 -1116 . DOI:10.1016/j.wasman.2014.02.008http://doi.org/10.1016/j.wasman.2014.02.008 .
Kaseem, M.; Hamad, K.; Deri, F . Thermoplastic starch blends: a review of recent works . Polym. Sci. Ser. , 2012 . A54 165 -176. .
Zhang, Y.; Rempel, C.; Liu, Q . Thermoplastic starch processing and characteristics—a review . Critic. Rev. Food Sci. Nutrit. , 2014 . 54 1353 -1370 . DOI:10.1080/10408398.2011.636156http://doi.org/10.1080/10408398.2011.636156 .
Phattarateera, S.; Junsook, N.; Kumsang, P.; Aontee, A.; Kerddonfag, N . The ternary blends of TPS/PBAT/PLA films: a study on the morphological and mechanical properties . Key Eng. Mater. , 2020 . 861 170 -175 . DOI:10.4028/www.scientific.net/KEM.861.170http://doi.org/10.4028/www.scientific.net/KEM.861.170 .
Li, Y.; Zhao, L.; Han, C.; Yu, Y . Biodegradable blends of poly(butylene adipate-co-terephthalate) and stereocomplex polylactide with enhanced rheological, mechanical properties and thermal resistance . Colloid Polym. Sci. , 2020 . 298 463 -475 . DOI:10.1007/s00396-020-04636-1http://doi.org/10.1007/s00396-020-04636-1 .
Muthuraj, R.; Misra, M.; Mohanty, A. K . Binary blends of poly(butylene adipate-co-terephthalate) and poly(butylene succinate): a new matrix for biocomposites applications . AIP Conference Proceedings , 2015 . 1664 150009 DOI:10.1063/1.4918505http://doi.org/10.1063/1.4918505 .
Hsieh, Y . T.; Nozaki, S.; Kido, M.; Kamitani, K.; Kojio, K.; Takahara, A. Crystal polymorphism of polylactide and its composites by X-ray diffraction study . Polymer , 2020 . J52 755 -763. .
Jalali, A.; Huneault, M.A.; Elkoun, S . Effect of thermal history on nucleation and crystallization of poly(lactic acid) . J. Mater. Sci. , 2016 . 51 7768 -7779 . DOI:10.1007/s10853-016-0059-5http://doi.org/10.1007/s10853-016-0059-5 .
Suryanegara, L.; Nakagaito, A. N.; Yano, H . The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites . Compos. Sci. Technol. , 2009 . 69 1187 -1192 . DOI:10.1016/j.compscitech.2009.02.022http://doi.org/10.1016/j.compscitech.2009.02.022 .
Savadekar, N. R.; Kadam, P. G.; Mhaske, S. T . Studies on the effect of nano-alumina on the performance properties of poly(butylene adipate-co-terephthalate) composite films . J. Thermoplastic Compos. Mater. , 2015 . 28 1522 -1536 . DOI:10.1177/0892705713513292http://doi.org/10.1177/0892705713513292 .
Li, X.; Tan, D.; Xie, L.; Sun, H.; Sun, S.; Zhong, G.; Ren, P . Effect of surface property of halloysite on the crystallization behavior of PBAT . Appl. Clay Sci. , 2018 . 157 218 -226 . DOI:10.1016/j.clay.2018.02.005http://doi.org/10.1016/j.clay.2018.02.005 .
Mahieu, A.; Terrié, C.; Agoulon, A.; Leblanc, N.; Youssef, B . Thermoplastic starch and poly(ε-caprolactone) blends: morphology and mechanical properties as a function of relative humidity . J. Polym. Res. , 2013 . 20 229 DOI:10.1007/s10965-013-0229-yhttp://doi.org/10.1007/s10965-013-0229-y .
Castillo, L. A.; López, O. V.; García, M. A.; Barbosa, S. E.; Villar, M. A . Crystalline morphology of thermoplastic starch/talc nanocomposites induced by thermal processing . Heliyon , 2019 . 5 e01877 DOI:10.1016/j.heliyon.2019.e01877http://doi.org/10.1016/j.heliyon.2019.e01877 .
Yu, W.; Wang, X.; Ferraris, E.; Zhang, J . Melt crystallization of PLA/Talc in fused filament fabrication . Mater. Design , 2019 . 182 108013 DOI:10.1016/j.matdes.2019.108013http://doi.org/10.1016/j.matdes.2019.108013 .
Aglietti, E. F . The effect of dry grinding on the structure of talc . Appl. Clay Sci. , 1994 . 9 139 -147 . DOI:10.1016/0169-1317(94)90033-7http://doi.org/10.1016/0169-1317(94)90033-7 .
Holland, H. J.; Murtagh, M. J. An XRD morphology index for talcs: the effect of particle size and morphology on the specific surface area 8. in Advances in X-ray Analysis, Springer, 2000.
Gómez-Pachón, E. Y.; Vera-Graziano, R.; Campos, R. M . Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning . IOP Conf. Ser.: Mater. Sci. Eng. , 2014 . 59 012003 DOI:10.1088/1757-899X/59/1/012003http://doi.org/10.1088/1757-899X/59/1/012003 .
Zhai, X.; Wang, W.; Zhang, H.; Dai, Y.; Dong, H.; Hou, H . Effects of high starch content on the physicochemical properties of starch/PBAT nanocomposite films prepared by extrusion blowing . Carbohydr. Polym. , 2020 . 239 116231 DOI:10.1016/j.carbpol.2020.116231http://doi.org/10.1016/j.carbpol.2020.116231 .
Palai, B.; Biswal, M.; Mohanty, S.; Nayak, S. K . In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof . Indust. Crops Products , 2019 . 141 111748 DOI:10.1016/j.indcrop.2019.111748http://doi.org/10.1016/j.indcrop.2019.111748 .
Chen, J.; Rong, C.; Lin, T.; Chen, Y.; Wu, J.; You, J.; Wang, H.; Li, Y . Stable co-continuous pla/pbat blends compatibilized by interfacial stereocomplex crystallites: toward full biodegradable polymer blends with simultaneously enhanced mechanical properties and crystallization rates . Macromolecules , 2021 . 54 2852 -2861 . DOI:10.1021/acs.macromol.0c02861http://doi.org/10.1021/acs.macromol.0c02861 .
Ren, J.; Fu, H.; Ren, T.; Yuan, W . Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate) . Carbohydr. Polym. , 2009 . 77 576 -582 . DOI:10.1016/j.carbpol.2009.01.024http://doi.org/10.1016/j.carbpol.2009.01.024 .
Rostiashvili, V. G., Vilgis, T. A. Statistical thermodynamics of polymeric networks, in: Kobayashi, S., Müllen, K. (Eds.), Encyclopedia of Polymeric Nanomaterials. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 1–18.
Roberts, D. R. T., Holder, S. J . Mechanochromic systems for the detection of stress, strain and deformation in polymeric materials . J. Mater. Chem. , 2011 . 21 8256 -8268 . DOI:10.1039/c0jm04237dhttp://doi.org/10.1039/c0jm04237d .
Li, X.; Ai, X.; Pan, H.; Yang, J.; Gao, G.; Zhang, H.; Yang, H.; Dong, L . The morphological, mechanical, rheological, and thermal properties of PLA/PBAT blown films with chain extender . Polym. Adv. Technol. , 2018 . 29 1706 -1717 . DOI:10.1002/pat.4274http://doi.org/10.1002/pat.4274 .
Zhang, T.; Han, W.; Zhang, C.; Weng, Y . Effect of chain extender and light stabilizer on the weathering resistance of PBAT/PLA blend films prepared by extrusion blowing . Polym. Degrad. Stabil. , 2021 . 183 109455 DOI:10.1016/j.polymdegradstab.2020.109455http://doi.org/10.1016/j.polymdegradstab.2020.109455 .
de Matos Costa, A. R.; Crocitti, A.; Hecker de Carvalho, L. H.; de Carroccio, S. C.; Cerruti, P.; Santagata, G. . Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends . Polymers , 2020 . 12 2317 DOI:10.3390/polym12102317http://doi.org/10.3390/polym12102317 .
Bumbudsanpharoke, N.; Wongphan, P.; Promhuad, K.; Leelaphiwat, P.; Harnkarnsujarit, N . Morphology and permeability of bio-based poly(butylene adipate-co-terephthalate) (PBAT), poly(butylene succinate) (PBS) and linear low-density polyethylene (LLDPE) blend films control shelf-life of packaged bread . Food Control , 2022 . 132 108541 DOI:10.1016/j.foodcont.2021.108541http://doi.org/10.1016/j.foodcont.2021.108541 .
Johnson, D. S.; Duncan, S. E.; Bianchi, L. M.; Chang, H. H.; Eigel, W. N.; O’Keefe, S. F . Packaging modifications for protecting flavor of extended-shelf-life milk from light . J. Dairy Sci. , 2015 . 98 2205 -2214 . DOI:10.3168/jds.2014-8857http://doi.org/10.3168/jds.2014-8857 .
Cladman, W.; Scheffer, S.; Goodrich, N.; Griffiths, M. W . Shelf-life of milk packaged in plastic containers with and without treatment to reduce light transmission . Int. Dairy J. , 1998 . 8 629 -636 . DOI:10.1016/S0958-6946(98)00094-6http://doi.org/10.1016/S0958-6946(98)00094-6 .
Xiao, T.; Wang, J.; Yang, S.; Zhu, Y.; Li, D.; Wang, Z.; Feng, S.; Bu, L.; Zhan, X.; Lu, G. . Film-depth-dependent crystallinity for light transmission and charge transport in semitransparent organic solar cells . J. Mater. Chem. A , 2020 . 8 401 -411 . DOI:10.1039/C9TA11613Chttp://doi.org/10.1039/C9TA11613C .
Jain, S.; Reddy, M. M.; Mohanty, A. K.; Misra, M.; Ghosh, A. K . A new biodegradable flexible composite sheet from poly(lactic acid)/poly(ε-caprolactone) blends and micro-talc . Macromol. Mater. Eng. , 2010 . 295 750 -762 . DOI:10.1002/mame.201000063http://doi.org/10.1002/mame.201000063 .
Aboul-Gheit, A. K.; Khalil, F. H.; Abdel-Moghny, T . Adsorption of spilled oil from seawater by waste plastic . Oil Gas Sci. Technol. - Rev. IFP , 2006 . 61 259 -268 . DOI:10.2516/ogst:2006019xhttp://doi.org/10.2516/ogst:2006019x .
Mitrus, M.; Combrzyński, M.; Kupryaniuk, K.; Wójtowicz, A.; Oniszczuk, T.; Kręcisz, M.; Matysiak, A.; Smurzyńska, A.; Mościcki, L. . A study of the solubility of biodegradable foams of thermoplastic starch . J. Ecol. Eng. , 2016 . (17 ):184 -189 . DOI:10.12911/22998993/64554http://doi.org/10.12911/22998993/64554 .
Yu, J.; Wang, N.; Ma, X . The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol . Starch , 2005 . 57 494 -504 . DOI:10.1002/star.200500423http://doi.org/10.1002/star.200500423 .
Tham, C. Y.; Hamid, Z. A . A.; Ahmad, Z.; Hanafi, I. Surface modification of poly(lactic acid) (PLA) via alkaline hydrolysis degradation . Adv. Mater. Res. , 2014 . 970 324 -327 . DOI:10.4028/www.scientific.net/AMR.970.324http://doi.org/10.4028/www.scientific.net/AMR.970.324 .
Makhdoumi, P.; Naghshbandi, M.; Ghaderzadeh, K.; Mirzabeigi, M.; Yazdanbakhsh, A.; Hossini, H . Micro-plastic occurrence in bottled vinegar: qualification, quantification and human risk exposure . Proc. Safety Environ. Prot. , 2021 . 152 404 -413 . DOI:10.1016/j.psep.2021.06.022http://doi.org/10.1016/j.psep.2021.06.022 .
Chiu, H. T.; Huang, S. Y.; Chen, Y. F.; Kuo, M. T.; Chiang, T. Y.; Chang, C. Y.; Wang, Y. H . Heat treatment effects on the mechanical properties and morphologies of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends . Int. J. Polym. Sci. , 2013 . e951696 DOI:10.1155/2013/951696http://doi.org/10.1155/2013/951696 .
Nofar, M.; Maani, A.; Sojoudi, H.; Heuzey, M. C.; Carreau, P. J. . Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow . J. Rheol. , 2015 . 59 317 -333 . DOI:10.1122/1.4905714http://doi.org/10.1122/1.4905714 .
Huneault, M.A.; Li, H . Preparation and properties of extruded thermoplastic starch/polymer blends . J. Appl. Polym. Sci. , 2012 . 126 E96 -E108 . DOI:10.1002/app.36724http://doi.org/10.1002/app.36724 .
Shirai, M. A.; Olivato, J. B.; Garcia, P. S.; Müller, C. M. O.; Grossmann, M. V. E.; Yamashita, F . Thermoplastic starch/polyester films: effects of extrusion process and poly(lactic acid) addition . Mater. Sci. Eng. , 2013 . C33 4112 -4117 . DOI:10.1016/j.msec.2013.05.054http://doi.org/10.1016/j.msec.2013.05.054 .
Cai, H.; Dave, V.; Gross, R. A.; McCarthy, S. P. . Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid) . J. Polym. Sci., Part B: Polym. Phys. , 1996 . 34 2701 -2708 . DOI:10.1002/(SICI)1099-0488(19961130)34:16<2701::AID-POLB2>3.0.CO;2-Shttp://doi.org/10.1002/(SICI)1099-0488(19961130)34:16<2701::AID-POLB2>3.0.CO;2-S .
Pantani, R.; Sorrentino, A . Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions . Polym. Degrad. Stabil. , 2013 . 98 1089 -1096 . DOI:10.1016/j.polymdegradstab.2013.01.005http://doi.org/10.1016/j.polymdegradstab.2013.01.005 .
Cho, K.; Lee, J.; Kwon, K . Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies . J. Appl. Polym. Sci. , 2001 . 79 1025 -1033 . DOI:10.1002/1097-4628(20010207)79:6<1025::AID-APP50>3.0.CO;2-7http://doi.org/10.1002/1097-4628(20010207)79:6<1025::AID-APP50>3.0.CO;2-7 .
0
Views
11
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution