a.State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
b.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
c.Department of Materials Science, Fudan University, Shanghai 200433, China
d.Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
skyan@mail.buct.edu.cn (S.K.Y.)
xueyun@bit.edu.cn (X.Y.W.)
xiaolisun@mail.buct.edu.cn (X.L.S.)
Scan for full text
Xiao Chu, Jia-Qian Kang, Ya Hong, et al. The Effect of Substrate on the Properties of Non-volatile Ferroelectric P(VDF-TrFE)/P3HT Memory Devices. [J]. Chinese Journal of Polymer Science 40(6):692-699(2022)
Xiao Chu, Jia-Qian Kang, Ya Hong, et al. The Effect of Substrate on the Properties of Non-volatile Ferroelectric P(VDF-TrFE)/P3HT Memory Devices. [J]. Chinese Journal of Polymer Science 40(6):692-699(2022) DOI: 10.1007/s10118-022-2733-1.
By employing sandwich structure constructed by silver electrode and P3HT/P(VDF-TrFE) blend film on graphene substrate, high performance ferroelectric memory devices have been obtained, which exhibit a great electrical switching behavior with high ON/ OFF ratio of about 1000 and low coercive voltage of approximately 5 V.
Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))/semiconducting poly(3-hexyl thiophene) (P3HT) blend systems have drawn great attention with their potential use for electronic applications, particularly non-volatile memory devices. It is essential to grasp a full understanding of the crystallization habits of the two polymers on different substrates for purposeful control of the structures of the blend and therefore the properties of the devices. Here, the effects of structure and morphology of the blend films generated at different substrate surfaces on the ferroelectric and switching properties of related devices are reported. It is identified that P(VDF-TrFE)/P3HT blend films prepared on graphene substrate show not only an obvious optimization in the ferroelectric behavior of P(VDF-TrFE), but also an enhancement of the charge transport within P3HT domains. By employing sandwich structure constructed by silver electrode and P3HT/P(VDF-TrFE) blend film on graphene substrate, high-performance ferroelectric memory devices have been obtained, which exhibit a great electrical switching behavior with high ON/OFF ratio of about 1000 and low coercive voltage of approximately 5 V. These findings provide useful guidance for fabricating high-performance ferroelectric memory devices.
P(VDF-TrFE)P3HTGrapheneMemory devicesFerroelectric properties
Zhang, Z. C.; Wang, X.; Tan, S. B.; Wang, Q . Superior electrostrictive strain achieved under low electric fields in relaxor ferroelectric polymers . J. Mater. Chem. A , 2019 . 7 5201 -5208 . DOI:10.1039/C8TA11938Dhttp://doi.org/10.1039/C8TA11938D .
Meng, N.; Ren, X. T.; Santagiuliana, G.; Ventura, L.; Zhang, H.; Wu, J. Y.; Yan, H. X.; Reece, M. J.; Bilotti, E . Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors . Nat. Commun. , 2019 . 10 4535 -4543 . DOI:10.1038/s41467-019-12391-3http://doi.org/10.1038/s41467-019-12391-3 .
Hicks, J. C.; Jones, T. E.; Logan, J. C . Ferroelectric properties of poly(vinylidene fluoridetetrafluoroethylene) . J. Appl. Phys. , 1978 . 49 6092 -6096 . DOI:10.1063/1.324528http://doi.org/10.1063/1.324528 .
Hong, H.; Song, S. A.; Kim, S. S . Phase transformation of poly (vinylidene fluoride)/TiO2 nanocomposite film prepared by microwave-assisted solvent evaporation: an experimental and molecular dynamics study . Compos. Sci. Technol. , 2020 . 199 108375 -108385 . DOI:10.1016/j.compscitech.2020.108375http://doi.org/10.1016/j.compscitech.2020.108375 .
Liu, J. M.; Zhao, Q.; Dong, Y. F.; Sun, X. L.; Hu, Z. J.; Dong, H. L.; Hu W. Q.; Yan, S. K . Self-polarized poly(vinylidene fluoride) ultrathin film and its piezo/ferroelectric properties . ACS Appl. Mater. Interfaces. , 2020 . 12 29818 -29825. .
Mi, C.; Gao, N.; Li, H. H.; Liu J. T.; Sun, X. L.; Yan, S. K . The Effect of poly(vinyl phenol) on the ferroelectric performance of poly(vinylidene fluoride-trifluoroethylene) . ACS Appl. Polym. Mater. , 2019 . 1 1971 -1978 . DOI:10.1021/acsapm.9b00060http://doi.org/10.1021/acsapm.9b00060 .
Gong, H. H.; Zhang, Y.; Cheng, Y. P.; Lei, M. X.; Zhang, Z. C . The application of controlled/living radical polymerization in modification of PVDF-based fluoropolymer . Chinese J. Polym. Sci. , 2021 . 39 1110 -1126 . DOI:10.1007/s10118-021-2616-xhttp://doi.org/10.1007/s10118-021-2616-x .
Song, T. T.; Wang, S. J.; Wang, H. J.; Sun, X. L.; Li, H. H.; Yan, S. K . The effect of illite on the crystallization of poly(vinylidene fluoride) . Ind. Eng. Chem. Res. , 2020 . 59 3438 -3445 . DOI:10.1021/acs.iecr.9b06432http://doi.org/10.1021/acs.iecr.9b06432 .
Tang, Z. H.; Yang, S. H.; Wang, H. J.; Sun, X. L.; Ren, Z. J.; Li, H. H.; Yan, S. K . Phase transition behavior of poly(vinylidene fluoride) in a blend with poly(butylene adipate) at high temperature . Polymer , 2020 . 194 122409 -11418 . DOI:10.1016/j.polymer.2020.122409http://doi.org/10.1016/j.polymer.2020.122409 .
Wang, M. Y.; Wang, S. J.; Hu, J.; Li, H. H.; Ren, Z. J.; Sun, X. L.; Wang, H. J.; Yan, S. K . Taming the phase transition ability of poly(vinylidene fluoride) from α to γ’ phase . Macromolecules , 2020 . 53 5971 -5979 . DOI:10.1021/acs.macromol.0c01106http://doi.org/10.1021/acs.macromol.0c01106 .
Mi, C.; Ren, Z. J.; Li, H. H.; Yan, S. K.; Sun, X. L . Synergistic effect of hydrogen bonds and diffusion on the β-crystallization of poly(vinylidene fluoride) on poly(methyl methacrylate) interface . Ind. Eng. Chem. Res. , 2019 . 58 7389 -7396 . DOI:10.1021/acs.iecr.8b05545http://doi.org/10.1021/acs.iecr.8b05545 .
Wang, J. J.; Li, H. H.; Liu, J. C.; Duan, Y. X.; Jiang, S. D.; Yan, S. K . On the α→β transition of carbon coated highly oriented PVDF ultra-thin film induced by melt recrystallization . J. Am. Chem. Soc. , 2003 . 125 1496 -1497 . DOI:10.1021/ja029352rhttp://doi.org/10.1021/ja029352r .
Naber, R. C. G.; Tanase, C.; Blom, P. W. M.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; de Leeuw, D. M . High-performance solution-processed polymer ferroelectric field-effect transistors . Nat. Mater. , 2005 . 4 243 -248 . DOI:10.1038/nmat1329http://doi.org/10.1038/nmat1329 .
Jung, H. J.; Chang, J.; Park, Y. J.; Kang, S . J.; Lotz, B.; Huh, J.; Park, C. Shear-induced ordering of ferroelectric crystals in spin-coated thin poly(vinylidene fluoride-co-trifluoroethylene) films . Macromolecules , 2009 . 42 4148 -4154 . DOI:10.1021/ma900422nhttp://doi.org/10.1021/ma900422n .
Lee, J. S.; Prabu, A. A.; Kim, K. J . Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P(VDF-TrFE) film for nonvolatile polymer memory device . Polymer , 2010 . 51 6319 -6333 . DOI:10.1016/j.polymer.2010.10.053http://doi.org/10.1016/j.polymer.2010.10.053 .
Zeng, Z. G.; Zhu, G. D.; Zhang, L.; Yan, X. J . Effect of crystallinity on polarization fatigue of ferroelectric P(VDF-TrFE) copolymer films . Chinese J. Polym. Sci. , 2009 . 27 479 -485 . DOI:10.1142/S025676790900414Xhttp://doi.org/10.1142/S025676790900414X .
Wang, J.; Li, Z.; Yan, Y.; Wang, X.; Xie, Y. C.; Zhang, Z. C . Improving ferro- and piezo- electric properties of hydrogenized poly(vinylidene fluoride-trifluoroethylene) films by annealing at elevated temperatures . Chinese J. Polym. Sci. , 2016 . 34 649 -658 . DOI:10.1007/s10118-016-1782-8http://doi.org/10.1007/s10118-016-1782-8 .
Zhang, Q. P.; Xia, W. M.; Zhu, Z. G.; Zhang, Z. C . Crystal phase of poly(vinylidene fluoride-co-trifluoroethylene) synthesized via hydrogenation of poly(vinylidene fluoride-co-chlorotrifluoroethylene) . J. Appl. Polym. Sci. , 2013 . 127 3002 -3008 . DOI:10.1002/app.37975http://doi.org/10.1002/app.37975 .
Wu, Y. J.; Li, X. H.; Weng, Y. Y.; Hu, Z. J.; Jonas, A. M . Orientation of lamellar crystals and its correlation with switching behavior in ferroelectric P(VDF-TrFE) ultra-thin films . Polymer , 2014 . 55 970 -977 . DOI:10.1016/j.polymer.2014.01.004http://doi.org/10.1016/j.polymer.2014.01.004 .
Naber, R. C. G.; Asadi, K.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B . Organic nonvolatile memory devices based on ferroelectricity . Adv. Mater. , 2010 . 22 933 -945 . DOI:10.1002/adma.200900759http://doi.org/10.1002/adma.200900759 .
Asadi, K.; de Leeuw, D. M.; de Boer, B.; Blom, P. W. M . Organic non-volatile memories from ferroelectric phase-separated blends . Nat. Mater. , 2008 . 7 547 -550 . DOI:10.1038/nmat2207http://doi.org/10.1038/nmat2207 .
Li, M. Y.; Stingelin, N.; Michels, J. J.; Spijkman, M.; Asadi, K.; Beerends, R.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M . Processing and low voltage switching of organic ferroelectric phase-separated bistable diodes . Adv. Funct. Mater. , 2012 . 22 2750 -2757 . DOI:10.1002/adfm.201102898http://doi.org/10.1002/adfm.201102898 .
Breemen, A . V.; Zaba, T.; Khikhlovskyi, V.; Michels, J.; Janssen, R.; Kemerink, M.; Gelinck, G. Surface directed phase separation of semiconductor ferroelectric polymer blends and their use in non-volatile memories . Adv. Funct. Mater. , 2015 . 25 278 -286 . DOI:10.1002/adfm.201401896http://doi.org/10.1002/adfm.201401896 .
Sung, S. H.; Boudouris, B. W . Systematic control of the nanostructure of semiconducting-ferroelectric polymer composites in thin film memory devices . ACS Macro Lett. , 2015 . 4 293 -297 . DOI:10.1021/mz5007766http://doi.org/10.1021/mz5007766 .
Su, G. M.; Lim, E.; Jacobs, A. R.; Kramer, E. J.; Chabinyc, M. L . Polymer side chain modification alters phase separation in ferroelectric-semiconductor polymer blends for organic memory . ACS Macro Lett. , 2014 . 3 1244 -1248 . DOI:10.1021/mz5005647http://doi.org/10.1021/mz5005647 .
Gutieŕrez-Fernańdez, E.; Rebollar, E.; Cui, J.; Ezquerra, T. A.; Nogales, A . Morphology and ferroelectric properties of semiconducting/ferroelectric polymer bilayers . Macromolecules , 2019 . 52 7396 -7402 . DOI:10.1021/acs.macromol.9b00859http://doi.org/10.1021/acs.macromol.9b00859 .
Hwang, S. K.; Bae, I.; Kim, R. H.; Park, C . Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation . Adv. Mater. , 2012 . 24 5910 -5914 . DOI:10.1002/adma.201201831http://doi.org/10.1002/adma.201201831 .
Serrano-Garcia, W.; Bonadies, I.; Thomas, S.; Guarino, V . P3HT loaded piezoelectric electrospun fibers for tunable molecular adsorption . Mater. Lett. , 2020 . 266 127458 -127461 . DOI:10.1016/j.matlet.2020.127458http://doi.org/10.1016/j.matlet.2020.127458 .
Asadi, K.; Wondergem, H. J.; Moghaddam, R. S.; McNeill, C. R.; Stingelin, N.; Noheda, B.; Blom, P. W. M.; de Leeuw, D. M . Spinodal decomposition of blends of semiconducting and ferroelectric polymers . Adv. Funct. Mater. , 2011 . 21 1887 -1894 . DOI:10.1002/adfm.201001505http://doi.org/10.1002/adfm.201001505 .
Asadi, K.; de Boer, T. G.; Blom, P. W. M.; de Leeuw, D. M . Tunable injection barrier in organic resistive switches based on phase-separated ferroelectric-semiconductor blends . Adv. Funct. Mater. , 2009 . 19 3173 -3178 . DOI:10.1002/adfm.200900383http://doi.org/10.1002/adfm.200900383 .
Zhao, C.; Hong, Y.; Chu, X.; Dong, Y. F.; Hu, Z. J.; Sun, X. L.; Yan, S. K . Enhanced ferroelectric properties of P(VDF-TrFE) thin film on single-layer graphene simply adjusted by crystallization condition . Mater. Today Energy. , 2021 . 20 100678 -100684 . DOI:10.1016/j.mtener.2021.100678http://doi.org/10.1016/j.mtener.2021.100678 .
Kim, K. L.; Lee W.; Hwang, S. K.; Joo, S. H.; Cho, S. M.; Song, G.; Cho, S. H.; Jeong, B.; Hwang, I.; Ahn, J.; Yu, Y.; Shin, T. J.; Kwak, S. K.; Kang, S. J.; Park, C . Epitaxial growth of thin ferroelectric polymer films on graphene layer for fully transparent and flexible nonvolatile memory . Nano Lett. , 2016 . 16 334 -340 . DOI:10.1021/acs.nanolett.5b03882http://doi.org/10.1021/acs.nanolett.5b03882 .
Skrypnychuk, V.; Boulanger, N.; Yu, V.; Hilke, M.; Mannsfeld, S. C. B.; Toney, M. F.; Barbero, D. R . Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene . Adv. Funct. Mater. , 2014 . 25 653 -659. .
Tashiro, K.; Kobayashi, M.; Tadokoro, H.; Fukadalb, E . Calculation of elastic and piezoelectric constants of polymer crystals by a point charge model: application to poly(vinylidene fluoride) form I . Macromolecules , 1980 . 13 691 -698 . DOI:10.1021/ma60075a040http://doi.org/10.1021/ma60075a040 .
Gomes, J.; Nunes, J . S.; Sencadas, V.; Lanceros-Mendez, S. Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride) . Smart Mater. Struct. , 2010 . 19 065010 -065016 . DOI:10.1088/0964-1726/19/6/065010http://doi.org/10.1088/0964-1726/19/6/065010 .
Zhang, L.; Li, Y.; Shi, J.; Shi, G. Q.; Cao, S. K . Nonvolatile rewritable memory device based on solution-processable graphene/poly(3-hexylthiophene) nanocomposite . Mater. Chem. Phys. , 2013 . 142 626 -632 . DOI:10.1016/j.matchemphys.2013.08.007http://doi.org/10.1016/j.matchemphys.2013.08.007 .
Liu, G.; Zhuang, X. D.; Chen, Y.; Zhang, B.; Zhu, J. H.; Zhu, C. X.; Neoh, K. G.; Kang, E. T . Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex . Appl. Phys. Lett. , 2009 . 95 253301 -253303 . DOI:10.1063/1.3276556http://doi.org/10.1063/1.3276556 .
Zhuang, X. D.; Chen, Y.; Liu, G.; Li, P. P.; Zhu, C. X.; Kang, E. T.; Noeh, K. G.; Zhang, B.; Zhu, J. H.; Li, Y. X . Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect . Adv. Mater. , 2010 . 22 1731 -1735 . DOI:10.1002/adma.200903469http://doi.org/10.1002/adma.200903469 .
Chen, Y.; Zhang, B.; Lin, G.; Zhuang, X.; Kang, E. T . Graphene and its derivatives: switching ON and OFF . Chem. Soc. Rev. , 2012 . 41 4688 -4707 . DOI:10.1039/c2cs35043bhttp://doi.org/10.1039/c2cs35043b .
Zhang, B.; Chen, Y.; Liu, G.; Xu, L. Q.; Chen, J.; Zhu, C. X.; Neoh, K. G.; Kang, E. T . Push-pull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory . J. Polym. Sci., Part A: Polym. Chem. , 2012 . 50 378 -387 . DOI:10.1002/pola.25043http://doi.org/10.1002/pola.25043 .
Jin, Y.; Yu, F.; Kuppa, V. K . Three-fold improvement in the performance of all-polymer photovoltaic devices with graphene . Mater. Lett. , 2015 . 156 161 -164 . DOI:10.1016/j.matlet.2015.04.103http://doi.org/10.1016/j.matlet.2015.04.103 .
0
Views
8
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution